
DS6 CORRECTION 

Problème 1 (sujet 1) : Localisation des franges (D’après CCP) 
 
Partie 1 : Michelson en lame d'air 

 
 

1-a- Les rayons issus de F se partagent en d’une part des rayons réfléchis par (Sp+Cp) qui vont aller 
frapper M2 et d’autre part des rayons transmis à travers (Sp+Cp) qui vont venir frapper M1. Soit S 
l’image de Σ par réflexion sur (Sp+Cp) et S2 l’image de S par réflexion sur M2 

 Sp CpS Sym   et  
22 MS Sym S   

Soit Σ’ l’image de Σ par M1 et soit S1 l’image de Σ’ par réflexion sur Sp+Cp : 

  
1M' Sym   et  

p p1 S CS Sym '  .  

En appelant M’1 le symétrique de M1 par rapport à (Sp+Cp),  
11 M 'S Sym S  

(Cf graphe à la question suivante) 
 
Tout se passe donc comme si on avait deux miroirs Mv1 et M2 

formant une lame d’air et une source ponctuelle S. Les sources 

secondaires obtenues par ce système sont  
11 M 'S Sym S et  

 
22 MS Sym S  

La distance 1 2M ' M est égale à l’écart des distances respectives 

de M1 et M2 à l’ensemble Sp + Cp, d est la distance de F à 
Sp+Cp. 

 
1-b- Il y a deux façons d’aborder cette question. 

La première : rester en coordonnées cartésiennes 
Schéma cf ci-contre 
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2- La différence de marche est 1 2S M S M    
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e
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 et on supposera x et ε du même ordre de grandeur 

Attention, pour conserver les termes faisant apparaître une dépendance en X’ il ne faut pas limiter 
le développement à l’ordre 1 en x ou ε (comme le montre la formule proposée il faut aller 
développer jusqu’à l’ordre 3 !!! 
Ainsi :  
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xen simplifiant les termes d'ordre suppérieur à 

           

 
 

                   
 
 
                  
 

 

3 3

2D d 1 2 2

ou 

      2 21
x 2

2
    
 

34  2 3x 4     

   

3 3

2 2 3 3

o x ou

1
D d 1 2 x x o x ou

2

 
  

 
          
 

 

Soit au final 
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OUF ! PLUS JAMAIS CA !  
 
Autre possibilité : s’inspirer du calcul du potentiel dipolaire 
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Puis ensuite il suffit de donner une expression de θ à l’ordre 1 

X
tan

D d e
 

 
et à l’ordre 1 

X

D d
 


 On retrouve  

2

2 1

1 X
S M S M 2e 1

2 D d

         
 

On a singularisé ici l’axe X (qui est en fait quelconque). Il y a une symétrie de révolution autour de 
la normale à l’écran passant par S (axe Y). Les franges sont des cercles d’axe (Y) 

 
3- Dans le cas où 2e = p0V, la différence de marche au centre est nulle et les deux ondes sont en phase. 

On a donc un maximum d’intensité : le centre est brillant. 

Un anneau brillant correspond à 
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Lorsque X augmente, δ et donc p diminuent : pour le mième anneau m 0p p m   

Le rayon de l’anneau correspondant est donné par 
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La distance entre l’anneau p et l’anneau (p+1) varie en p 1 p  .Cet écart 

diminue avec p 
 

4- Dans le cas de deux sources incohérentes, les intensités s’ajoutent. Les franges sont identiques mais 
translatées selon l’axe (X) de R. Les franges seront visibles jusqu’au mième anneau si 

 m m 1X X m 1 m
R D d

4 e 4
   

    

5- Dans le cas où D  , la relation précédente est satisfaite pour tout R (et tout m ) Le franges à 
l’infini restent donc contrastées. On dit que les interférences sont localisée à l’infini. Il apparaît 
alors que la source ponctuelle peut être remplacée par une source large. 
 
L’intérêt de travailler avec une source étendue est d’obtenir un phénomène plus lumineux, donc 
plus visible. 
 
Pour observer les anneaux à l’infini, on utilise une lentille convergente dont la focale sera de 
l’ordre du m, parallèle à la lame d’air et on observe les anneaux formés dans le plan focal image de 
la lentille. 
 
 

 

M=0 X = 0 
1 2,2 cm 
2 3,2 cm 
3 3,9 cm 
4 4,5 cm 
5 5,0 cm 



 

6- Pour observer le plus grand nombre d’anneaux, il faut avoir des angles d’inclinaison i variés. Cet 
angle i est aussi l’angle d’incidence sur les miroirs. Dans la pratique, on dispose près de 
l’interféromètre un diaphragme de grande ouverture derrière lequel on place la source lumineuse ou 
bien on dispose le diaphragme au foyer d’un objectif de courte focale. 

Partie2. Michelson en coin d’air. 
 

1- On a les mêmes définitions qu’en partie1.1). 

 Sp CpS Sym   et  
22 MS Sym S   

 
1M' Sym   et    

p p 11 S C M'S Sym ' Sym S   .  

En appelant M’1 le symétrique de M1 par rapport à (Sp+Cp),  
Les miroirs M’1 et M2 font un angle α et forment un coin d’air. 

 

2- La source secondaire S1 est obtenue par symétrie de S 

par rapport à M’1 
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La source S2 est obtenue par symétrie de S par 
rapport à M2. Faisons un schéma dans le plan y = 
y0.S et S2 ont la même ordonnée y0 
Appelons H le projeté orthogonal de S sur M2 

 2 2OH OS.u u
   

avec 

2 X Z X Zu cos u sin u u u     
    

 

O 

S 

S2 

H 
2u


 

z 

X 



   
H 0 0

0 0 2
H 0 0 0

X X Z
OH X Z u donc

Z X Z X

 
        

 
 

H étant le milieu du segment  2SS  : 2S S
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3- On peut ainsi obtenir (dans le calcul ci-dessous on fera des développements limités à l’ordre 2 en 
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4- Sur l’écran, z est fixé et δ ne dépend que de x : on a donc des franges rectilignes de x donné. 

Les maxima d’intensité sont obtenus 
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L’interfrange est indépendance de la position de l’écran si 0x 0 (source située « au-dessus » de 

l’arête du coin d’air) ou si 0z z observation très proche du coin d’air 

 

Dans ce second cas : 
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, résultat classique du coin d’air. 

5- Les points sources de la fente sont des sources incohérentes, mais qui donnent toutes lieu à la même 

valeur  x, y  

On obtient donc un phénomène d’interférences inchangé. 
 

6- Lorsqu’on déplace la source, δ dépendant de x0, le système de franges se translate de 0
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7- Dans le cas où on observe les franges au voisinage du coin d’air, 0z z , la contrainte précédente 

n’est pas contraignante. 
On peut donc dans ce cas utiliser une source large. 
 
Dans la pratique on forme l’image du coin d’air par une lentille convergente (f’) sur un écran. On 
doit continuer à éclairer le Michelson en incidence faible. 

 



Problème 2 : Gravimètre à chute libre (Centrale MP 2008) 
 

1a- le rôle de la compensatrice est de compenser exactement le déphasage qui s’introduit entre les 
deux ondes du fait de la séparatrice (la séparation se fait sur l’one des deux faces de la séparatrice 
et par conséquent l’une des ondes la traverse 3 fois tandis que l’autre ne la traverse qu’une fois) 

1b- On utilise un filtre interférentiel qui « isole » l’une des raies spectraleS de la lampe. 

1c- Les miroirs sont perpendiculaires en eux et 1 2e O I O I  est non nulle : le dispositif est donc 

équivalent à une lame d’air 
Ainsi, la figure d’interférence observée est constituée d’anneaux concentriques de plus en plus 
serrés à mesure qu’on s’écarte de leur centre. 
La source étant étendue donc spatialement incohérente, ces anneaux sont localisées à l’infini (les 
différentes figures d’anneaux associées à différentes sources ponctuelles incohérentes se brouillent 
quelle que soi la position de l’écran à distance finie du dispositif) 

1d- On doit donc placer l’écran dans le plan focal image de la 
lentille. Les anneaux étant des franges d’égales inclinaisons, 
chaque anneau est associé à un angle d’inclinaison i 
particulier et a donc pour rayon r f ’ tan i f’i  (conditions de 
Gauss) sur l’écran. Une grande focale permet donc 
d’observer des anneaux de grandes taille (donc de mieux les 
observer, surtout lorsqu’ils sont serrés) 

1e- les rayons captés au foyer image correspondent à une 
inclinaison nulle : leur différence de marche est donc 
exactement 2e. 
Ainsi d’après la formule de Fresnel (la source est supposée parfaitement monochromatique ici) on 

a :   0 0 0
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( 0I I mesurée pour l’une des deux ondes considérée seule) 

2a- 2 400nm  (violet) et 1 750nm  (rouge) 

2b- On décompose le spectre en intervalles infinitésimaux de largeur dσ ; à chacun de ces intervalles 
on associe une onde monochromatique qui créé sur le détecteur un éclairement : 

  0dI 2J d 1 cos 4 e    . Ces différentes ondes monochromatiques sont non synchrones dont 

incohérentes temporellement et l’éclairement total est donc la somme (intégrale) des dI. 
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Soit     0 2 1I 2I 1 V e cos 2 e        avec     
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et  0 0 2 1I 2J    

Pour tracer le graphe, il faut comparer    1
2 1 3,8 m     et   1 2 1

2 1 1,2 m
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3a- Afin d’optimiser la méthode de résolution faisons un dessin détaillé de la situation en donnant un 
nom aux vitesses et aux positions successives de la masse m.  
Pour alléger les calculs, on a intérêt à choisir z = 0 pour le plan inférieur et t = 0 pour le premier 
passage par ce plan (les caractéristiques du point de lancer (z0, v0, t0) sont sans intérêt compte tenu 
de la question posée 
 
En appliquant le principe fondamental de la dynamique, 

on obtient :   2
inf

1
z t gt v t

2
    

Notons alors 1t 0 et t4 les instants de passage par le plan 
z = 0 et t3 et t4, les instants de passage par le plan z = h. 

t1 et t4 sont solutions de 2
inf

1
0 gt v t

2
    et donc 1t 0  

et inf
4

2v
t

g
  

t2 et t3 sont solutions de 2
inf

1
h gt v t

2
    et donc 

 
 

2
2 inf inf

2
3 inf inf

1
t v v 2gh

g

1
t v v 2gh

g

   

   


 

On en déduit inf
inf 4 1

2v
t t t

g
    et 

2
inf

sup 3 2

2 v 2gh
t t t

g


     

En éliminant vinf, on obtient

2
2
inf

2 2
sup inf2

g
4 t 2gh

4 8h
t t

g g

 
  

      soit 
2 2
inf sup

8h
g

t t

  

 

3b- Le plus simple pour démontrer les propriétés optiques du coin de cube est de travailler avec les 
coordonnées des vecteurs unitaire orientant les faisceaux après les réflexions successives.  
D’après la loi de Snell Descartes de la réflexion, un rayon lumineux incident dirigé par le vecteur 

u


est réfléchi dans une direction u '


 symétrique de  u


par rapport à la normale au miroir considéré. 

Mathématiquement, cela signifie que u


et u '


 ont des coordonnés opposées selon cette normale et 
égales selon les directions tangentes au miroir 

réflexion réflexion réflexion
sur (Oyz) sur (Oxz) sur (Oxy)u u ' u '' u ''' u

          
                      
                 

    
 

h 

z=0 

z0 < 0 

zmax 

z 

v 0
 

 

supv


 

supv


 
infv


 

infv


 

0v


 

0v


 



La direction après les 3 réflexions successives est exactement opposée à la direction incidente. 
L’intérêt de ce dispositif est que le rayon revient toujours vers l’émetteur. Dans le cas d’un miroir 
plan unique, le rayon ne revient sur l’émetteur que s’il est rigoureusement perpendiculaire au 
miroir. 
Remarque : ce sont des coins de cube qui on été installés sur la Lune par la mission Apollo pour 
faire la télémétrie Terre Lune au laser. 

3c- Le détecteur reçoit 3 ondes correspondant aux trajets SICID (onde 1), SIJO3JID (onde 2) et 
SIJO4JID (onde 3) , D étant détecteur. 
La différence de marche entre les ondes (2) et (3) vaut  23 4 32 O J O J   . Comme 23 2  , on 

peut considérer les deux ondes (1) et (2) incohérentes (les trains d’onde se superposant sur le 
détecteur associé à l’onde 1 et à l’onde 2 sont différentes ; dit autrement, la figure 5 de l’énoncé 
indique que le contracte est nul si 23 2  ) 
Les ondes (1) et (2) d’une part et (1) et (3) d’autre part peuvent en revanche interférer 
lorsque 12 et 13 respectivement seront quasiment nulles ( 2  ). Ceci se produira pour 
chacun une fois à la montée et une fois à la descente donc 4 fois au totale. 
On observe ainsi 4 maxima d’intensité correspondant à l’appartition d’une frange très lumineuse 
pour 0   
 
Dans l’ordre, t1 et t4 correspondent au contact optique entre (C) et  M4 et t2 et t3 correspondent au 

contact optique entre (C) et  M3. On est ramené au calcul du a- et 
   2 2

4 1 3 2

8d
g

t t t t


  
 

3d- Avec 5 chiffres significatifs sur toutes les données, il vient : 2g 9,7804m.s  

3e- La lumière blanche étant très peu cohérente temporellement, elle permet de n’obtenir des franges 
avec un bon contraste qu’au voisinage de 0   avec une précision de position de l’ordre de 0,5 
μm. 
Avec une lumière monochromatique, on aurait des franges visibles pour un intervalle de position 
de (C) beaucoup plus large et le contact optique ne serait pas repérable. 

3f- Avec un laser, on se met au contact optique entre M3 et M4 puis on chariotte M4 en comptant les 
oscillations d’éclairement sur le détecteur. Chaque oscillation d’éclairement correspond à un 

déplacement de M4 de 
2


 (car  3 42 O J O J   augmente de λ), ce qui permet de régler d à au 

moins 
4


voire 

10


. 



Problème I (sujet 2) : Mesure de l’activité sismique d’une étoile par interférométrie. 
 
I Interférométrie 

1a- La lame semi-réfléchissante divise l’amplitude de l’onde incidente en deux quantités égales 
formant ainsi deux faisceaux d’égale intensité sans introduire de différence de marche entre les 
deux (par la présence d’une lame compensatrice). La lentille L avec l’écran E placé dans son plan 
focal image permet de visualiser à distance finie les interférences à l’infini entre les deux faisceaux. 

1b- Après réflexion sur les miroirs (1) et (2), les faisceaux retournent sur la lame semi-réfléchissante. 
La moitié seulement de chacun d’eux ira vers la lentille. Globalement, la moitié de l’intensité 
entrant dans le dispositif sera perdue. 

 

2a- La tache centrale est brillante, comme elle correspond à l’angle i = 0, cela signifie que l’ordre au 
centre p0 est un entier tel que 0D p  . Pour l’incidence i, la différence de marche est Dcosi  . 
Compte tenu de la présence de la lentille, les angles doivent être petits afin de travailler dans les 
conditions de Gauss. On peut donc proposer un développement limité de la différence de marche : 

2

0

i p
D 1 p

2

 
        

. Le premier anneau sombre s’obtient pour 0

1
p p

2
  car l’ordre décroît 

en partant du centre comme la différence de marche. Le rayon de l’anneau s’obtient en utilisant un 

rayon lumineux non dévié passant par le centre de la lentille L. On a alors : 1

0

f '
r f 'i

D
 


 

Sur l’écran, on observe des anneaux concentriques de centre F’ dont les rayons se resserrent 
lorsqu’on s’éloigne du centre. 

2b- On a globalement la même chose qu’avant mais comme le filtre n’est pas totalement 
monochromatique, il y a aura une perte de contraste et peut-être moins d’anneaux car l’angle 
d’incidence reste faible. 

3a- L’amplitude envoyée par le chemin (1) est du type : j t
0s e  , celle envoyée par le chemin (2) est 

déphasée : 0j t j2 D
0s e e  . L’addition (cohérente) des deux amplitudes donne : 0j t j2 D

0s s e 1 e      

Comme l’intensité lumineuse est du type : *I ss  , on obtient facilement la formule 

traditionnelle :  0 0I I 1 cos 2 D    et donc la valeur du signal détecté proposée par l’énoncé. 

3b- La période de l’interférogramme est la valeur de D telle que 0D 1  . 

 



4- Les deux raies du doublet ne sont pas cohérentes, les intensités de chacune vont s’ajouter, il en ira 
de même des signaux détectés : 
     

 

0 1 0 1

1 2 1 2
0

S D S 1 cos 2 D S 1 cos 2 D

S D 2S 1 cos 2 Dcos 2 D
2 2

     

                
    

 

Il y a une période rapide : 
1 2

2
589,3nm

  
 et une période lente : 

1 2

2
1,158mm

 
. Il est 

difficile de faire une représentation lisible de cette situation car le rapport des périodes est très 
élevé (2000). Pour la schématisation, on utilisera un rapport de 20. 

 

Remarque, le contraste est 1 2cos2
2

   
 

et sa période est 
1 2

1
579 m 

 
 

 

II- Interférogramme d’une raie élargie 

1a- Il faut comme dans la question précédente additionner les intensités à cause de l’incohérence entre 
les différentes longueurs d’onde. Toutefois, il faut conduire un raisonnement en considérant un 
intervalle de nombre d’onde infinitésimal de la largeur dσ. Le calcul de l’intensité est donc : 

 








2/

2/

00

0

2cos1 dD
I

I  

Après calculs, on trouve que le signal détecté est de la forme : 

  0 0

sin D
S D S 1 cos2 D

D

     
 

La visibilité en sinuscardinal va détériorer assez rapidement le 
contraste de la figure d’interférences lorsque D va augmenter. La 
représentation très classique est : 

1b- La plus petite valeur de D qui annule la visibilité est : 
1

D  
. 

2a- On voit d’après la question précédente qu’il suffit que D soit quelques fois plus grand que 

2 1

1

 
pour que la visibilité tende vers 0. En l’absence de la raie d’absorption, le signal serait 

uniforme :  C CS D kI . 

2b- En modélisant le profil I0 par des fonctions carrées, l’intensité est donnée par : 

   2 0

1 0

/2
C a

/2
2 1

I I
I 1 cos 2 D d 1 cos2 D d

  

  
       
     

Après calculs (identiques à ceux de la question 1a), on trouve : 



 
 

2 1 1 2
C a 0

2 1

sin D sin D
I I 1 cos 2 D I 1 cos2 D

D 2 D

                             
 

Si 
2 1

1
D

 
 , alors 

 
 

2 1

2 1

sin D
0

D

  


  
. De la même façon, si 0  alors 

1
sin




D

D
. L’expression de l’intensité est la suivante : 

 C a a 0I I I I cos 2 D     

En négligeant l’intensité Ia devant IC, on obtient la formule demandée par l’énoncé avec a

C

I
C

I
   

(on devrait plutôt appeler ce terme « visibilité » plutôt que contraste) 

 

III Elargissement et décalages possibles des raies spectrales. Evaluation de la différence de marche 
optimale. 

1a- Cette vitesse est telle que : 2
H T B

1 3
m V k T

2 2
 . 

1b- 
1

c


  


 et 0

0 2

Vcos
Vcos

c c c

  
       

La valeur de cos  variant entre +1 et –1, on obtient l’évaluation : T
K 0

2V

c
   . 

1c- On trouve 4 1
TV  1 ,22.10 m.s et 2 1

K  1 ,63.10 m  . 

 

2a- Si 0  , on n’aura aucun effet, car toutes les vitesses seront dans un plan perpendiculaire à la 
direction d’observation.  

Par contre si 
2


  , l’effet sera maximum. On obtient un élargissement Doppler car toutes les 

vitesses comprises entre rotV R     et rotV R   où R est le rayon de l’étoile et Ω sa vitesse 

angulaire de rotation sont représentées du centre vers la périphérie de l’étoile. 

2b- On aura donc : 0

2V

c
rot

rot   . Ce dernier terme sera comparable au précédent si TV Vrot  . 

2c- On trouve 4 1
rotV  1 ,22.10 m.s . 

3a- Le nombre d’onde est maintenant une fonction du temps selon :    
0 0

v t
t

c


     . On a donc : 

   
0 0 0 0

v t
S D S 1 Ccos2 1 D

c

   
        

. Cela conduit immédiatement à la réponse proposée 

par l’énoncé. 

 



3b- D0 doit être un compromis :  

• Comme le rapport 
 v t

c


 est très petit devant 1, n risque d’avoir 

 
0 0

v t
2 D

c


    et 

S(D0) serait quasiment constant. Il faut pour détecter une variation de la phase, imposer une relation 

du type lim   (par exemple /10 ) et donc 
 

lim
0 0lim

0

c
D D

2 v t


 

  
 (le plus grand si 

possible) si l’on veut une détection optimale 
• Si D0 est trop élevé le caractère quasi monochromatique de la raie provoque une baisse de 

contraste. Il faut donc 0
K 0 T

1 c
D

2 4 V
 

 
 (le facteur ½ permet de maintenir un constraste 

important) 

3c- Ainsi on pourra choisir 
 0

0 0 T

c c
D

2 v t 4 V




   
  soit 

   
T T

v t v t

2 V V

 
    

On retrouve bien que 
 
T

v t

V


   

4- Sur Terre, la vitesse varie sur T TR cos   avec 5 -1
T 7,3.10 rad.s  . L’amplitude de la vitesse est 

de l’ordre de quelques centaines de mètres par seconde. Cet effet est extrêmement important devant 
celui des oscillations sismiques, mais on dispose d’un atout : sa fréquence plus basse d’un facteur 
100 par rapport à celle des ondes sismiques (10-2 s-1). En utilisant un filtre passe-haut, on devrait 
pouvoir éliminer ce signal terrestre. 

 

IV Amélioration du montage interférométrique 

Cette partie du sujet soulève, à mon avis, des interrogations. 

 

1a- La conservation de l’énergie (ou du flux) lumineux, 
la réponse attendue est que la somme des deux 
intensités doit donner une valeur constante. Ainsi, le 

signal S2 est :  0
2

S
S 1 Ccos

2
    

Remarque : cela peut sembler surprenant les deux 
voies étant identiques. Pour comprendre 
l’origine de la disymétrie il faut revenir sur la 
modélisation des lames semi réfléchissantes 
idéales (cf schéma ci-contre) 

1b- Par addition et soustraction, on obtient 

facilement : 1 2

1 2

S S
Ccos

S S


 


 

1c- Un schéma montre le résultat attendu 
La recombinaison suppose 0D 0 . 
Or l’observation impose au contraire une 
valeur élevée de D0 et, ce qui est pire, si 

0   

    

0   



0D 0 alors   t 0   pour tout v. Il y a donc un problème.   

2a- L’énoncé propose uniquement d’interposer une lame contre l’un des miroirs pour introduire une 
différence de marche.  
 
Ce calcul est en fait assez compliqué : il faut déterminer le rayon de référence par rapport auquel 
calculer la différence de marche. Comme on souhaite une recombinaison des rayons en sortie, de 
l’interféromètre, il faut le rayon réfléchi dans la situation étudiée (avec lame) et le rayon de 
référence soit confondu. 

    IK IK
D n IJ JK IJ ' J 'K n.

sin r sin i
IK IK IK 1

n. n
sin r nsin r sin r n

2e tan r 1
n

sin r n

     

     
 

   
 

 

Et on retrouve bien 
2e 1

D n
cos r n

   
 

 

2b- A partir des valeurs numériques fournies, on trouve un angle r 27   et 

Dcos r
e 3,9mm

1
2e n

n

 
  
 

 

2c- On a en fait discuté de cette question au 2a : le choix de l’épaisseur et du rayon réfléchi superposé 
au « rayon de référence » permet d’assurer une recombinaison en sortie (rayon 2 superposé au 

« rayon 1 de référence » tout en réalisant 0D 0  

 

r 

i 

H’ 

H J 

J’ 

K I 



Problème 3 Centrale TSI 
 
I- Etude d’une turbine 

I-A-1- Considérons le système fermé S* constitué :  
à t du fluide dans la turbine à t et de la masse entrantm entrant dans la turbine entre t et t+dt 

à t+dt du fluide dans la turbine à t+dt et de la masse sortantm sortant de la turbine entre t et t+dt. 

La masse étant conservative    * *m t dt m t  soit    sortant sortantm t dt m m t m      

Or , en régime stationnaire,    m t dt m t   et entrant m1m D dt  et sortant m2m D dt   

Donc m1 m2D D  

On notera Dm le débit massique. 
I-A-2- Cf cours (en négligeant les variations d’énergie potentielle de pesanteur cf remarque à la 

question suivante) 

I-B-1- La formule précédente donne    2 2
Q m 2 1 2 1 W

1
P D h h v v P 772kW 0

2

 
         

 

Lors de cette évolution l’enthalpie massique et l’énergie cinétique du fluide diminuent : celui-ci 
fournit du travail à la turbine (PW < 0 ; c’est le but) et évacue également de l’énergie vers 
l’extérieur par transfert thermique PQ < 0 (énergie perdue) 
Remarque : on peut calculer ici l’élévation dans le champ de pesanteur qui rendrait des variations 
d’énergie potentielle de pesanteur non négligeable : 

  2 1
2 1 2 1

h h
g z z h h z 60km

g



       ! 

I-B-2- Q 2

W

P
6,71.10

P
  

ou Q 2

W Q

P
6,29.10

P P



 : 93,7 % de l’énergie du fluide est convertie en travail et seul 6,3% est 

« perdue » sous forme de chaleur. Le fonctionnement de la turbine semble donc satisfaisant. 

I-B-3- 

2 2
2 1

2

2 1

v v

2 2 1,59.10 1
h h







  

L’énergie libérée vient essentiellement (à plus de 98%) de la chute de P et de T du fluide entre 
l’entrée et la sortie ; la chute de vitesse ne libère que peu d’énergie. 
Version approché du premier principe (en écoulement stationnaire) pour cette turbine : 

 m 2 1 WD h h P   



 
II- Etude d’une turbine fonctionnant suivant un cycle de Joule  

II-A-1- Les isentropiques sont des adiabatiques réversibles pour 
lesquelles on a PV cst  (loi de Laplace du gaz parfait avec γ 
constant). Ce sont des branches d’hyperboles dans le 
diagramme. 

II-A-2- En divisant la relation du I-A-2- par le débit massique Dm 
et en négligeant les termes d’énergie cinétique, on a pour 

chaque étape : 
p

Q W

c T m
pour un

q wgaz parfait

P P
h

D








 où w et q qont le travail et le 

transfert thermique reçys par l’unité de masse de gaz qui traverse la partie considérée. 
 
Pour chaque étape 

 
 
 
 

c p 2 1c

E p 3 2E

T T p 4 3

s s p 1 4

w c T T 01 2 w w et q 0

q c T T 02 3 w 0 et q q

3 4 w w et q 0 w c T T 0

4 1 w 0 et q q q c T T 0

    
    

     
     

 

Pour 1 2 et 3 4 , q = 0 car l’évolution est adiabatique (isentropique) 
Pour 2 3 et 4 1 , w = 0 car le gaz n’est en contact avec aucune partie mécanique avec laquelle 
il pourrait échanger du travail. 

II-A-3-  F reçu par le gaz T c
en  un  cycle

w w w w 0     (pour un fonctionnement en turbine) 

II-A-4- F

E

grandeur utile w

granderu coûteuse q
  (c’est un moteur) 

D’où 
    

 
p 4 3 2 1 4 1

p 3 2 3 2

c T T T T T T
1

c T T T T


      
 

 

On veut éliminer T3 et T4 de la formule : il faut faire le lien entre les diverses températures. On 
pourra appliquer la loi de Laplace aux isentropiques 1 2 et 3 4  

1 2  : 

γ 1
γ 1

γ
2 γ

2 1 1
1

P
T T T

P



      

 en posant 2

1

P

P
  

3 4  

γ 1 γ 1
1 γ

γ γ
4 1 γ

4 3 3 3
3 2

P P
T T T T

P P


 
               

  

Ainsi 

1 γ 1 γ γ 1
1 γγ γ γ

3 1 3 1 γ 3 1
γ 1 γ 1 γ 1

γ γ γ
3 1 3 1 3 1

T T T T T T
1 1 1

T T T T T T

  
 

  

  


  
       

  
 

Donc 
1 γ

γ 1

2

T
1 1

T
 



     

II-A-5- Cf question précédente 
1 γ

γ 1

2

T
1 1

T
 



     

II-A-6- cf graphique ci-contre. 
1 2

1,4
7





   

 
 

 

 

5 15 

0,37 

0,54 



II-A-7- AN :  

2 4

1 1 1
c T E

T 579K T 673K

w 282kJ.kg w 632kJ.kg q 727 kJ.kg

48,2%

  

 
  


 

II-B-1- Les relations entre les termes énergétiques et les températures du II-A-2- sont toujours 
valables avec les nouvelles valeurs wCa, T2a, … On a donc 

 Ca p 2a 1w c T T   et  Ta p 4a 3w c T T   

 On a donc C 2 1
C

Ca 2a 1

W T T
η

W T T

 


 donne  2 1
2a 1 2

C

T T
T T T

η

    

De même : Ta 4a 3
T

T 4 3

W T T
η

W T T

 


 donne    4a 3 T 4 3 4T T η T T T     

 
II-B-2- Les évolutions 1 2a  et  3 4a  ne sont plus isentropique. Toutefois, elles restent 

adiabatiques : c’est la réversibilité qui est remise en cause dans le fonctionnement du compresseur 
et de la turbine. Ainsi le second principe appliqué au gaz en écoulement à travers l’une ou l’autre 

de ces parties actives donne : échangée créée

00
irréversibleadiabatique

s s s 0


    donc  2 1

4 3

s s

s s




 

 

II-B-3- Comme au II-A-4- 
 Ca Ta 4a 1

a
Ea 3 2a

w w T T
η 1

q T T

    


  

aη   : l’irréversibilité amène une baisse du rendement. 
 
II-B-4- La seconde identité thermodynamique (écrite en grandeur massique) : dh Tds vdP  permet 

de calculer s pour le gaz parfait : 
P

dP
r

T

dT
cds p   avec 

R
r

M
  (constante des gaz parfait 

massique) 

Ainsi 

2a 1 2a
Ca p p

1 2 1

4a
Ta p

3

T P T
Δs c ln r ln c ln r ln α

T P T

T
Δs c ln r ln α

T

   

 
  

II-B-5- Applications numériques : 

2a 4a

1 1 1 1
Ca Ta

a

T 641 K              T 767 K

 s 102 J.K .kg s 132 J.K .kg

29,1 %

 


   

 
 


 

On vérifie que T2a > T2 et T4a > T4 et que sCa et sTa > 0 
 

 



Partie III – Etude d’un turboréacteur 
 
 

III-A-1- Attention 4 1P P a priori. 

On peut même dire que  T p 4 3w c T T  et si 4 1P P alors  T c p 2 1w w c T T    ; et ici 

T cw w  donc  

4 1

4 4

nouvelle ancienne
valeur valeur tq

P P

T ' T



 et 4 1P P  

III-A-2-a- Le diffuseur est un dispositif qui ralentit le gaz et élève sa pression (par diffusion dans un 
matériau poreux probablement) mais qui n’échange ni travail ni chaleur avec celui-ci. 

Le premier principe en écoulement donne donc ici :  
22
y1

m 1 y

vv
D h h 0

2 2

                 
 avec v1 =0 

D’où  
2
y

p 1 y

v
h c T T

2
    soit  

2
y

1 y
p

v
T T

2c
   

III-A-2-b- AN 1T 299,5 K  et avec γ 1 γ γ 1 γ
y y 1 1T P T P  , on obtient 1P 1,01 bar . 

On trouve des valeurs très proches des valeurs indiquées au II : 300K et 1,03 bar 
 

III-A-3-a- On a toujours  1

γ 1

γ
pC 2 p 1W 1c T –  T c T α 

      



 

Or  T p 4 3 CW c T –  T W    d’où 
γ 1

c γ
4 3 3 1

p

w
T T T T α 1

c

          
 

Enfin 
γ 1 11 1

3 3 1 γ
4 3 2 2

4 4 3

T T T
P P P P 1 α 1

T T T

 
 

                                     
 

 

III-A-3-b- Applications numériques : 
1

C 4

4 1 2

W 281 kJ.kg                               T 1021 K

P 4,36bar P comme prévu T 578 K

 
  

 

III-A-4-a-  
2
5

p 5 4

v
c T T

2
   w et q sont nuls (cf diffuseur) et v4 négligeable 

P 

P2 

P1 

Py 
y 

5 

4 

1 

2 3 

m

V
 

P4 



III-A-4-b- Loi de Laplace

1 γ

γ
3

5 3
y

P
T T

P


      

 avec 3 2 1P P P   

A.N. : 5T 598 K et  5 p
1

4 5  v 42c T mT 92  .s    

On trouve une vitesse supérieure à la vitesse du son. Cette vitesse est surévaluée du fait de 
l’hypothèse de réversibilité du fonctionnement du compresseur et de la turbine. 

 
III-A-5-a- Par le principe des actions réciproques, la force de poussée est l’opposée de la force subie 

par le gaz c’est-à-dire sa variation de quantité de mouvement par unité de temps. On, entre t et t+dt, 
la quantité mm D dt  s’écoule et tout se passe comme si cette masse voyait sa vitesse passer de vy 
à v5 

D’où le terme 
   5 y

m 5 y

m v vdp
F D v v

dt dt

 
     

III-A-5-b-  F y m y 5 yP  F.v  D .v . v –  v   

III-A-5-c-  E p 3 2q c T T  et  EQE m m p 3 2P  D   D .c . Tq –  T   

III-A-5-d- 
 
 

y 5 yF
M

QE p 3 2

v v vP
η

P c T T


 


 

III-A-5-e- Applications numériques : 

7
F

7
QE

M

P 1,21.10 W 12,1 MW

P 5,09.10 W 50,9 MW

23,7 %

 
 


 

Ceci est une justification « rapide » et qualitative. Une justification « propre » est donnée en 
complément à la page suivante. 


