DS6 CORRECTION

Probleme 1 (sujet 1) : Localisation des franges (D’apres CCP)
Partie 1 : Michelson en lame d'air

M,
M;

Nl

(S1Cp)

(E)

1-a- Les rayons issus de F se partagent en d’une part des rayons réfléchis par (Sp+Cp) qui vont aller
frapper M» et d’autre part des rayons transmis a travers (Sp+Cp) qui vont venir frapper M;. Soit S
I’image de X par réflexion sur (Sp+Cp) et S;1’image de S par réflexion sur M»

S=Symg,, ¢, (Z)et S, =Sym,, (S)

Soit ¥’ I’image de X par M et soit S; I’image de X’ par réflexion sur S,+Cp, :
2'=Sym, (Z)et S, =Symg .. ().

En appelant M”; le symétrique de M, par rapport a (Sp+Cp), S, =Sym,,, (S)

(Cf graphe a la question suivante)

Tout se passe donc comme si on avait deux miroirs Mv, et M,
formant une lame d’air et une source ponctuelle S. Les sources . S

secondaires obtenues par ce systéme sont S, =Sym,,, (S) et ;

S, =Sym,, (S)
La distance M', M, est égale a I’écart des distances respectives

de M, et M a I’ensemble S,+ C,, d est la distance de F a
Sp+Cp.

1-b- 11 y a deux fagons d’aborder cette question.
La premicre : rester en coordonnées cartésiennes
Schéma cf ci-contre

0 0
S1 S2
(D+d+2ej (D+dj




2- La différence de marche est 6 =S,M —-S,M

2
SM= X2+(D+d)2 =(D+d) 1+X—2=(D+d)\/1+x2
(D+d)

(D+d+2e) X?

(D+d)2 +(D+d)2 =(D+d) (1+28)2+X2

SzMz(D+d)\/

e A
€= et on supposera x et € du méme ordre de grandeur

en posant x = et
D+d

Attention, pour conserver les termes faisant apparaitre une dépendance en X’ il ne faut pas limiter
le développement a I’ordre 1 en x ou & (comme le montre la formule proposée il faut aller
développer jusqu’a ’ordre 3 !!!

Ainsi :

SM=(D+ d)(n%)& +0(X3)]

S,;M = (D+d)y(1+26) +x* =(D+d)V1+de+4e +x°

|oo | wo

'(48+482 +x2)3 +o(x3 ou 83)

W

1+%(48+482 +X2)—%(48+482 +)<2)2 +

en simplifiant les termes d'ordre suppérieur ax’ou &’

=(D+ d)(l +%(48 +4e” + )(2)—%(42 e’ +24%¢ + 2.48X2)+%(48)3 + o(x3 oug’ )j

Soit au final

SzM—Sle(D+d)[/I/+28+ K —ex” +o(x’ ou 83)j—(D+d)[}/+><+o(x3)j

:(Der)zg(l—%x2 +O(X2 ou & )j

2
S,M-SM=2e 1—l X
2\D+d

OUF ! PLUS JAMAIS CA !

Autre possibilité : s’inspirer du calcul du potentiel dipolaire

S,M? :(SI—OJrW)2 =STO2 +OM’ +2S,0.0M =¢” + 1> —2.exrcos



S,M* =¢” +1’ +2.ercos0

2 2 2
Ainsi SzM—Sler\/1+2.Ecose+[Ej —r\/1—2.30056+(3j =2CCOSG=26[1—%
r r r r

Puis ensuite il suffit de donner une expression de 6 a I’ordre 1

1 X Y
On retrouve [S,M—-SM=2¢|1——

tanG:Letél’ordre 1 6=
D+d+e D+d

2\D+d

On a singularisé ici I’axe X (qui est en fait quelconque). Il y a une symétrie de révolution autour de
la normale a I’écran passant par S (axe Y). Les franges sont des cercles d’axe (Y)

3- Dans le cas ou 2e = poV/, la différence de marche au centre est nulle et les deux ondes sont en phase.
On a donc un maximum d’intensité : le centre est brillant.

2
Un anneau brillant correspond a S = 2 1 1 Xw el
AoA 2\D+d

Lorsque X augmente, & et donc p diminuent : pour le m**™ anneau p,, =p, —m

Le rayon de 1’anneau correspondant est donné par

2
S_mzz[l_z( X, j]zpo_m V0 X=0
v 2lbed) )3 . 23 om
, " 2 3,2 cem
E[ X j —m 3 3.9 cm
A\D+d 4 4,5 cm
5

Xm=(D+d)1/m&=(D+d) mi 5,0 cm
e

Po

La distance entre I’anneau p et I’anneau (p+1) varie en /jp+1— \/5 .Cet écart

diminue avec p

4- Dans le cas de deux sources incohérentes, les intensités s’ajoutent. Les franges sont identiques mais
translatées selon ’axe (X) de R. Les franges seront visibles jusqu’au m*™ anneau si

. —4Xm+1 Z(D+d)\/@/m+z—\/ﬁ
€

R

5- Dans le cas ou D — o0, la relation précédente est satisfaite pour tout R (et tout m ) Le franges a
I’infini restent donc contrastées. On dit que les interférences sont localisée a 1’infini. Il apparait
alors que la source ponctuelle peut étre remplacée par une source large.

L’intérét de travailler avec une source étendue est d’obtenir un phénomene plus lumineux, donc
plus visible.

Pour observer les anneaux a 1’infini, on utilise une lentille convergente dont la focale sera de
I’ordre du m, parall¢le a la lame d’air et on observe les anneaux formés dans le plan focal image de
la lentille.



6- Pour observer le plus grand nombre d’anneaux, il faut avoir des angles d’inclinaison i variés. Cet
angle i est aussi 1’angle d’incidence sur les miroirs. Dans la pratique, on dispose pres de
I’interférométre un diaphragme de grande ouverture derriére lequel on place la source lumineuse ou
bien on dispose le diaphragme au foyer d’un objectif de courte focale.

Partie2. Michelson en coin d’air.

1- On a les mémes définitions qu’en partiel.1).
S=Symg,, ¢, (Z)et S, =Symy, (S)
2'=Symy (2)et S, =Symg .. (£')=Sym,, (S).

En appelant M’ le symétrique de M, par rapport a (Sp+Cp),
Les miroirs M’; et M, font un angle o et forment un coin d’air.

2- La source secondaire S, est obtenue par symétrie de S

X0
par rapporta M’ |S,| y,

_ZO

La source S; est obtenue par symétrie de S par
rapport a M,. Faisons un schéma dans le plan y =
vo.S et S; ont la méme ordonnée yo

Appelons H le projeté orthogonal de S sur M,
OH =(O0S.u, |u, avec '
on-(Rajum ;

u, =Cos0Uy —sinou, =uy —ou, S




_ _ Xy =X, —aZ,
OH=(X,-0Z,)u,  donc
Zy =—(X, —aZy)a=-0X,

, o Xs + X,
H étant le milieu du segment [SS, ] : X, == donc Xg, =2X, - Xs =X, —20aZ,

De méme Zs =27, —Zs=-20aX, - Z,

X, — 20z,
Ainsi |S, Yo
-7, — 20X,

3- On peut ainsi obtenir (dans le calcul ci-dessous on fera des développements limités a 1’ordre 2 en

o, E, i, ﬁ, ﬁ, Y. qui seront supposés des infiniment petits du méme ordre)
Z Zy Z Z, Z
X —X )2 1 ( _ )2
SM=4/(x=%,) +(y=v,) +(z+2) =(z+z0)[1+_ o) 1 Y= Yo 2}
z+z, 2 (Z+ZO)

SzMz\/(x—x0 +20czo)2 +(y—y0)2 +(z+z0 +2ocx0)2

:(Z+Z) X — X, + 20z, 2+ Y=Y, 2+ lJr2ocx0 ’
’ Z+7, z+z, z+z,

2

:(z+zo){l+%(x_x()+20§zo) %

(z+12,) (z+2z,

2 2
8=(z+z,) 1+1(X_X°+2O§Z°) +l(y—)%)/j+ 20x ~(z+2,) 1+1(X_Xo) +l(y—)@/
2 (z42,)  Uz+z,) 2tz 2

=(z+z,) 1 (x=xo+207) ~(x=x,)" 20,
"2 (z+12,) 2+17,
gy LAl 20,
2 (Z+ZO) zZ+2,
C9a, ZO(X—X0)+(Z+ZO)XO
(z+2,)
ZoX + ZX
§=20 "0
“z+z)

4- Sur I’écran, z est fixé et 6 ne dépend que de X : on a donc des franges rectilignes de x donné.
ZyX, +ZX,

=ph avec peZ
(z+2,)

Les maxima d’intensité sont obtenus & =2a

. Az+z X
Soit xpzp——o—z—0
200z, Z,

. . A zZ+z
L’interfrange est donc |i=— 0

200z,

o X
La frange centrale est située [x, =—z—>
Zy




L’interfrange est indépendance de la position de 1’écran si x, = 0 (source située « au-dessus » de

I’aréte du coin d’air) ou si z, > z observation trés proche du coin d’air

Dans ce second cas : |8 =2a

Y . . .
i= , résultat classique du coin d’air.

2a

5- Les points sources de la fente sont des sources incohérentes, mais qui donnent toutes lieu a la méme

valeur 3(x,y)

On obtient donc un phénomene d’interférences inchangé.

6- Lorsqu’on déplace la source, & dépendant de Xo, le systéme de franges se translate de Ax = —iAXO

Zy

. On en déduit la largeur maximale de la fente : |Ax| = iAxo < %i = 3 .
o

Ax, < LZ—O
8o z

0

7- Dans le cas ou on observe les franges au voisinage du coin d’air, z < z,, la contrainte précédente

n’est pas contraignante.

On peut donc dans ce cas utiliser une source large.

Dans la pratique on forme 1’image du coin d’air par une lentille convergente (f*) sur un écran. On

doit continuer a éclairer le Michelson en incidence faible.

i |

‘Lentille CV

Eeran



Probléme 2 : Gravimétre a chute libre (Centrale MP 2008)

1a- le role de la compensatrice est de compenser exactement le déphasage qui s’introduit entre les
deux ondes du fait de la séparatrice (la séparation se fait sur I’one des deux faces de la séparatrice
et par conséquent I’une des ondes la traverse 3 fois tandis que 1’autre ne la traverse qu’une fois)

1b- On utilise un filtre interférentiel qui « isole » 1’une des raies spectraleS de la lampe.

1c- Les miroirs sont perpendiculaires en eux et € = |OII - OZI| est non nulle : le dispositif est donc

équivalent a une lame d’air

Ainsi, la figure d’interférence observée est constituée d’anneaux concentriques de plus en plus
serrés a mesure qu’on s’écarte de leur centre.

La source étant étendue donc spatialement incohérente, ces anneaux sont localisées a I’infini (les
différentes figures d’anneaux associées a différentes sources ponctuelles incohérentes se brouillent
quelle que soi la position de 1’écran a distance finie du dispositif)

1d- On doit donc placer I’écran dans le plan focal image de la
lentille. Les anneaux étant des franges d’égales inclinaisons,
chaque anneau est associé a un angle d’inclinaison i
particulier et a donc pour rayonr = f’tani = f’i (conditions de “
Gauss) sur 1’écran. Une grande focale permet donc

d’observer des anneaux de grandes taille (donc de mieux les
observer, surtout lorsqu’ils sont serrés)

NN

TN

1e- les rayons captés au foyer image correspondent a une
inclinaison nulle : leur différence de marche est donc
exactement 2e.
Ainsi d’aprés la formule de Fresnel (la source est supposée parfaitement monochromatique ici) on

a:|l=2I, [1 + cos(Zn%D =2I, (1 + cos(4ncoe))

0

(I, =Imesurée pour I'une des deux ondes considérée seule)

2a- A, =400nm|(violet) et A, = 750nm| (rouge)

2b- On décompose le spectre en intervalles infinitésimaux de largeur do ; a chacun de ces intervalles
on associe une onde monochromatique qui créé sur le détecteur un éclairement :

di=2J Odcs(l + cos(4n6e)) . Ces différentes ondes monochromatiques sont non synchrones dont

incohérentes temporellement et 1’éclairement total est donc la somme (intégrale) des dI.

I= fZJOdG(l + cos(4nce)) =2J, {c + %}

(] G

=21,(0; -0, )[1 + (sin(4mo,e) - sin(4ncle))}

47te(cs2 —01)

=2J, (o, —cl){u 2sin(2n(o, — o) e)cos(2n (o, + Gl)e)}

47te(cs2 —01)

Soit |1 =2I, [1 + V(e)cos(2n(c52 +0, )e)] avec |V(e)= Sinz(j:(e(gjz_;j ) _ sinc(zne(cs2 -0 ))

et I, =2J,(0,-0))

Pour tracer le graphe, il faut comparer (o, +0,)=3,8um et (6, —0,)=12pm ™" ~ %



s \l‘i (Ta ‘“1) L)

3a- Afin d’optimiser la méthode de résolution faisons un dessin détaillé de la situation en donnant un
nom aux vitesses et aux positions successives de la masse m.
Pour alléger les calculs, on a intérét a choisir z = 0 pour le plan inférieur et t = 0 pour le premier
passage par ce plan (les caractéristiques du point de lancer (zo, vo, t0) sont sans intérét compte tenu
de la question posée

En appliquant le principe fondamental de la dynamique,
Zmax

. 1, =
on obtient : z(t)z—Egt + vt v=0 ® ®
Notons alors t, =0 et t4 les instants de passage par le plan
z =0 et t3 et t4, les instants de passage par le plan z =h.
. 1
ti et t4 sont solutions de 0 = —Egt2 +v,,;t etdonc t, =0

A N Lo 720
2v; ' _—

et t, =—2C ; 1 ~Vint

g ] ;

70<0

. 1
t, et t3 sont solutions de h = ) gt’ + vt etdonc -V,

1
t, :g(vinf —V mf Zgh)
t, = ! (me AN AT 2gh)
g

i 2v; 2\Viy —2gh
On en déduit Aty =t,—t = ZVint et At =t —t, = Vint =48

sup

g g

2
4(%; b _2ghj 8h gh
= At} ——soit |g=

2 inf —2
g g Atmf

sup

En éliminant viyf, on obtient Atsup

3b- Le plus simple pour démontrer les propriétés optiques du coin de cube est de travailler avec les
coordonnées des vecteurs unitaire orientant les faisceaux apres les réflexions successives.
D’apreés la loi de Snell Descartes de la réflexion, un rayon lumineux incident dirigé par le vecteur
u est réfléchi dans une direction u' symétrique de u par rapport a la normale au miroir considéré.

Mathématiquement, cela signifie que u et u' ont des coordonnés opposées selon cette normale et
égales selon les directions tangentes au miroir
o -0 -0 —o

réflexion réflexion réflexion

u B sur (Oyz) u B sur (Oxz) u _B sur (Oxy) u _B _ _ﬁ

Y Y Y -



La direction apreés les 3 réflexions successives est exactement opposée a la direction incidente.
L’intérét de ce dispositif est que le rayon revient toujours vers 1’émetteur. Dans le cas d’un miroir
plan unique, le rayon ne revient sur I’émetteur que s’il est rigoureusement perpendiculaire au
miroir.

Remarque : ce sont des coins de cube qui on été installés sur la Lune par la mission Apollo pour
faire la télémétrie Terre Lune au laser.

3c¢- Le détecteur regoit 3 ondes correspondant aux trajets SICID (onde 1), SIJO3JID (onde 2) et
SIJOLJID (onde 3) , D étant détecteur.

La différence de marche entre les ondes (2) et (3) vaut 8, = 2(O4J -0,J ) . Comme 0,; >\, , on
peut considérer les deux ondes (1) et (2) incohérentes (les trains d’onde se superposant sur le
détecteur associé a ’onde 1 et a I’onde 2 sont différentes ; dit autrement, la figure 5 de 1’énoncé
indique que le contracte est nul si 8,; > A, )

Les ondes (1) et (2) d’une part et (1) et (3) d’autre part peuvent en revanche interférer
lorsque 9J,, et §,; respectivement seront quasiment nulles (<1, ). Ceci se produira pour

chacun une fois a 1a montée et une fois a la descente donc 4 fois au totale.
On observe ainsi 4 maxima d’intensité correspondant a I’appartition d’une frange trés lumineuse
pour =0

Dans I’ordre, t; et t4 correspondent au contact optique entre (C) et My et t; et t3 correspondent au
8d

(ti—t) —(t-t)

contact optique entre (C) et Ms. On est ramené au calcul du a- et |g =

3d- Avec 5 chiffres significatifs sur toutes les données, il vient : |g =9,7804 rn.s’2|

3e- La lumiére blanche étant trés peu cohérente temporellement, elle permet de n’obtenir des franges
avec un bon contraste qu’au voisinage de & =0 avec une précision de position de 1’ordre de 0,5
pm.
Avec une lumiére monochromatique, on aurait des franges visibles pour un intervalle de position
de (C) beaucoup plus large et le contact optique ne serait pas repérable.

3f- Avec un laser, on se met au contact optique entre M3 et M4 puis on chariotte M4 en comptant les
oscillations d’éclairement sur le détecteur. Chaque oscillation d’éclairement correspond a un

déplacement de M4 de % (car 0= 2(O3J -0,] ) augmente de 1), ce qui permet de régler d a au

A A
moins — voire —.
4 10



Probléme I (sujet 2) : Mesure de I’activité sismique d’une étoile par interférométrie.

I Interférométrie
1a- La lame semi-réfléchissante divise I’amplitude de 1I’onde incidente en deux quantités égales
formant ainsi deux faisceaux d’égale intensité sans introduire de différence de marche entre les
deux (par la présence d’une lame compensatrice). La lentille L avec 1’écran E placé dans son plan
focal image permet de visualiser a distance finie les interférences a I’infini entre les deux faisceaux.

1b- Apres réflexion sur les miroirs (1) et (2), les faisceaux retournent sur la lame semi-réfléchissante.
La moitié seulement de chacun d’eux ira vers la lentille. Globalement, la moitié de I’intensité
entrant dans le dispositif sera perdue.

2a- La tache centrale est brillante, comme elle correspond a 1’angle i = 0, cela signifie que 1’ordre au
centre po est un entier tel que D =p,A . Pour I’incidence i, la différence de marche est & = Dcosi.

Compte tenu de la présence de la lentille, les angles doivent étre petits afin de travailler dans les
conditions de Gauss. On peut donc proposer un développement limité de la différence de marche :

:2

i . . 1 o

o= D[l - E] =ph= P 1Le premier anneau sombre s’obtient pour p =p, Y car I’ordre décroit
Go

en partant du centre comme la différence de marche. Le rayon de ’anneau s’obtient en utilisant un

f '

Do,

Sur I’écran, on observe des anneaux concentriques de centre F’ dont les rayons se resserrent
lorsqu’on s’éloigne du centre.

rayon lumineux non dévié passant par le centre de la lentille L. On a alors : |, =f'i=

2b- On a globalement la méme chose qu’avant mais comme le filtre n’est pas totalement
monochromatique, il y a aura une perte de contraste et peut-étre moins d’anneaux car I’angle
d’incidence reste faible.

jot

3a- L’amplitude envoyée par le chemin (1) est du type : s, e’ , celle envoyée par le chemin (2) est

jot j2noD ]

déphasée : s, e ™", L’addition (cohérente) des deux amplitudes donne :s =s, e’ [1 +e

Comme I’intensité lumineuse est du type : I =ass , on obtient facilement la formule

traditionnelle : [I=1, (1 + cos choD) et donc la valeur du signal détecté proposée par 1’énoncé.

3b- La période de I’interférogramme est la valeur de D telle ques,D =1.



4- Les deux raies du doublet ne sont pas cohérentes, les intensités de chacune vont s’ajouter, il en ira
de méme des signaux détectés :

S(D) =S, (1+cos2n,D)+S, (1+ cos2nc,D)
S(D)=2s, (1 +cos 275(01 ;Gz chos2n(%ij

=589,3nm

Il y a une période rapide :

et une période lente :

=1,158mm]|. Il est

O, +0, 0, — 0,

difficile de faire une représentation lisible de cette situation car le rapport des périodes est trés
¢élevé (2000). Pour la schématisation, on utilisera un rapport de 20.

2;

05

x=

Remarque, le contraste est et sa période est =579 um

CcosS2m (mj
2

II- Interférogramme d’une raie élargie

G, — 0,

1a- Il faut comme dans la question précédente additionner les intensités a cause de 1’incohérence entre
les différentes longueurs d’onde. Toutefois, il faut conduire un raisonnement en considérant un
intervalle de nombre d’onde infinitésimal de la largeur do. Le calcul de I’intensité est donc :

Go+Ac/2 [
I=|"" 2(l+cos2ncD)do
cy—Ac/2 AG 1 S/S()
Apres calculs, on trouve que le signal détecté est de la forme : os
sin tAcD 0s
S(D)=S,| 1+ ————cos2nc,D
nAcD od
La visibilité en sinuscardinal va détériorer assez rapidement le o2
contraste de la figure d’interférences lorsque D va augmenter. La Ac.D
représentation trés classique est : 1\/5 ~—"
1b- La plus petite valeur de D qui annule la visibilité est : |D,, = ol
o)

2a- On voit d’aprés la question précédente qu’il suffit que D soit quelques fois plus grand que

pour que la visibilité tende vers 0. En I’absence de la raie d’absorption, le signal serait
G, =G,

uniforme : |S¢ (D) =kI|.

2b- En modélisant le profil [y par des fonctions carrées, 1’intensité est donnée par :

I=ﬁj (1+cos2noD)do - ic jff(l +cos2noD)do

Apres calculs (identiques a ceux de la question 1a), on trouve :



sin -o,)D i
I=1.| 1+ (02 ~01) coszn(MjD —13(1+McoszmoDj
n(c52 —GI)D 2 nAcD

sinn(o, —o,)D

Si D> , alors — 0. De la méme facon, si Ac — 0 alors
G, — 0, n(cz—cl)D
sin TAcD , . ,: " .
—— > 1. L’expression de I’intensité est la suivante :
nAcD
I=1. -1, -1, cos(2nc,D)
. . .7 . r L4 4 Ia
En négligeant I’intensité /, devant /¢, on obtient la formule demandée par 1’énoncé avec |C = A
C

(on devrait plutot appeler ce terme « visibilité » plutdt que contraste)

III Elargissement et décalages possibles des raies spectrales. Evaluation de la différence de marche
optimale.

1a- Cette vitesse est telle que : ErnHVT2 = %kBT .

1 A
1b- G=X=X et Acs:—vzvo VeosH =90y eosh

C C 02 C

2V;

La valeur de cos@ variant entre +1 et —1, on obtient 1’évaluation : |Acy =0,

Tc- On trouve |V; =1,22.10'mss”' |et [Aoy =1,63.10°m'|.

2a- Si y =0, on n’aura aucun effet, car toutes les vitesses seront dans un plan perpendiculaire a la

direction d’observation.

. T . . —
Par contre si y =—, I’effet sera maximum. On obtient un élargissement Doppler car toutes les

vitesses comprises entre —V,,, = —RQ et V,, = RQ ou R est le rayon de 1’¢étoile et Q sa vitesse
angulaire de rotation sont représentées du centre vers la périphérie de 1’¢toile.

2V . " :
2b- On aura donc : |Ac,, =c,—=|. Ce dernier terme sera comparable au précédent si .

2¢- On trouve |V, =1,22.10*ms™|.

(o)

C

3a- Le nombre d’onde est maintenant une fonction du temps selon : c(t) =0,+0, .Onadonc:

Av(t
S(D0 ) =S, (1 + Ccos2mno, [1 + c( )]DO} . Cela conduit immédiatement a la réponse proposée

par I’énoncé.



3b- Dy doit étre un compromis :
Av(t) Av(t)
c c

S(Do) serait quasiment constant. Il faut pour détecter une variation de la phase, imposer une relation

. ZA(Pum c
o oAV (t)

* Comme le rapport est trés petit devant 1, n risque d’avoir A =270, D, <« met

du type A > Aoy, (par exemple ©t/10) et donc D, >D (le plus grand si

possible) si I’on veut une détection optimale
* Si Dy est trop élevé le caractére quasi monochromatique de la raie provoque une baisse de

contraste. Il faut donc D, < ! - (le facteur 2 permet de maintenir un constraste
2Acy  40,V;
important)
Av(t) Av(t
3c- Ainsi on pourra choisir D, = bo_c ¢ soit A ~ EL ~ L
21 GOAV(t) 46,V; 2 Vi \"2
. Av(t)
On retrouve bien que |A¢ ~ ~
T

4- Sur Terre, la vitesse varie sur +o,R; cosA avec o, =7,3.10 rad.s™. L’amplitude de la vitesse est

de ’ordre de quelques centaines de métres par seconde. Cet effet est extrémement important devant
celui des oscillations sismiques, mais on dispose d’un atout : sa fréquence plus basse d’un facteur
100 par rapport a celle des ondes sismiques (1072 s™). En utilisant un filtre passe-haut, on devrait
pouvoir éliminer ce signal terrestre.

(2)
IV Amélioration du montage interférométrique N ‘ Hi
k. @ oy,
Cette partie du sujet souléve, a mon avis, des interrogations. som-cej ".,\ & E *l |||
Ap=0 ki !
, —t+—>
\ | B
. y . . 1) *
1a- La conservation de 1’énergie (ou du flux) lumineux, ‘ - Ap=0
la réponse attendue est que la somme des deux = k. L, ﬁ 1
intensités doit donner une valeur constante. Ainsi, le N Ao :ﬁn b
. S | -
signal Sy est: [S, = ?O(l —Ccosy)
Remarque : cela peut sembler surprenant les deux 52
voies étant identiques. Pour comprendre
I’origine de la disymétrie il faut revenir sur la Y w N, b=o
modélisation des lames semi réfléchissantes N < = .
idéales (cf schéma ci-contre) r (”\ L Yw
.. . . i > N ) FCCM\’\VMM
1b- Par addition et soustraction, on obtient \ x R S
h @ o N, M (2. +0..:)
— )
facilement : |Ccosy = 55, @)
S, +S,
& B—
A r AN ‘.“ |
1¢- Un schéma montre le résultat attendu 5 N, ,
.. N 0 NG
La recombinaison suppose D, =0. N & &
, . . oy
Or I’observation impose au contraire une N B \ W
valeur élevée de Dy et, ce qui est pire, si e , > S l) P 2
. S 'L’ 3} o€ o Nndanton
———

Ao



D, =0alors ¢(t)=0 pour tout v. Il y a donc un probléme.

2a- L’énoncé propose uniquement d’interposer une lame contre 1’un des miroirs pour introduire une
différence de marche.

Ce calcul est en fait assez compliqué : il faut déterminer le rayon de référence par rapport auquel
calculer la différence de marche. Comme on souhaite une recombinaison des rayons en sortie, de
I’interférometre, il faut le rayon réfléchi dans la situation étudiée (avec lame) et le rayon de
référence soit confondu.
IK IK
D= n(IJ+ JK)—(IJ"F J'K) =n-—_—-
sint  sini
KKK 1
‘sinr nsinr sinr

Zetanr( lj
= n——
sinr n

. 2e 1
Et on retrouve bien |D = n-— —j
COSsT n

n

2b- A partir des valeurs numériques fournies, on trouve un angle et

e=ﬂ=3,9mm

o]

2¢- On a en fait discuté de cette question au 2a : le choix de 1’épaisseur et du rayon réfléchi superposé
au « rayon de référence » permet d’assurer une recombinaison en sortie (rayon 2 superposé au

«rayon 1 de référence » tout en réalisant




Probléme 3 Centrale TSI

I- Etude d’une turbine
I-A-1- Considérons le systéme fermé S* constitué :
a t du fluide dans la turbine a t et de la masse dm,,,, entrant dans la turbine entre t et t+dt

a t+dt du fluide dans la turbine a t+dt et de la masse dm_,,,, sortant de la turbine entre t et t+dt.
La masse étant conservative m’ (t + dt) =m" (t) soit m(t + dt) + OMyyyy = m(t) + OMyyyn

Or, en régime stationnaire, m(t + dt) = m(t) et dM e = Dy dt et dmy e = Do dt

On notera Dy, le débit massique.
I-A-2- Cf cours (en négligeant les variations d’énergie potentielle de pesanteur cf remarque a la
question suivante)

1

I-B-1- La formule précédente donne [P, =D, |(h, —h,) +E(V§ — Vf) —Py, =—772kW <0

Lors de cette évolution I’enthalpie massique et I’énergie cinétique du fluide diminuent : celui-ci
fournit du travail a la turbine (Pw < 0 ; c’est le but) et évacue également de 1’énergie vers
I’extérieur par transfert thermique Pq < 0 (énergie perdue)

Remarque : on peut calculer ici I’élévation dans le champ de pesanteur qui rendrait des variations
d’énergie potentielle de pesanteur non négligeable :

g(z, —z ) ~h, —hléAzzM%@km !
g

P
I-B-2- |-21=6,71.10"
w
Pq -2 . . . . .
ou PP =6,29.10"" : 93,7 % de ’énergie du fluide est convertie en travail et seul 6,3% est
w T Lo

« perdue » sous forme de chaleur. Le fonctionnement de la turbine semble donc satisfaisant.

2 2
vV, v

I-B-3- |2 21159102 <1

2 1

L’énergie libérée vient essentiellement (a plus de 98%) de la chute de P et de T du fluide entre
I’entrée et la sortie ; la chute de vitesse ne libére que peu d’énergie.
Version approché du premier principe (en écoulement stationnaire) pour cette turbine :

Dm(h2 _hl):PW




II- Etude d’une turbine fonctionnant suivant un cycle de Joule
II-A-1- Les isentropiques sont des adiabatiques réversibles pour
lesquelles on a PV? = cst (loi de Laplace du gaz parfait avec y
constant). Ce sont des branches d’hyperboles dans le
diagramme. .
II-A-2- En divisant la relation du I-A-2- par le débit massique Dy, " '
et en négligeant les termes d’énergie cinétique, on a pour

;7 TR
2

P, +P .
chaque étape: Ah = % ou w et q qont le travail et le
i
gaz parfait q+w

transfert thermique regys par I’'unité de masse de gaz qui traverse la partie considérée.

Pour chaque étape

1—-2 w=w,etq=0 we=¢,(T,=T,)>0
2—3 w=0etq=qg qE:Cp(T3_T2>>O
3_)4 W:WTetq:O WT:CP(T4_T3><O
4—1 w=0etq=q, |q =c, (T,—-T,)<0

Pour 1 —2et3 — 4, q=0 car I’évolution est adiabatique (isentropique)
Pour 2 — 3et4 —1, w=0 car le gaz n’est en contact avec aucune partie mécanique avec laquelle
il pourrait échanger du travail.

H-A-3- (Wi = —W o pariegr = —(Wr + W, ) > 0| (pour un fonctionnement en turbine)
en un cycle
grandeur utile W, ,
1I-A-4- n= — = —(c’est un moteur)
granderu coliteuse
—, (T, — T, )— (T, =T, T. =T
D’Ol‘,l n: P(( 4 3) ( 2 1)>:1_ 4 1
¢,(T,—T) T, —-T,

On veut éliminer T; et T4 de la formule : il faut faire le lien entre les diverses températures. On
pourra appliquer la loi de Laplace aux isentropiques 1 — 2 et3 — 4

y—1

e 11
1—2:T, :Tl[&] ! =Ta " en posant a—%

1 1

v
Q

y—1 y—1
- o Lt
304 T, =T, || 2| e
P, P,
L L 11
T T e Y
Ainsinzl—T3a Ezl—na E:l—()ty L —Tha =
vl -1 -1
T,—Ta" T, —Ta" T,-Ta "’
1—y
Donc n=1—-a? :1—L
T,
II-A-5- Cf question précédente N4
ﬂ
n=1l-a’ :1—1 0,54 |-=-mmm e
T, i
I1-A-6- cf graphique ci-contre. i
_ 11k /2] S—— :
y=14 =y _ 2 ! !
Y 7 | :
' 5

(V)]
—



II-A-7- AN :

T, = 579K T, — 673K
w, =282kl kg™ wr =—632kJ kg™ qs =727kl kg™
n=48,2%

II-B-1- Les relations entre les termes énergétiques et les températures du II-A-2- sont toujours
valables avec les nouvelles valeurs wca, T2a, ... On a donc

We, =6, (T, —T)) et wy, =¢, (T, — T;)

T, —T, T, —T
On a donc e = We L=T donne |T,, =T, +—=—+ (>T,)
Weo T —T MNc
W. T, —T
Deméme: Ny =—2=-—2—2 domne T,, =T, +n, (T, - T,) (>T
Mr W, T,—T, 4 3 rIT( 4 3) ( 4)

II-B-2- Les évolutions 1 — 2a et 3 — 4a ne sont plus isentropique. Toutefois, elles restent
adiabatiques : ¢’est la réversibilité qui est remise en cause dans le fonctionnement du compresseur
et de la turbine. Ainsi le second principe appliqué au gaz en écoulement a travers I’une ou I’autre

. . S, >8S
de ces parties actives donne : AS = S unge T Sereze >0 donc 2o
- =0 5425
adial?atique irréversible
—(Wea + Wr T, —T
II-B-3- Comme au IT-A-4- |1, = (we w)_
JEa T,-T,

N. <7 : lirréversibilité améne une baisse du rendement.

II-B-4- La seconde identité thermodynamique (écrite en grandeur massique) : dh = Tds + vdP permet

_ dT d R .
de calculer As pour le gaz parfait : ds = Cp ? - rF avec r = M (constante des gaz parfait

massique)
As¢, =c,In T _ r lnE = cplnE —rlna
A. . 1 PZ Tl
insi T
Asp, =c,In 2 trina
3

I1-B-5- Applications numériques :

T,, =641 K T,, =767 K
Asc, =102 JK 'kg™' As;, =132 JK 'kg'
M. =29,1 %

On vérifie que Tza > T2 et Taa > T4 et que Asc, et Asta >0



Partie 111 — Etude d’un turboréacteur

P2

P4

P1

Py

v
m

III-A-1- Attention P, = P, a priori.

»
»

On peut méme dire que wy =c, (T, — Ty )et si P, =P alors |wy|>w,=c, (T, —T,) ; etici

|WT|:wC donc & > Ii et P, > P

ancienne
valeur tq
P,=P

nouvelle
valeur

II1-A-2-a- Le diffuseur est un dispositif qui ralentit le gaz et éléve sa pression (par diffusion dans un
matériau poreux probablement) mais qui n’échange ni travail ni chaleur avec celui-ci.

Le premier principe en écoulement donne donc ici: D,,

2

hy + -
2

|

2
v
D’ou Ah=c, (Tl - Ty) =—soit

T, —

V2

T, =
T2,

2

h, +-2
2

=0 avec v; =0

III-A-2-b- AN T, = 299,5 K| et avec T/ PylfY =T'P", on obtient P, =1,01 bar|.

On trouve des valeurs trés proches des valeurs indiquées au II : 300K et 1,03 bar

III-A-3-a- On a toujours

We=c, (T, -

y—1

Tl): ¢, Ty a! —1

|

vl
Or W, =c¢, (T, - T,)=—W, dod |T,=T, ——*=T, T, a. * —1]
c
p
T (L) L2
Enfin |P, =P,|—=| =P,|=| =P|l-—]|a’ —1
T, T, T,
. . W, =281klkg™ T, =1021K
IT1-A-3-b- Applications numériques : | © £ ¢
P, =4,36bar > P, comme prévu T,=578 K

2
Vs

MI-A-4-a- |c, (T, - T,)=

w et q sont nuls (cf diffuseur) et v4 négligeable



I-y

v

P
—| avec P,=P,=aP,

III-A-4-b- Loi de Laplace T; =T, b

y

AN.: T, =598 K]et |vs =/2¢, (T, — T;) =924 ms ™'

On trouve une vitesse supérieure a la vitesse du son. Cette vitesse est surévaluée du fait de
I’hypothése de réversibilité du fonctionnement du compresseur et de la turbine.

III-A-5-a- Par le principe des actions réciproques, la force de poussée est I’opposée de la force subie
par le gaz c’est-a-dire sa variation de quantité de mouvement par unité de temps. On, entre t et t+dt,
la quantité om = D dt s’écoule et tout se passe comme si cette masse voyait sa vitesse passer de vy

é Vs
D’ou le terme F:d—p:M:Dm(v5 —Vy>
dt dt
II-A-5-b- |P; = F.v, = D,.v,.(vs— v,)

I-A-5-c- q; =c, (T, = T,)et |Pye = D,qe = D¢, (Ti— T)

M-A-5-d- |, =

P, =1,21.100W =12,1 MW
III-A-5-e- Applications numeriques : |Pop = 5,09.10'W = 50,9 MW
Mu =23,7 %

Ceci est une justification « rapide » et qualitative. Une justification « propre » est donnée en
complément a la page suivante.




