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DS5 - Correction 
 

Problème 1 : Téléobjectif 

1-a- Surface du capteur : S=L.ℓ=36.24=860 mm². 

Or S = N.a² avec N=107 pixels => 
S

a 9,3 µm
N

  . 

1-b- 1D f ' On peut estimer que l’objet est à l’infini ; son image se formera donc dans le plan focal image. 

Le plan du capteur doit donc coïncider avec ce plan et l’encombrement 1 1E f ’ 50 mm  . 

1-c- En valeurs algébriques : 

1OA' f '
A 'B' AB. AB. -5,0 mm

OA OA
     

Remarque : ici on aurait pu procéder en deux temps  
  1- On considère l’objet à l’infini vu sous l’ange θ et donc 

1A 'B' f '   
  2- On détermine le diamètre angulaire θ sous lequel est vu 

la tour AB à une distance D : 
AB

D
 


 

  3- On retrouve 1

AB
A'B' f '

D
   

1-d- Si on suppose que le système optique est modifié pour être adapté à la taille du nouveau détecteur 

2,4 3,6
0,24

10 15
   
 

Alors la nouvelle taille de la tour sur la photo sera 
A'B'

A''B'' 21mm
0,24

   

1-e- Un laveur de carreaux fait environ 2 m. La taille obtenue sur le capteur est : 

1f ' 0,05
A 'B' AB 2 50 µm

2000OA
    soit environ 5 pixels : on pourra distinguer sa forme. 

 

2-a- 1 2L L
1A F' A ' A''     

Donc 2 2 1 1 1O A' O O O F' 31,2 50 18,8mm       

A’B’ est un objet virtuel pour L2.  
Tracé : voir ci-dessous 

 

2-b- 2 1 2
2

22 2 1 2 1 2

1 1 1 O F' .f ' 18,8.( 25)
O A '' 75,8mm

f ' 18,8 25O A'' O F' O F' f '


    


 

 

 2
2

2

O A'' 75,8
A''B'' A 'B' A 'B' 5,0 20,2mm

18,8O A'
        

Zoom : x4 

 

2-c- Photo :   

 

F’= A’ 
 

Plan focal image 

Vers A∞ 

Vers B∞ 

θ 

B’ 
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2-d- Encombrement 1O A'' 31,2 75,8 107mm     

L’encombrement augmente (gros objectif) 

3- Reprenons le raisonnement de la remarque de la question 1c- : la focale de la lentille unique équivalente 

doit vérifier : 3A''B'' f '    avec
AB

D
 


 

Soit  

3

A ''B'' 20,2
f ' D 2000 202mm

200AB
     

L’image se formerait dans le plan focale image de cette lentille et l’encombrement serait de 202 mm 
(pratiquement deux fois plus grand que l’encombrement du téléobjectif, d’où son intérêt)

F2 F’2 

B’ 

B’’ 

A’’ F’1 
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Problème 2 : Contrôle non destructif (inspiré de CCS MP) 

A – Expression approchée du champ magnétique créé par la bobine excitatrice dans la plaque 

A.1) Le plan contenant  r zM,e ,e
 

(plan de la figure) est un plan d’antisymétrie pour la distribution de 

courants. Donc le champ magnétique est contenu dans ce plan ; ainsi B 0  .  

De plus, il y a invariance de la distribution de courant sous toute rotation d’axe Oz ; les coordonnées dyu 
champ magnétique sont donc indépendantes de la coordonnée θ 

Donc :      r r z zB M, t B r,z, t e B r,z, t e 
  

 

A.2) On constate que l’amplitude du champ diminue à cause de la présence de la plaque conductrice. En 
effet, le champ magnétique ne rentre dans un conducteur que sur une distance d (effet de peau) : le champ 
magnétique créé par la bobine crée des courants de Foucault dans la plaque qui induisent un champ 

magnétique induit opposé aux variations de B


  
Remarque : normalementl’atténuation est d’ailleurs plus forte à 200 Hz qu’à 50 Hz. 

A.3)a) Cette question n’est pas extrêmement claire. La zone A est-elle seulement la zone où les spires de la 

bobine sont en contact avec la plaque. On cherchera alors la valeur de B x 0,z
2

   
 

l
, on lira alors que 

le premier graphique de la carte 2 B 2,7mT   

On s’agit-il de la valeur moyenne du champ à l’intérieur de la bobine au niveau de la plaque que l’on peut 

évaluer 1,5 mT ou que l’on peut calculer en approximant l’évolution de B


par une évolution parabolique 

au voisinage de son minimum : 

   
  

2 2
b

surface centre centre surface centre centre2 2
b b0,5mT2,3mT

en coordonnées polaire dans le plan z
2

x R r
B x,z B B B B B B

2 R R



        
   

l

l
 

Cela donne alors  

 

 

b

Rb 2

moy surface centre centre2 2
b b0

R4 2
surface centre

centre2 2
b b 0

centre
surface centre

surface centre

1 r
B B B B 2 rdr

R R

2 B B r r
B

R R 4 2

1 B
2 B B

4 2

B B

2
2,7 0,5

2

1,6mT

 
       

 
  

 

    
 











 

 

A.3)b) 0 0
b

N
i

l
est le champ magnétique créé par un solénoïde infini à l’intérieur. On peut lire cette valeur en 

utilisant la carte 1 au centre du la bobine (sans plaque, y a-t-il eu une erreur dans le texte en faisant 

référence à la carte 2 ; c’était dans le texte de CentraleSupélec)  b 0 0
b

N
B x R ,z 0 i 10,8mT    

l
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On obtiendra donc 
2,7

0,25
10,8

    ou 
1,6

0,15
10,8

    

 

B – Courants de Foucault 

B.1) Appliquons la forme intégrale de l’équation de Maxwell-Faraday : 

   z
M z P

M P
s 'appuyant

sur

B
E r,z e .dl e .dS .n P

t
 

 




 

 
  

  

On choisit comme contour le cercle centré sur l’axe de la bobine de rayon r et orienté dans le sens de e


: 

    2
02 r E r,z B sin t . r      

   0

r
E r,z B sin t e

2
  

 
 

Remarque en dehors de la zone A, en considérant que l B 0
 

   
2
b

0

R
E r,z B sin t e

2r
  

 
 

B.2) La loi d’Ohm locale impose :  0 0
0

B
j E r sin t e

2


 
   
  

(dans la zone A) 

En dehors de la zone A :    
2
b

0 0

R
j r,z B sin t e

2r
   

 
 

 

C – Modification de l’impédance de la bobine excitatrice 

C.1) Le montage à ALI est un suiveur. 

i 0  donc  v e t   

L’ALI fonctionne en régime linéaire 
(rétroaction sur l’entrée inverseuse) : 

 v v e t    et  Sv v e t   

 Par conséquent, la tension Y1(t) qui 
s’applique est E=5,00 V dans l’intervalle 
de temps représenté sur l’oscillogramme. 
Calculons l’expression de Y2(t) : 

   di Vs L dVs
E R R ' i L R R '

dt R ' R ' dt
       

1

R ' dVs R R '
E Vs

L dt L




 


 

Sur le graphique on lit : 6L
78,4.10 s

R R '
  


 et s

R '
V E 4,90V

R R '
  


 

On en déduit : 
s

E
R R ' 1 10,2

V 

 
    

 
 et   3

S

E
L R R ' R ' 40,0.10 H

V




       

 

i+ = 0 

e(t) e(t) 
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C.2) La puissance électrique moyenne fournie à la bobine vaudra  
2
0

elec Joule Joule
bobine Plaque

I
P R R P P

2
      

Les pertes Joule dans la bobine ne sont pas modifées (à amplitude de i0 constante) et restent égales à 
2
0

Joule
bobine

I
R P

2
  et les pertes joules dans la plaque sont positives (effet Joule) donc 

2
0

Joule
Plaque

I
P R 0

2
   . 

Ainsi la partie réelle de l’inductance de la bobine augmente. 

 

C.3) On constate que la présence de la plaque fait diminuer le champ magnétique, donc fait diminuer 

l’énergie stockée sous forme magnétique 2
m totale

1
E L. i . 

2
 Donc L diminue. 

C.4)      
3

2
j M M

M Zone AM

1
P j M .E M d j M .d



   
 

  
 c’est ce que semble suggérer le texte (faudrait-il 

considérer également les pertes joules hors de la zone A ?) 

      
b b2 2R R 4 2 2

230 0 0 b 0
j 0 0

0r 0 r 0

1 B B R B
P rsin t 2 r.d.dr sin t 2 d r dr d sin t

2 2 8 

                          

En utilisant l’expression B0 donnée partie A :  

  
4 2 2 2 2

22 b 0 0
j 0 2

b

R N i
P d sin t

8

 
    

l
 

On a dont en valeur moyenne : 
4 2 2 2 2

2 2b 0 0
j 0 02

b

R N i 1 1
P d . Ri

8 2 2

 
     

l
 

Ainsi : 
4 2 2 2

2 b 0
0 2

b

R N
R d

8

 
    

l
 

 
Remarque si on tient compte des pertes en dehors de la zone A : il faut ajouter 

 
b

22
b

j 0 0

r R

1 R
P B sin t 2 rddr

2r





 
       

 qui diverge … Le problème vient de la plaque 

d’aluminium que l’on a supposé infini dans le calcul 

 

C.5)a) Maxwell-Ampère : 0 0 0 0

négligeable
dansunemétal

E
rotB j j

t


      



  


donne sous forme intégrée : 

     
f

P 0 M

P M

B P dl j M dS n M
 

  
   
  

On choisit pour contour un rectangle orienté Γ situé entre les rayons r et Rb et entre les cotes z et z + dz à 
l’intérieur de la zone (A) : 

 

d 
 

Rb 

dz 

 
r 

 
 

z 

Zone (A) 
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         
b

f M

R
2 20 0 0 0

P 0 M 0 b

P r r

B B
B P dl B' r,z, t dz dz r sin t dr dz R r sin t

2 4 

   
        

 
  

Ainsi      2 20 0
0 b

B
B' r,z, t R r sin t

4

 
     

Remarque : on trouve que B’ est indépendant de z ; ce que l’on aurait pu dire dès les départ en utilisant 

zB'
divB' 0

z


 


 

On peut remarquer que B’ induit par j est proportionnel à ω : à basse fréquence 0B' B  

C.5)c) 
     

b

P

2R2
22 2 20 0

m P 0 b P P
0 0P ZoneA r 0

B' P B 1
E d R r sin t 2 .d.r .dr

2. 4 2. 

              

 
 

 

bR32 22
b20 0

0

0

2 6
20 0 b

m 0

R rB 1
sin t .d

4 2 3

B R
E .d sin t

4 6

             
 

      
 

  

C.5)d) La relation (I.1) donne 0 0
0

b

Ni
B


 

l
 

Ainsi    
22 26 6

2 2b 0 0 b 0 0 0
m 0 0

b

R B R Ni
E .d sin t .d sin t

6 4 6 4

                    
     l

 

226
2b 0 0 0

m 0 0
b

1 R Ni
E .d i

2 6 4

         
   l

 

Or  
2

2 0
m

1 1 i
E L i t L

2 2 2
     

Ainsi 
226

b 0 0
0

b

R N
L .d

3 4

          
   l

 

C.6) AN : 
   2 47 2 6 6 3 24 2 2 2

2 b 0
0 2 2

b

3.4.10 .300 . 10 .10 .0,3².3.10 . 2,5.10R N
R d 26m

8 8.10

  



 
       

l
  

226
b 0 0

0
b

R N
L .d 0,13mH

3 4

           
   l

 

Ces perturbations sont très faibles par rapport à R et L : 3R
2.10

R


  et 3L
2.10

L


 . Elles seront donc 

difficiles à mesurer de plus les valeurs données ci-dessus sont très imprécises (α est très imprécis) 

 

C.7) En haute fréquence, les variations δL et δR seront plus importantes donc plus facilement détectables. La 
sensibilité du dispositif en est donc améliorée. Cependant, l’effet de peau, plus important en hautes 
fréquences, va limiter cette sensibilité ; en effet, les courants induits tendent à se concentrer sur la surface 
du conducteur ce qui empêchera la détection de défauts « profonds » de la plaque conductrice. 
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Problème 3 – La spectrométrie ICP-AES 
A – Spectroscopie et résolution 

Q18. Par définition, la différence de marche entre les deux rayons considérés est donnée par :

 
               2 2 1 12 1
M SM SM SS S M SS S M        

Or d’après le théorème de Malus Dupin, les point S1 et S2 sont situés sur la même surface d’onde et ainsi  

     2 1M S M S M    

Imaginons qu’on place une source ponctuelle au point M. D’après le principe de retour inverse de la 
lumière, les rayons issus de M passant par S1 et S2 seraient les mêmes. D’après le théorème de Malus, les 
surfaces d’ondes sont sphérique entre M et la lentille et planes après.  
Ainsi : 

                2 1 2 1 2 1 2 2 1
retour Malus
inverse

M S M S M MS MS MH HS MS HS S S .u         
 

 

où 
OM

u
OM




est le vecteur unitaire orientant les rayons parallèles considérés entre les trous et la lentille. 

M M

M
2 1 M M 2 1

2 2 2 Conditions
de GaussM M

a x x
1 1 ax

S S 0 u y y ainsi S S .u
f ' f 'x y f '0 f ' f '

     
                   
     

   
 

  ax
M

f '
   

 

Q19. La formule de Fresnel nous donne (les deux ondes se superposant en M étant mutuellement cohérentes) 

:   1 2 1 2I M I I 2 I I cos 2
      

 

Les deux trous étant identiques on peut considérer 1 2 0I I I   :   0

ax
I M 2I 1 cos 2

f '

        
 

I(M) ne dépend pas de y : les franges d’interférences sont donc rectilignes colinéaires à Oy 

Les raies brillantes sont espacées de 
f '

i
a


  

Les raies sont parfaitement contrastée 
 

Q20. 
9

3
4

499,3.10 0,20
i 1,0.10 m

10




   

Q21. 
f '

i
a


   : pour avoir une résolution en longueur d’onde voisine de 20 pm, il vaut une résolution 
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spatiale de 
12 9

13
4

20.10 .500.10
i 10 m

10

 


   ce qui semble illusoire. Par exemple si on mesure des 

longueurs avec un présicion de 10-4 m, il faudrait mesurer 9
13

41

10

0
10



  interfranges … C’est bien sûr 

impossible en pratique et même en théorie, la longueur de cohérence temporelle pour les lampes 
spectrales est au maximum de 30 cm ; l’ordre d’interférence maximal avant d’avoir un contraste nul est  

6
max 9

0,3
p 10

500.10  on atteint pas 109 

 

III.A.2) Interférences à N ondes 

Q22. Un raisonnement analogue à celui mené en question 18 permet de conclure que la différence de marche 

ente deux rayons passant par des trous successifs est   a sin    ; soit 
 a sin

2


  


 

Attention ici, on n’est plus nécessairement dans les conditions de Gauss (il n’y a plus de lentille après ou 
son axe optique ne sera pas aligné sur Oz) 

 

Q23. On numérotera les trous par valeur de x décroissant de S0 le trou d’abscisse maximale à SN-1 
Les ondes avant les trous sont en phase (théorème de Malus) on note la vibration lumineuse dans le plan 

du réseau :    0j t
réseau 0s t s e     

En M, à l’infini dans la direction θ se superposent les ondes passées par chaque trou Si : 

    i 0j k S M t
i 0s M, t s e    

Ainsi                 i 0 0 0 i 0 0

N 1 N 1 N 1 N 1
j k S M t j k S M t jk S M S M j t ji

i 0 0 0
i 0 i 0 i 0 i 0

s M, t s M, t s e s e e s e e
   

       

   

        

On a ainsi        0 0
0

jN jNjN 2 2j t N 1 j t N 1
j t 2 2

0 0 0j
j j
2 2

sin N
1 e e e 2

s M, t s e s e s e
1 e

sine e
2

 
                    

  

 
      

  
  

 

 

L’éclairement associé sera  

2

0

sin N
2

M, t
sin

2

  
    

  
    

E E  

L’éclairement sera maximum lorsque le dénominateur s’annulera soit pour 2p   avec p entier relatif.  

On aura alors   2
0M,t NE E  avec 0E l’éclairement si un seul trou était éclairé. 

 

Le pic d’ordre 1 sera dans la direction telle que 
 1a sin

2 2


  


soit  1sin
a


   

Q24. AN :   9 7
1 3 6

1800 1,800
sin 499,3.10 4,993.10 0,9874

a 10 10
 

 


      soit 1 64,0 1,12rad     

On n’est plus du tout dans les conditions de Gauss. 
 

Q25. L’éclairement s’annule lorsque sin N 0
2

   
 

soit 
2

p
N


   La demi-largeur du pic du premier ordre 

correspondra à  
      1

1 1 1

1

a sin1 a
p 2 1 2 2 sin cos

N


                      
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Soit  1

a 2
2 cos

N


   


 ou  

   1
1 1

1

N a cos cos

 
  

 l
 

AN 
 

9
5

1 2

499,3.10
2,3.10 rad

5.10 cos 64,0




    

Q26. L’écart angulaire entre les deux maximums d’ordre 1 correspondant aux deux longueurs d’onde λ et 

'     sera dans les directions 1 et 1 1   tel que      1 1 1 1 1sin sin .cos
a

  
          

Soit un écart angulaire 
 1

1a cos


 


 

Les deux pics seront résolus si 
   1 1

1 1

1

a cos N a cos

 
    

 
 soit  

N


   

Q27. Résolution du réseau étudié 
9 4

11
2

a 499,3.10 .10
10 m 10pm

5.10

 





    

l
 

 

B – Interaction champs – plasma dans la torche 

 

Q28.   0
0

B
divE 0 rotE divB 0 rotB j

t

 
      

 

    
 

Formes intégrales

         

     

f

f f

f

f f

intérieur
à 

M ext M P
0M M P

s 'appuyant
sur

M ext M 0 enlacé

M M

Q
d

E M dS n M E M dl B P dS n P
dt

B M dS n M 0 B M dl I



  



 

  


  

  

 

    

  




 

 
B.1) Champ magnétique produit par les lames 

 
Q29. On commence par faire un changement de coordonnées : on utilisera le repère (O’x’yz) où O’ a 

pour coordonnées dans le référentiel initial (-a-
b
2
,0,0) et l’axe (O’x’) est parallèle à l’axe (Ox)    

 
La distribution de charge et de courant est invariant selon toutes 
translations le long de Oy et Oz. 

Donc 

 
 
 

x

y

z

B x ', t

B B x ', t

B x ', t

 
   
 
 


 

Soit M un point quelconque  

Le plan  x yM,e ,e
 

 est plan de symétrie des courants (et des 

charges) . Par conséquent,  z zB B x ', t e
 

  

De plus, le plan médian (O’yz) est aussi plan de symétrie des courants. Donc le champ B


 est 
antisymétrique par rapport à ce plan. Donc    z zB x ', t B x ', t    

 
On applique le théorème d’Ampère sur un contour rectangulaire comme sur le contour ci-dessus 

z 

x’ 

O’ 

 

b
2

 - b
2

 

−J(t).

e y 

A B 

C D 

L M 
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 
f

M 0 enlacé

M

B M dl I


 
 

  

Avec         
f

M z B z A z M

M

B M dl L B x ' B x ' 2LB x '


  
 

  

et 
 

 

M M

enlacé

M

b
J t L2x ' si 0 x '

2I
b

J t Lb si x '
2

   
 


 

Donc  
 

 

0 M z M

0 z M

b
J t x ' e si x '

2B M, t
b b

J t e si x '
2 2

  
  





  

 
Q30. On utilise le théorème de superposition 

Raisonnement graphique 

 
 

 
B.2) Propriétés dans le plasma 

Q31. 
B

rotE
t


 




Donc si J est variable, le champ magnétique sera variable et il apparaîtra un 

champ électrique induit 

Les invariances de la distribution de courant sont les mêmes que précédemment : 

 
 
 

x

y

z

E x, t

E E x, t

E x, t

 
   
 
 


 

Le plan  x zM,e ,e
 

 est plan d’antisymétrie des courants et le champ électrique a les mêmes 

symétries que ses sources :  y yE E x, t e
 

 

Le plan  y zO,e ,e
 

est plan d’antisymétrie de la distribution de 

courant donc du champ électrique :    y yE x, t E x, t    

 
Q32. Le champ électrique induit est à l’origine d’une 

distribution de courant dans le plasma ce qui induit un 
champ magnétique créé par le plasma. On peut donc en 
déduire que ce champ n’est pas le même que celui seulement 

-a -a - b a a + b 

Créé par  Créé par    

x 

Bz 

 

 

z 

x 

O 
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créé par les lames. 
 
La distribution de courant dans le plasma aura les mêmes symétries et invariances que le champ 
électrique qui lui-même a les symétries et les invariances du courant dans les plaques.  
La distribution totale des courants gardera ses symétries et ses invariances et le champ magnétique 
gardera la même structure que celle donnée aux question 29 et 30 :  z zB B x, t e

 
avec  zB x, t

fonction paire de x 
 

Q33. D’après l’équation de Maxwell-Ampère : z z
y 0 y 0

B B
rotB e je donc j

x x

 
     

 

  
  

D’après l’équation de Maxwell-Faraday :  y yz z
z z

E EB B
rotE e e donc

x t x t

  
    

   

  
  

 
B.3) Modèle non collisionnel 

 

Q34. On a 
   

2
y

y

j x, t n.e
E x, t

t m





 

2 2
y yz z

2

E EB B

x t x x t

  
    

    
 

 
2 2

yz z
0 y 0 0 y

jB B n.e
j E x, t

x t x t m

 
      

   
 

Ainsi  

2

2 2 2
y z

0 y2

1

E B n.e
E x, t

x x t m



 
   

   
 avec 

2
0

m

n.e
 


 

 

Q35. On obtient :      y

x x
E x, t t cosh t sinh

             
 

Comme Ey est une fonction impaire de x :    y

x
E x, t t sinh

     
 

De plus 
 yz tEB x

cosh
t x

           
 soit    

z

tx dQ
B Q t cosh avec

dt

      
 

Si on pose      0

a
B t B a, t Q t cosh

     
, on peut réécrire    z 0

x
cosh

B x, t B t
a

cosh

 
  
 
  

 

 

Q36. D’après la relation donnée à la question 34 : 
   0y z

x
cosh

t dB tE B x
cosh

ax t dt
cosh

 
                 
  

 

Soit    0

x
cosh

dB t
t

a dt
cosh

 
    
 
  

 et  
 0

y

x
sinh

dB t
E

a dt
cosh

 
   
 
  
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De même :  z
0 y y 0

0

x
sinh

B 1
j j B t

ax
cosh

 
       

   
  

 

 
Q37. L’expression de la puissance volumique est : 

     
2 2

2
0 0

y y 0
0 0

x x
sinh sinh

dB t dB t1 1
p j.E j R B t

a adt 2 dt
cosh cosh

      
                

       
             

 
 

La puissance moyenne sera 

   

    

2 2

2T
T0 2

0 0
0 0t 0

2

2 2
0 0

0

x x
sinh sinh

dB t1 1 1 1
p dt B t

a aT 2 dt T 2
cosh cosh

x
sinh

1 1
B T B 0 0

aT 2
cosh



 

      
                         
             

  
      

   
    



 

Il n’y aurait aucune puissance cédée par le champ aux électrons et donc pas besoin d’entretenir le 
plasma, contrairement à ce qui est dit dans l’énoncé. 

 
B.4) Modèle collisionnel 

 

Q38. y zE B

x t

 
 

 
 

2
yz z z

0 y 0 y 0 02

2
z z

02

EB B B
j E

x x x t

B B

x t

  
           

   

 
  

 

 

 
Q39. D’après l’équation établie à la question précédente, 

     
2

2 1z z
0 02

B B
dim dim B L dim dim dim B T

x t
                

 

donc   2
0dim L .T    

Ainsi   2 1 2
0dim L .T.T L       et 

0

2
dim dim L

 
      

 

 

Q40. On injecte la solution proposée pour       zB x, t f x .exp i t .e 
 

 dans l’équation aux dérivées 

partielles trouvée : 

       

   

22
z z

0 02 2

2

02

d f xB B
.exp i t i .f x exp i t

x t dx

d f x
i .f x 0

dx

 
         

 

   
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Equation caractérisque :  
22 2

i i2 02 4
0 0 0

1 i
X i e e 1 i

2

                             
 

Donc  
1 i 1 i

x x 1 i 1 i
f x Ae Be cosh x sinh x

 


                  
 

La parité par rapport à x de Bz donc f impose :   0   et 

  0

1 i
cosh x

1 i
f x cosh x f

1 i
cosh a

 
            
  

 

Ainsi    0 z

1 i
cosh x

B x, t f exp i t .e
1 i

cosh a

 
   

 
  

 
 

 

Q41. Au vu de l’expression de B


, on peut penser que la puissance évolue en 
x

exp 2
   

 (E et j ont 

probablement une amplitude qui décroit en 
x

exp
   

) près des bords. On peut donc y voir un effet 

de peau. Plus la pulsation est importante, plus l’épaisseur de peau δ est petite et donc plus 
l’atténuation devrait être abrupte. 
 

On observe que la courbe 
a

3,4


 (qui a la plus forte amplitude) est celle qui décroît le plus 

rapidement. C’est bien celle qui a le plus petit δ. C’est cohérent. 
 
De plus, on remarque graphiquement qu’une augmentation de pulsation est liée à une 
augmentation de puissance moyenne transmise au plasma (plus forte amplitude). On sait qu’en 
général, dans les phénomènes inductifs, la puissance volumique augmente avec la pulsation 
d’excitation, c’est donc bien cohérent. Dans le modèle non collisionnel, il n’y avait aucune 
puissance cédée aux électrons. 
 
Enfin, on remarque que sur les bords, la puissance est bien maximale, cela est cohérent avec la 
forme d’anneau qu’on observe sur la photographie de la figure 7. Sur celle-ci d’ailleurs, on peut 

observer un anneau d’épaisseur ~ 0,7 cm. Calculons δ: 
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. C’est tout-à-fait 

cohérent avec les observations malgré une géométrie différente. 
 
 


