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Intégrales

1. On suppose connue l’intégrale des fonctions continues
par morceaux sur un segment [a, b] et on se propose d’étendre
son domaine de définition.

I

Notion d’intégrale généralisée

2. Hypothèses et notations
On considèrera des fonctions à valeurs réelles ou complexes (K
désigneraR ou C) et continues par morceaux sur un intervalle I
qui n’est pas nécessairement un segment.
La borne inférieure de l’intervalle I, notée a, est un réel ou −∞ ;
sa borne supérieure, notée b, est un réel ou +∞. On supposera
toujours que I n’est ni vide, ni réduit à un point : a < b.
3. Si la fonction f est continue sur morceaux sur l’inter-
valle I, alors elle est continue par morceaux sur chaque segment
contenu dans I.
3.1 Quels que soient x et y dans I, on note

∫ y

x
f (t) dt =

∫

[x,y]
f (t) dt

si x 6 y et
∫ y

x
f (t) dt = −

∫

[y,x]
f (t) dt

si x > y.
3.2 En particulier,

∀ x ∈ I,
∫ x

x
f (t) dt = 0.

3.3 ✍ On dit que l’intégrale de f sur I est convergente lorsque la
limite

lim
x→a
y→b

∫ y

x
f (t) dt

existe (dans K). Cette limite est appelée intégrale généralisée de f
sur I, est notée

∫ b

a
f (t) dt.

4. ➙ Soit f , une fonction continue par morceaux sur l’intervalle I.
4.1 Pour tout x ∈ I, l’application

[

y 7→
∫ y

x
f (t) dt

]

est continue sur I.
4.2 Pour tout y ∈ I, l’application

[

x 7→
∫ y

x
f (t) dt

]

est continue sur I.

5. Discussion sur l’intervalle d’intégration
L’intervalle d’intégration I peut être de quatre types.
5.1 Lorsque l’intervalle d’intégration est un segment :

I = [a, b],

le théorème [4] montre que la définition de l’intégrale généralisée
coïncide avec la définition de l’intégrale sur un segment : l’inté-
grale généralisée converge et sa valeur est égale à l’intégrale sur
le segment [a, b].

5.2 Lorsque l’intervalle d’intégration est semi-ouvert :

I = [a, b[ ou I = ]a, b] ,

le théorème [4] assure l’existence d’une des deux limites.
1. Si I = [a, b[, alors l’intégrale de f sur I est convergente si,

et seulement si, l’intégrale
∫ y

a
f (t) dt

(calculée sur le segment [a, y] ⊂ I) admet une limite (finie)
lorsque y tend vers b et, dans ce cas,

∫ b

a
f (t) dt = lim

y→b

∫ y

a
f (t) dt.

2. Si I = ]a, b], alors l’intégrale de f sur I est convergente si,
et seulement si, l’intégrale

∫ b

x
f (t) dt

(calculée sur le segment [x, b] ⊂ I) admet une limite (finie)
lorsque x tend vers a et, dans ce cas,

∫ b

a
f (t) dt = lim

x→a

∫ b

x
f (t) dt.

5.3 C’est seulement dans le cas où l’intervalle d’intégration
est ouvert : I = ]a, b[ qu’il faut étudier la convergence de

∫ y

x
f (t) dt

(calculée sur le segment [x, y] ⊂ I) à la fois lorsque x tend vers a
et lorsque y tend vers b.
5.4 Dans le cas où l’intervalle d’intégration I n’est pas ouvert
([5.1], [5.2]), si l’intégrale de f sur I est convergente, alors l’inté-
grale de f sur l’intervalle ouvert ]a, b[ est aussi convergente et

∫

I
f (t) dt =

∫

]a,b[
f (t) dt.

Cela légitime l’usage de la notation

∫ b

a
f (t) dt

indépendamment de la nature de l’intervalle I et permet au be-
soin de supposer que l’intervalle d’intégration I est ouvert.

Entraînement

6. Questions pour réfléchir
1. La suite de terme général un =

∫ 2nπ
0 sin t dt est conver-

gente. L’intégrale impropre
∫ +∞

0 sin t dt est-elle convergente ?
2. Si f est continue par morceaux sur I, on pose

∀ x0, x ∈ I, Fx0(x) =
∫ x

x0

f (t) dt.

2.a La fonction Fx0 est continue sur I.
2.b Pour tout segment [A, B] ⊂ I, la fonction Fx0 est lipschit-

zienne sur [A, B].
2.c Condition pour que Fx0 soit lipschitzienne sur I.
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II

Propriétés fondamentales

7. Les propriétés de linéarité, d’additivité et de positivité
sont établies par passage à la limite à partir d’intégrales sur un
segment.

II.1 Linéarité

8. ➙ Si les intégrales de f et de g sur I sont convergentes, alors
l’intégrale de λ f + g sur I est aussi convergente et

∀ λ ∈ R,
∫

I
(λ f + g)(t) dt = λ

∫

I
f (t) dt +

∫

I
g(t) dt.

Additivité

9. ➙ Soit f , une fonction continue par morceaux sur I = ]a, b[. Quel
que soit x0 ∈ I, l’intégrale de f sur I est convergente si, et seulement
si, les intégrales de f sur ]a, x0] et sur [x0, b[ sont convergentes.

10. On suppose que l’intégrale de f sur I = ]a, b[ est conver-
gente.
10.1 Pour tout sous-intervalle J ⊂ I, l’intégrale de f sur J est
convergente et

∫

J
f (t) dt =

∫

I
1J(t) f (t) dt.

10.2 ➙ Relation de Chasles
Quels que soient a 6 α, β, γ 6 b,

∫ γ

α
f (t) dt =

∫ β

α
f (t) dt +

∫ γ

β
f (t) dt.

10.3
lim
x→a

∫ x

a
f (t) dt = 0

10.4

lim
x→b

∫ b

x
f (t) dt = 0

II.2 Généralisation du théorème fondamental

11. Si f est continue sur l’intervalle I = ]a, b[, alors l’intégrale
de f sur I est convergente si, et seulement si, les primitives de f
ont une limite finie au voisinage de a et au voisinage de b.
12. On suppose que l’intégrale de f sur I = ]a, b[ est conver-
gente.
12.1 ➙ Si la fonction f est continue sur I, alors l’application

[

x 7→
∫ x

a
f (t) dt

]

est la primitive de f qui tend vers 0 au voisinage de a.
12.2 ➙ Si f est continue sur I, alors l’application

[

x 7→
∫ b

x
f (t) dt

]

est la primitive de − f qui tend vers 0 au voisinage de b.

II.3 Positivité

13. L’intégrale est un opérateur positif au sens où les inéga-
lités sont conservées par intégration.
14. ➙ Si les intégrales de f et de g sur I sont convergentes et si

∀ t ∈ I, 0 6 f (t) 6 g(t)

alors

0 6

∫

I
f (t) dt 6

∫

I
g(t) dt.

15. ⊲ Inégalité triangulaire
Si f : I → R est continue par morceaux sur un intervalle borné et s’il
existe deux réels m et M tels que

∀ t ∈ I, m 6 f (t) 6 M

alors l’intégrale de f sur I est convergente et

m|I| 6
∫

I
f (t) dt 6 M|I|

où |I| est la longueur de l’intervalle I.

16. On suppose que f est positive sur I et que l’intégrale de
f sur I est convergente.
16.1 Pour tout intervalle J ⊂ I,

∫

J
f (t) dt 6

∫

I
f (t) dt.

16.2 Quels que soient x et y dans I, l’intégrale
∫ y

x
f (t) dt

est du signe de (y − x).
17. Cas d’égalité
17.1 Soit f , une fonction continue par morceaux sur un inter-
valle ouvert non vide I = ]a, b[, dont l’intégrale sur I est conver-
gente.
Si f est positive sur I et si l’intégrale de f sur I est nulle, alors les
limites à gauche et à droite de f sont nulles en tout point :

∀ x ∈ ]a, b[ , f (x+) = f (x−) = 0.

17.2 ➙ Soit f , une fonction continue et positive sur un intervalle ou-
vert non vide I = ]a, b[. On suppose que l’intégrale de f sur I est
convergente. Alors

∫ b

a
f (t) dt = 0

si, et seulement si, f (t) = 0 pour tout t ∈ I.

II.4 Changement de variable avec un intégrande
continu

18. La formule de changement de variable dans une intégrale
repose sur la formule de dérivation des fonctions composées via
le Théorème fondamental qui relie les primitives aux intégrales.
Pour cette raison, le théorème [19] se restreint aux intégrandes
continus. →[46.2]
19. ➙ Soient f : I → E, une fonction continue et ϕ : [a, b] → I,

une fonction de classe C 1. Alors

∫ b

a
f
(

ϕ(u)
)

ϕ′(u) du =
∫ ϕ(b)

ϕ(a)
f (t) dt.

20. En pratique
Le choix de la nouvelle variable

t = ϕ(u)

vise à simplifier l’expression de l’intégrale et conduit au nouvel
élément différentiel

dt = ϕ′(u) du.

Le changement de variable modifie en général les bornes de l’in-
tégrale : lorsque l’ancienne variable u tend vers a (resp. vers b), la
nouvelle variable t tend vers ϕ(a+) (resp. vers ϕ(b−)).

II.5 Intégration par parties

21. ➙ Soient f et g, deux fonctions de classe C
1 sur I = ]a, b[. On

suppose que l’intégrale de f ′g sur I est convergente.
Alors l’intégrale de f g′ sur I est convergente si, et seulement si, le pro-
duit f g admet des limites finies aux voisinages de a et de b.

8.2
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Dans ce cas,

∫ b

a
f ′(t)g(t) dt =

[

f (t)g(t)
]b

a
−

∫ b

a
f (t)g′(t) dt

où on note

[

f (t)g(t)
]b

a
= lim

t→b
f (t)g(t)− lim

t→a
f (t)g(t).

22. En pratique
L’intégration par parties permet, par dérivation, de faire dis-
paraître un facteur transcendant dont la dérivée est rationnelle
(comme ℓn, Arctan...) et d’abaisser le degré d’un facteur polyno-
mial. Elle peut ainsi servir à établir une relation de récurrence ou
à calculer un équivalent. →[87]

Exemples d’intégrales généralisées

23.1

∀ λ > 0,
∫ +∞

0
e−λt dt =

1
λ

23.2

∀ α > 1,
∫ +∞

1

dt

tα
=

1
α − 1

23.3

∀ α < 1,
∫ 1

0

dt

tα
=

1
1 − α

23.4
∫ +∞

−∞

dt

1 + t2 = π

23.5
∫ 1

0
ℓn t dt = −1

23.6

∀ n ∈ N,
∫ +∞

0
tne−t dt = n!

24. Soit n > 2. L’application L définie par

∀ P ∈ Rn[X], ∀ x ∈ R, L(P)(x) = e−x
∫ x

−∞
P(t)et dt

est un endomorphisme non diagonalisable deRn[X].

III

Fonctions intégrables

25. La notion de fonction intégrable a pour but de justifier
aussi simplement que possible l’existence d’une intégrale géné-
ralisée, notamment à l’aide de critères de comparaison [38].
26. Soit f , une fonction continue par morceaux sur I.
26.1 La fonction | f | est continue par morceaux sur I.
26.2 L’expression

∫ y

x

∣

∣ f (t)
∣

∣ dt

est une fonction croissante de y et décroissante de x.

26.3 ✍ Une fonction f est intégrable sur I lorsqu’elle est continue
par morceaux sur I et que l’intégrale de | f | sur I est convergente.
26.4 On dit parfois que l’intégrale de f sur I est absolument
convergente pour signifier que f est intégrable sur I.
27. Cas des fonctions positives
Une fonction continue par morceaux et positive sur l’intervalle
I est intégrable sur I si, et seulement si, son intégrale sur I est
convergente.
28. De même que la sommabilité de la famille de vecteurs
(uk)k∈I est une propriété de la famille de réels positifs (‖uk‖)k∈I ,
l’intégrabilité de la fonction vectorielle f est en fait une propriété
de la fonction positive | f |.
29. Comme la fonction | f | est positive, la fonction f est inté-
grable sur I si, et seulement si, il existe une constante M > 0 telle
que

∀ [x, y] ⊂ I,
∫ y

x

∣

∣ f (t)
∣

∣ dt 6 M

et, dans ce cas, l’intégrale généralisée apparaît comme une borne
supérieure :

∫

I

∣

∣ f (t)
∣

∣ dt = sup
[x,y]⊂I

∫ y

x

∣

∣ f (t)
∣

∣ dt.

30. ✍ Une fonction continue par morceaux f est de carré intégrable
sur I lorsque la fonction | f |2 est intégrable sur I.

Intégrale d’une fonction intégrable

31. ➙ Soient f et g, deux fonctions continues par morceaux sur I,
telles que

∀ t ∈ I, 0 6
∣

∣ f (t)
∣

∣ 6
∣

∣g(t)
∣

∣.

Si g est intégrable sur I, alors f est intégrable sur I.

32. Soit f , une fonction intégrable sur I.
32.1 Si f est une fonction à valeurs réelles, alors f+ et f− sont
intégrables sur I.
32.2 Si f est une fonction à valeurs complexes, alors Re( f ) et
Im( f ) sont intégrables sur I.
32.3 ➙ Si f est intégrable sur I, alors l’intégrale de f sur I est conver-
gente.

33.1 Si l’intégrale de f sur I est convergente bien que f ne soit
pas intégrable sur I, on dit que

∫

I
f (t) dt

est une intégrale impropre.
33.2 Dans la formule d’intégration par parties [21], l’une des
intégrales peut être impropre sans que l’autre le soit aussi. Cette
formule est donc un moyen de prouver qu’une intégrale im-
propre est convergente. →[40], [51.5]

Fonctions localement intégrables

34. Soit f , une fonction continue par morceaux sur l’inter-
valle I.
34.1 ✍ La fonction f est intégrable au voisinage de a lorsqu’il
existe un intervalle ]a, α] ⊂ I sur lequel f est intégrable.
34.2 ✍ La fonction f est intégrable au voisinage de b lorsqu’il
existe un intervalle [β, b[ ⊂ I sur lequel f est intégrable.

35. En pratique
35.1 Une fonction continue par morceaux sur I = ]a, b[ est in-
tégrable sur I si, et seulement si, elle est intégrable au voisinage
de a et au voisinage de b.
35.2 Une fonction continue par morceaux sur I = [a, b[ est in-
tégrable sur I si, et seulement si, elle est intégrable au voisinage
de b.
35.3 Une fonction continue par morceaux sur I = ]a, b] est in-
tégrable sur I si, et seulement si, elle est intégrable au voisinage
de a.

8.3
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Fonctions intégrables de référence

36.1 Une fonction constante est intégrable sur tout intervalle
borné.
36.2 La fonction

[

t 7→ 1
tα

]

est intégrable au voisinage de +∞ si, et seulement si, α > 1.
36.3 La fonction

[

t 7→ 1
tα

]

est intégrable au voisinage droit de 0 si, et seulement si, α < 1.
36.4 Suite de [47.2] – Les fonctions

[

t 7→ 1
(t − t0)α

]

et
[

t 7→ 1
(t0 − t)α

]

sont intégrables au voisinage de t0 si, et seulement si, α < 1.
36.5 La fonction ℓn est intégrable au voisinage de 0.
36.6 La fonction

[

t 7→ e−zt
]

est intégrable surR+ si, et seulement si, Re(z) > 0.
36.7 Quel que soit le réel α > 0, la fonction

[t 7→ e−α|t|]

est intégrable surR. →[48.1]
36.8 La fonction continue

[

t 7→ 1√
1 − t2

]

est intégrable sur ]−1, 1[.

Critères pratiques d’intégrabilité

37. Cas d’un intervalle borné
37.1 Si I est un segment, toute fonction continue par morceaux
sur I est intégrable sur I.
37.2 Si I est un intervalle borné, toute fonction continue par
morceaux et bornée sur I est intégrable sur I.
En particulier, si f admet une limite finie aux bornes de I, alors f
est intégrable sur I.
38. Théorèmes de comparaison
On applique les théorèmes suivants en comparant la fonction f à
l’une des fonctions de référence [36].
38.1 ➙ Soit f , une fonction continue par morceaux. S’il existe une
fonction g intégrable au voisinage de t0 telle que

f (t) =
t→t0

O
(

g(t)
)

,

alors f est intégrable au voisinage de t0.
38.2 ➙ Soient f et g, deux fonctions continues par morceaux telles que

f (t) ∼

t→t0
g(t).

Alors f est intégrable au voisinage de t0 si, et seulement si, g est inté-
grable au voisinage de t0.
38.3 En pratique
Selon la régularité de f , on applique ces théorèmes à une seule ex-
trémité ([35.2], [35.3]) ou aux deux extrémités de l’intervalle d’in-
tégration [35.1].
39. Exemples usuels de fonctions intégrables
Les fonctions suivantes peuvent aussi être considérées comme
des fonctions de référence.
39.1 La fonction continue

[

t 7→ 1
1 + t2

]

est intégrable surR.

39.2 Soit a 6= 0. La fonction

[t 7→ tx−1e−at]

est intégrable au voisinage de +∞ si, et seulement si, a > 0 (quel
que soit x ∈ R) et sur ]0,+∞[ si, et seulement si, x > 0 et a > 0.
39.3 Suite de [47.1] – Quels que soient m ∈ R et σ > 0, la fonc-
tion

[t 7→ e−
(t − m)2

/σ2
]

est intégrable surR.
39.4 La fonction

[t 7→ tne−xt2
]

est intégrable surR quels que soient n ∈ N et x > 0.
39.5 Les fonctions

[

t 7→ 1 − cos t

t2

]

et
[

t 7→
( sin t

t

)2]

sont intégrables sur ]0,+∞[.
40. Exemples d’intégrales impropres [33.2]
40.1 L’intégrale impropre

∫ +∞

0

sin t

t
dt

est convergente [6.57].
40.2 Les intégrales impropres

∫ +∞

1

cos t√
t

dt et
∫ +∞

0

sin t√
t

dt

sont convergentes.

III.1 Opérations sur les fonctions intégrables

Produits

41. ➙ Si la fonction f est intégrable sur I et si g est continue par
morceaux et bornée sur I, alors le produit f g est intégrable sur I.

42. ➙ Inégalité de Schwarz
Si f et g sont deux fonctions de carré intégrable sur I, alors le produit
f g est intégrable sur I et

∫

I

∣

∣ f (t)g(t)
∣

∣ dt 6

√

∫

I

∣

∣ f (t)
∣

∣

2 dt

√

∫

I

∣

∣g(t)
∣

∣

2 dt.

Combinaisons linéaires

43.1 ➙ L’ensemble L 1(I) des fonctions intégrables sur I est un sous-

espace vectoriel de l’espace C 0,m(I) des fonctions continues par mor-
ceaux sur I.
43.2 Si f est à valeurs réelles, alors f est intégrable sur I si, et
seulement si, f+ et f− sont intégrables sur I.
43.3 Si f est à valeurs complexes, alors f est intégrable sur I si,
et seulement si, Re( f ) et Im( f ) sont intégrables sur I.
43.4 ➙ L’ensemble L 1

c (I) des fonctions continues et intégrables sur I

est un sous-espace vectoriel de L
1(I).

43.5 ➙ L’ensemble L 2(I) des fonctions de carré intégrable sur I est

un sous-espace vectoriel de C 0,m(I).

Inégalité triangulaire

44.1 ➙ Si f est intégrable sur I, alors

∣

∣

∣

∣

∫

I
f (t) dt

∣

∣

∣

∣

6

∫

I

∣

∣ f (t)
∣

∣ dt

.44.2 Avec l’écriture usuelle des intégrales, l’inégalité triangu-
laire s’écrit :

∣

∣

∣

∣

∫ b

a
f (t) dt

∣

∣

∣

∣

6

∫

]a↔b[

∣

∣ f (t)
∣

∣ dt.

8.4
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44.3 ➙ Cas d’un intervalle borné
Si f est continue par morceaux et bornée par M sur un intervalle I :

∀ t ∈ I,
∣

∣ f (t)
∣

∣ 6 M

alors

∀α, β ∈ I,
∣

∣

∣

∣

∫ β

α
f (t) dt

∣

∣

∣

∣

6 M|β − α|.

45. Cas d’égalité
45.1 Soit f : I → C, une fonction intégrable sur I. Il existe
ρ ∈ R+ et θ ∈ R tels que

∫

I
f (t) dt = ρeiθ et que

∣

∣

∣

∣

∫

I
f (t) dt

∣

∣

∣

∣

=
∫

I
Re

[

e−iθ f (t)
]

dt.

45.2 ➙ Si f est intégrable et continue sur un intervalle ouvert non vide
I, alors

∣

∣

∣

∣

∫

I
f (t) dt

∣

∣

∣

∣

=
∫

I

∣

∣ f (t)
∣

∣ dt

si, et seulement si, l’argument de f (t) est constant sur I :

∃ θ ∈ R, ∀ t ∈ I, f (t) = eiθ
∣

∣ f (t)
∣

∣.

III.2 Changements de variable

46. Cas d’un intégrande continu par morceaux
46.1 Si ϕ est une fonction de classe C 1 et strictement mono-
tone, alors ( f ◦ ϕ) · ϕ′ est continue par morceaux.
46.2 ➙ Soient f : I → E, une fonction continue par morceaux et

ϕ : J → I, une bijection de classe C 1 de J sur I. Alors f est intégrable
sur I si, et seulement si, ( f ◦ ϕ)ϕ′ est intégrable sur J et dans ce cas,

∫

I
f (t) dt =

∫

J
f
(

ϕ(u)
)
∣

∣ϕ′(u)
∣

∣ du.

46.3 En notant a et b, les bornes inférieure et supérieure de J
(qu’elles soient finies ou infinies), la formule de changement de
variable devient :

∫ ϕ(b−)

ϕ(a+)
f (t) dt =

∫ b

a
f
(

ϕ(u)
)

ϕ′(u) du

que la fonction ϕ soit croissante ou décroissante.
46.4 Le théorème [46.2] est un moyen de démontrer qu’une
fonction est (resp. n’est pas) intégrable sur un intervalle donné
en se ramenant à une fonction dont l’intégrabilité (resp. la non-
intégrabilité) est bien connue. →[51.5]

Changements de variable affines

47. Les changements de variable les plus simples sont les
changements de variables affines :

t = αu + β

avec α 6= 0.
47.1 ➙ Soit ϕ, un changement de variable affine réalisant une bijection
de J sur I. Une fonction f est intégrable sur I si, et seulement si, f ◦ ϕ
est intégrable sur J. Dans ce cas,

∀ x, y ∈ J,
∫ y

x
f (αu + β) du =

1
α

∫ αy+β

αx+β
f (t) dt.

47.2 ➙ La fonction [t 7→ f (t)] est intégrable au voisinage de t = t0 si,
et seulement si, la fonction [h 7→ f (t0 + h)] est intégrable au voisinage
de h = 0.
47.3 La fonction ℓn(1 + t) est intégrable sur ]−1, 1[.
47.4 Pour tout x0 ∈ R,

∫ +∞

−∞
e−(x−x0)2

dx =
∫ +∞

−∞
e−x2

dx.

48. Fonctions paires ou impaires
48.1 Si la fonction f est paire ou impaire, alors elle est inté-
grable au voisinage de −∞ si, et seulement si, elle est intégrable
au voisinage de +∞.
48.2 Si f est paire et intégrable surR, alors

∫ +∞

−∞
f (t) dt = 2

∫ +∞

0
f (t) dt.

48.3 Si f est impaire et intégrable surR, alors
∫ +∞

−∞
f (t) dt = 0.

48.4
∫ +∞

−∞

t dt

1 + t2 + t4 = 0

49. Moyenne d’une fonction périodique
Soit f , une fonction continue par morceaux sur R et périodique,
de période T.
49.1

∀ a > 0,
a

T

∫ T/a

0
f (at) dt =

1
T

∫ T

0
f (t) dt

49.2 ✍ La moyenne d’une fonction continue par morceaux et pério-
dique f , de période T, est égale à

1
T

∫ T

0
f (t) dt.

49.3 Pour tout n ∈ N∗, la fonction fn = [t 7→ f (nt)] est pério-
dique et la moyenne de fn est égale à la moyenne de f .
50. Autres exemples de changements de variable affines
50.1

∫ +∞

0

e−t

x + t
dt = ex

∫ +∞

x

e−u

u
du −−→

x→0
+∞

50.2
∫ +∞

0

dt

1 − t + t2 =
4
√

3π

9
50.3

∫ +∞

0

dt

1 −
√

2t + t2
=

3
√

2π

4

50.4 Suite de [51.6] –

∀ a > 0,
∫ +∞

0

ℓn t

a2 + t2 dt =
π

2
ℓn a

a
.

50.5 La seule valeur de α ∈ R+ pour laquelle l’intégrale
∫ a

0

tα dt√
t3 + a3

est indépendante de a ∈ R∗
+ est α = 1/2. →[141]

50.6 Pour a < b,
∫ b

a

dt
√

(b − t)(t − a)
=

∫ 1

−1

du√
1 − u2

= π.

50.7 Pour tout 0 < a < 1,
∫ 1

a

dx
√

x(1 − x)(x − a)
=

∫ 1

0

du
√

(1 − a)u + a
√

u(1 − u)
.

50.8 Une astuce
Si f est intégrable sur ]0, 1[, alors [x 7→ x f (x)] est intégrable sur
]0, 1[ et si f (x) = f (1 − x) pour tout x ∈ ]0, 1[, alors

∫ 1

0
x f (x) dx =

1
2

∫ 1

0
f (x) dx.

50.9 Intégrales d’Euler

∫ π/2

0
ℓn(cos t) dt =

∫ π/2

0
ℓn(sin t) dt = −π

2
ℓn 2
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Autres changements de variable usuels

51. Pour tout α ∈ R∗, la fonction [t 7→ tα] est une bijection de
classe C 1 de I = ]0,+∞[ sur I, dont la réciproque est aussi une
bijection de classe C 1 de I sur I.
51.1

∫ +∞

−∞
e−x2

dx =
∫ +∞

0
e−t dt√

t

51.2 Pour tout a > 0,
∫ +∞

0
e−a

√
t dt = 2

∫ +∞

0
xe−ax dx.

51.3 Suite de [50.2] –

∫ +∞

0

dt

1 + t3 =
∫ +∞

0

t dt

1 + t3 =
2
√

3π

9

51.4 Suite de [50.3] –
1.

∫ +∞

0

t dt

1 + t4 =
π

4
2.

∫ +∞

0

dt

1 + t4 =
∫ +∞

0

t2 dt

1 + t4 =

√
2π

4

51.5 Intégrales de Fresnel
Les intégrales impropres

∫ +∞

0
cos(t2) dt et

∫ +∞

0
sin(t2) dt

sont convergentes [40.2], alors que les fonctions
[

t 7→ cos(t2)
]

et
[

t 7→ sin(t2)
]

ne sont pas intégrables surR+. →[105]
51.6 Avec α = −1,

∫ +∞

0

ℓn t

1 + t2 dt = 0.

51.7 Pour tout a ∈ R,
∫ +∞

0

dt

(1 + t2)(1 + ta)
=

∫ +∞

0

dt

(1 + t2)(1 + t−a)
=

π

4
.

52. La fonction cos réalise une bijection de classe C 1 de I1 =
]0, π[ sur I0 = ]−1, 1[ et la fonction sin réalise une bijection de
classe C

1 de I2 = ]−π/2, π/2[ sur I0. Les deux bijections réci-
proques sont de classe C

1 sur I0.
52.1 Pour toute fonction f continue sur [−1, 1],

∫ 1

−1

f (x)√
1 − x2

dx =
∫ π

0
f (cos t) dt =

∫ π/2

−π/2
f (sin t) dt.

52.2 Pour tous a < b,

∫ b

a

√

(b − x)(x − a) dx =
π(b − a)2

8
.

53. Intégrale de Dirichlet

∫ +∞

0

sin x

x
dx =

∫ +∞

0

1 − cos x

x2 dx =
∫ +∞

0

( sin x

x

)2
dx

Entraînement

54. Questions pour réfléchir
1. Si f est intégrable sur I, alors f est intégrable sur I.
2. Suite de [36] – Quelles sont, parmi les fonctions de réfé-

rence, celles qui sont de carré intégrable ?
3. Une fonction constante est-elle intégrable sur ]0,+∞[ ?

4. La fonction [x 7→ 1/x] n’est intégrable ni sur l’intervalle
]0, 1], ni sur l’intervalle [1,+∞[.

5. Existe-t-il un réel a tel que la fonction [x 7→ 1/xa] soit inté-
grable sur ]0,+∞[ ?

6.a Si f est continue par morceaux sur [a, b[, alors f est inté-
grable au voisinage de a.

6.b Si f est continue par morceaux sur ]a, b], alors f est inté-
grable au voisinage de b.

7. Si f est continue par morceaux sur un intervalle borné I
et admet des limites finies en chacune des bornes de I, alors f est
intégrable sur I.

8. Une fonction continue qui tend vers une limite ℓ 6= 0 au
voisinage de +∞ n’est pas intégrable au voisinage de +∞.

9. On suppose que f est continue sur R.
9.a Si f est continue, alors toutes les primitives de f sont bor-

nées sur R.
9.b La réciproque est-elle vraie ?
9.c On suppose que, pour toute primitive F de f , il existe xF ∈

R tel que

∀ x ∈ R, F(x) =
∫ x

xF

f (t) dt.

La fonction f est-elle intégrable sur R ?
10. Si ϕ est lipschitzienne et nulle en 0 et si f est intégrable

sur I, alors ϕ ◦ f est intégrable sur I.
11.a Si les hypothèses du théorème [31] sont vérifiées, alors on

peut appliquer le théorème [38.1] au voisinage de a et au voisinage
de b.

11.b Pourquoi le théorème [38.1] est-il plus utile en pratique ?
12. Si f est intégrable sur I et si J est un intervalle contenu

dans I, alors le produit 1J f est intégrable sur I.
13. Si f et g sont intégrables sur I, alors les deux fonctions

min{ f , g} et max{ f , g} sont intégrables sur I.
14. Condition sur I pour qu’une fonction intégrable soit aussi

une fonction de carré intégrable ?
15. Condition sur I pour qu’une fonction de carré intégrable

soit aussi une fonction intégrable ?
16. Condition pour que

∣

∣

∣

∣

∫ b

a
f (t) dt

∣

∣

∣

∣

6

∫ b

a

∣

∣ f (t)
∣

∣ dt.

17. Suite de [44.3] – Cas d’égalité ?
18. Soit ϕ : I → J, une bijection strictement monotone.
18.a L’intervalle J est ouvert (resp. fermé) si, et seulement si,

l’intervalle I est ouvert (resp. fermé).
18.b Exprimer les bornes de J en fonction des bornes de I.
19. Suite de [52.2] – Retrouver la valeur de l’intégrale sans

aucun calcul.

55. Soient f , une fonction continue par morceaux et positive
sur I = ]a, b[ et x0 ∈ I.

1. Si f n’est pas intégrable au voisinage de b, alors

lim
x→b

∫ x

x0

f (t) dt = +∞.

2. Si f n’est pas intégrable au voisinage de a, alors

lim
x→a

∫ x

x0

f (t) dt = −∞.

56. Condition sur a ∈ R pour que la fonction
[

t 7→ t − sin t

ta

]

soit intégrable sur ]0,+∞[.
57. Intégrabilité de

cos t√
t

sur les intervalles ]0, 1], [1,+∞[ et ]0,+∞[.
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IV INTÉGRATION DES FONCTIONS À VALEURS VECTORIELLES

58. Intégrabilité de
ℓnn t

tm

aux voisinages de 0, de 1 et de +∞ selon m et n.
59. Intégrabilité sur ]0,+∞[ de

ta

1 + tb
et de

tae−t

1 + tb

en fonction des réels a et b.
60. La fonction [t 7→ e−(t+ix)2

] est intégrable sur ]−∞,+∞[
pour tout x ∈ R.
61. La fonction

[

t 7→ sin t

tα

]

est intégrable sur ]0,+∞[ si, et seulement si, 1 < α < 2. →[40.1]
62. Si la fonction f est intégrable sur l’intervalle I, on dit que
l’intégrale

∫

I f (t) dt existe au sens propre. →[33.1]
Pour quelles valeurs de x ∈ R les intégrales suivantes existent-
elles au sens propre?

∫ +∞

0

te−xt

et − 1
dt

∫ π

0

t sin t

1 − x cos t
dt

∫ +∞

0

e−t

x + t
dt

63. Soit f , une fonction intégrable sur [0,+∞[. Si ϕ et ψ sont
deux fonctions positives, qui tendent vers +∞ au voisinage de
+∞, alors l’intégrale

∫ ψ(x)

ϕ(x)
f (t) dt

tend vers 0 au voisinage de +∞.
64. Exemples d’intégrations par parties
64.1

∫ +∞

0
ℓn

( 1 + t2

t2

)

dt = π

64.2

∀ n ∈ N, ∀ k > 0,
∫ +∞

0
tne−kt dt =

n!
kn+1

64.3 Pour tout n ∈ N,
∫ +∞

0

dt

(1 + t2)n+1 =
1

4n

(

2n

n

)

π

2
.

(Il est aussi intéressant de poser t = tan θ.)
64.4 Quels que soient n et p dansN,

∫ 1

0
tn
ℓnp t dt =

(−1)p p!
(n + 1)p+1 .

65. Suite de [51.4] –
∫ +∞

0

Arctan t

t3/2 dt =
√

2π

66. Soit f : R → R, une fonction continue qui tend vers ℓ−
au voisinage de −∞ et vers ℓ+ au voisinage de +∞. Alors

∀ a > 0,
∫ +∞

−∞
f (t + a)− f (t) dt = (ℓ+ − ℓ−)a.

S’agit-il d’une intégrale propre ou impropre?
67. Pour tout x > 0,

∫ +∞

0
e−xt cos t dt =

x

1 + x2 ,
∫ +∞

0
e−xt sin t dt =

1
1 + x2 .

68.

∀ x ∈ R,
∫ +∞

−∞
teixt−(t2

/2) dt = ix
∫ +∞

−∞
eixt−(t2

/2) dt

IV

Intégration des fonctions à valeurs vectorielles

69. On étend ici la théorie de l’intégrale aux fonctions qui
prennent leurs valeurs dans un espace vectoriel vectoriel de di-
mension finie (E, ‖·‖).
70. On considère une base B = (ek)16k6d de E, ainsi que sa
base duale B∗ = (e∗k )16k6d.
Chaque fonction f à valeurs dans E peut donc être rapportée à
ses composantes fk = e∗k ◦ f :

f (t) =
d

∑
k=1

fk(t) · ek.

IV.1 Fonctions intégrables

71. Fonctions continues par morceaux
71.1 ✍ La fonction f est une fonction en escalier sur I lorsque
toutes ses composantes f1, . . ., fd sont des fonctions en escalier sur I.
71.2 ➙ Si f : I → E est une fonction en escalier, alors ‖ f ‖ : I → R

est une fonction en escalier.
71.3 Si f est une fonction en escalier sur [a, b], alors il existe
une subdivision a = α0 < α1 < · · · < αN = b et une famille
(xk)06k<N de vecteurs de E tels que

∀ 0 6 k < N, ∀ t ∈ ]αk, αk+1[ , f (t) = xk.

71.4 ✍ La fonction f est continue par morceaux sur I lorsque toutes
ses composantes f1, . . ., fd sont continues par morceaux sur I.
71.5 ➙ Si f : I → E est une fonction continue par morceaux, alors
‖ f ‖ : I → R est une fonction continue par morceaux.

72. Fonctions intégrables
72.1 ✍ La fonction f : I → E est intégrable sur I lorsque toutes ses
composantes fk, 1 6 k 6 d, sont intégrables sur I.
72.2 On suppose que la fonction f : I → E est continue par
morceaux sur I. La fonction f est intégrable sur I si, et seulement
si, la fonction ‖ f ‖ : I → R+ est intégrable sur I.

IV.2 Définition de l’intégrale

73. ✍ Si f : I → E est intégrable sur I, son intégrale est définie par

∫

I
f (t) dt =

d

∑
k=1

(

∫

I
fk(t) dt

)

ek.

74. Si I = ]a, b[ et si f : I → E est intégrable, alors
∫

I
f (t) dt = lim

x→a
y→b

∫ y

x
f (t) dt,

quelle que soit la norme ‖·‖ sur E.
75. Cohérence des définitions
Soit f : I → E.

1. Certaines propriétés des composantes de f dépendent de
la base de E choisie pour calculer ces composantes, d’autres pro-
priétés ne dépendent pas de ce choix.

1.a Soit f (t) = (et, 1 + t2) ∈ R2. Les composantes de f dans
la base canonique (e1, e2) sont positives. Les composantes de f
dans la base (−e2,−e1) ne sont pas positives.

1.b Un problème analogue se pose pour définir l’addition et
la multiplication dansQ. Préciser ce problème et sa résolution.

2. Pour qu’une propriété des composantes de f soit une pro-
priété de f , il faut que cette propriété soit indépendante du choix
de la base.

2.a Soit C = (ε1, . . . , εd), une base de E. On pose

∀ 1 6 k 6 d, ϕk = ε∗k ◦ f .

Relier les composantes ϕk, 1 6 k 6 d, de f dans la base C aux
composantes fk, 1 6 k 6 d, de f dans la base B.

2.b Les définitions [71.1], [71.4], [72] et [73] ont bien un sens.
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Linéarité

76.1 Une combinaison linéaire de fonctions intégrables sur I
est intégrable sur I et

∫

I

(

λ f + g)(t) dt = λ

∫

I
f (t) dt +

∫

I
g(t) dt,

quelles que soient les fonctions f et g intégrables sur I.
76.2 Relation de Chasles
Si f : I → E est intégrable sur I, alors

∫ c

a
f (t) dt =

∫ b

a
f (t) dt +

∫ c

b
f (t) dt,

quels que soient les réels a, b et c dans I.
76.3 Si I est un voisinage de +∞ et si f : I → E est intégrable
sur I, alors

∫ b

a
f (t) dt =

∫ +∞

a
f (t) dt −

∫ +∞

b
f (t) dt,

quels que soient a et b dans I.
76.4 ➙ Soit X : I → Mn,1(K), une fonction intégrable. Pour toute
matrice A ∈ Mn(K), la fonction AX : I → Mn,1(K) est intégrable
et

∫

I
AXt dt = A

(

∫

I
Xt dt

)

.

76.5 ⊲ Si f : I → E est intégrable et si ϕ : E → F est linéaire, alors
ϕ ◦ f : I → F est intégrable et

∫

I
(ϕ ◦ f )(t) dt = ϕ

(

∫

I
f (t) dt

)

.

76.6 ➙ Soit A : I → Mn,p(K), une fonction intégrable. Quelles
que soient les matrices Q ∈ Mm,n(K) et P ∈ Mp,q(K), la fonction
QAP : I → Mm,q(K) est intégrable et

∫

I
QAtP dt = Q

(

∫

I
At dt

)

P.

Positivité

77. L’espace vectoriel E n’est pas muni naturellement d’une
relation d’ordre, à moins que E = R. La conservation des inéga-
lités par intégration n’a donc pas de sens pour des fonctions à
valeurs vectorielles et seule subsiste l’inégalité triangulaire.
78. ➙ Si f : I → E est intégrable sur I, alors

∥

∥

∥

∥

∫

I
f (t) dt

∥

∥

∥

∥

6

∫

I

∥

∥ f (t)
∥

∥ dt.

79. Théorème fondamental
79.1 ✍ Soit f : I → E. Une application F : I → E est une primi-
tive de f lorsque F est dérivable et que sa dérivée est f :

F′ = f .

79.2 ➙ Si la fonction f : I → E est continue, alors l’application

Fx0 =

[

x 7→
∫ x

x0

f (t) dt

]

est une primitive de f pour tout x0 ∈ I.
79.3 Si la fonction f : I → E est continue et intégrable sur
l’intervalle I = ]a, b[, alors

Fa =

[

x 7→
∫ x

a
f (t) dt

]

et Fb =

[

x 7→ −
∫ b

x
f (t) dt

]

sont des primitives de f .

80. Intégration par parties
80.1 ➙ On suppose que E et F sont deux espaces vectoriels normés de
dimension finie.

Soient f : I → E et g : I → F, deux fonctions de classe C 1 et
B : E × F → G, une application bilinéaire. Alors

∫ b

a
B
(

f ′(t), g(t)
)

dt =
[

B
(

f (t), g(t)
)]b

a
−

∫ b

a
B
(

f (t), g′(t)
)

dt,

quels que soient a et b dans I.
80.2 Si A : I → Mn,p(K) et B : I → Mp,q(K) sont deux
fonctions de classe C 1, alors

∫ b

a

dAt

dt
Bt dt =

[

AtBt
]b

a
−

∫ b

a
At

dBt

dt
dt

quels que soient a et b dans I.

IV.3 Accroissements finis

81. On parle d’accroissements finis pour désigner les varia-
tions

f (y)− f (x)

par opposition aux accroissements infiniment petits

f (x0 + δx)− f (x0) ≈ f ′(x0)δx

qui apparaissent quand on relie une fonction et sa dérivée.
81.1 ➙ Égalité des accroissements finis
Si une fonction f à valeurs réelles est continue sur [a, b] et dérivable
sur ]a, b[, alors il existe a < c < b tel que

f (b) = f (a) + (b − a) f ′(c).

81.2 Le théorème [81.1] repose sur le théorème de Rolle et en
particulier sur le fait qu’une fonction à valeurs réelles admette un
extremum sur tout segment.
81.3 La fonction définie par f (t) = (cos t, sin t) pour tout réel
t est dérivable et, bien que f (0) = f (2π), sa dérivée n’est jamais
nulle.
81.4 À défaut pouvoir généraliser l’égalité des accroissements
finis aux fonctions à valeurs vectorielles, on peut leur étendre
l’inégalité des accroissements finis [81.5] qui rend en définitive
les mêmes services que [81.1]. →[82]
81.5 ➙ Si f : I → R est dérivable, alors f est lipschitzienne sur I si,
et seulement si, sa dérivée est bornée sur I.

82. Inégalité des accroissements finis
Le théorème des accroissements finis peut être démontré sous des
hypothèses moins restrictives que celles du théorème suivant.
→[149]
82.1 ➙ Soit f , une fonction de classe C 1 d’un intervalle I ⊂ R dans
un espace vectoriel de dimension finie E.
S’il existe une constante K > 0 telle que

∀ t ∈ I,
∥

∥ f ′(t)
∥

∥ 6 K,

alors f est K-lipschitzienne sur I.
82.2 Suite de [81.5] –

∀ (x, y) ∈ R2, |eiy − eix| 6 |x − y|

83. Caractérisation des applications constantes
83.1 ➙ Soient I, un intervalle de R et f : I → E, une fonction déri-
vable sur I. Si

∀ t ∈ I, f ′(t) = 0E,

alors f est constante sur I.
83.2 ➙ Si f : I → E est continue sur l’intervalle I, dérivable sur son
intérieur I◦ et si

∀ t ∈ I◦, f ′(t) = 0E

alors f est constante sur I.

84. Primitives
84.1 ➙ Soient I, un intervalle de R ; f , une application de I dans E ;
F1 et F2, deux primitives de f sur I. Alors la différence F1 − F2 est
constante sur I.
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V INTÉGRALES ET ORDRES DE GRANDEUR

Entraînement

85. Questions pour réfléchir
1. Les réciproques de [71.2] et de [71.5] sont fausses.
2. Toute fonction en escalier f : [a, b] → E est intégrable sur

[a, b]. Pour toute subdivision

a = α0 < α1 < · · · < αN = b

telle que f soit constante sur chaque intervalle ouvert ]αk, αk+1[,

∫ b

a
f (t) dt =

N−1

∑
k=0

(αk+1 − αk) · xk

où xk est la valeur prise par f sur ]αk, αk+1[. →[75]
3. Pourquoi n’est-il pas possible d’établir l’inégalité triangu-

laire [78] en raisonnant sur les composantes de f ?
4. La fonction f : R∗ → R définie par

∀ x 6= 0, f (x) = Arctan x + Arctan 1/x

est dérivable, sa dérivée est identiquement nulle, mais f n’est pas
constante.

V

Intégrales et ordres de grandeur

86. Exploitation de la positivité
86.1 Pour tout ε > 0,

e−2ε
ℓn 2 6

∫ 2ε

ε

e−x

x
dx 6 e−ε

ℓn 2

et lorsque a tend vers +∞, →[87.3]
∫ 2a

a

e−x

x
dx = Θ

( e−a

a

)

.

86.2 Lorsque a tend vers +∞,
∫ 1

−1

dx

(a − x)
√

1 − x2
∼

π

a
.

86.3 Pour tout n > 2, lorsque x tend vers +∞, →[87.4]

∫ +∞

x

e−t2

tn
dt = O

( e−x2

xn−1

)

.

86.4 L’intégrale

f (x) =
∫ 1

0

dt
√

(x2 + t2)(1 + t2)

est définie pour tout x > 0.
1. Au voisinage de +∞,

f (x) =
1
x

∫ 1

0

dt√
1 + t2

+O
( 1

x3

)

.

2. Au voisinage de 0,

f (x) =
∫ 1

0

dt√
x2 + t2

+O(1)

donc f (x) ∼ − ℓn x. →[91.5]
87. Par intégration par parties
87.1 Pour tout entier n ∈ N, on pose

In =
∫ 1

0
tn sin(πt) dt.

Comme

In+2 =
1
π

− (n + 1)(n + 2)
π2 In,

alors In ∼
π/n2 et la série ∑ In converge absolument. →[122.5]

87.2 Lorsque n tend vers +∞,

∫ +∞

0

e−t

n + t
dt =

1
n
− 1

n2 +
2
n3 +O

( 1
n4

)

.

87.3 Lorsque x tend vers +∞,

∫ 2x

x

e−t

t
dt ∼

e−x

x
.

87.4 Suite de [86.3] – Pour tout n ∈ N et tout x > 0,

∫ +∞

x

e−t2

tn
dt =

e−x2

2xn+1 − n + 1
2

∫ +∞

x

e−t2

tn+2 dt.

En particulier, lorsque x tend vers +∞,

∫ +∞

x
e−t2

dt ∼
e−x2

2x
.

87.5 Lorsque x tend vers +∞,

∫ +∞

2π

sin t

t
sin xt dt = O

( 1
x

)

.

Intégration des relations de comparaison

88. On approfondit l’analogie entre les intégrales et les séries
avec les résultats suivants, qu’on comparera avec [6.87] dans le
cas où la fonction de référence g est intégrable et avec [6.90] dans
le cas contraire.
89. Cas intégrable
On considère une fonction de référence g, qu’on suppose positive
et intégrable sur l’intervalle I = [a, b[.
89.1 Lorsque x tend vers b, l’intégrale

∫ b

x
g(t) dt

est un infiniment petit.
89.2 Si f est continue par morceaux sur I et si f (x) = O(g(x))
au voisinage de b, alors f est intégrable sur [x, b[ pour tout x ∈ I
et

F(x) =
∫ b

x
f (t) dt

tend vers 0 lorsque x tend vers b.
89.3 ➙ Si f (x) = O(g(x)) au voisinage de b, alors

∫ b

x
f (t) dt = O

(

∫ b

x
g(t) dt

)

au voisinage de b.
89.4 ➙ Si f (x) = O(g(x)) au voisinage de b, alors

∫ b

x
f (t) dt = O

(

∫ b

x
g(t) dt

)

au voisinage de b.
89.5 ➙ Si f (x) ∼ g(x) au voisinage de b, alors

∫ b

x
f (t) dt ∼

∫ b

x
g(t) dt

au voisinage de b.

90. Lorsque la fonction g est positive et intégrable au voisi-
nage de a et qu’on peut comparer f (t) à g(t) au voisinage de a,
on peut comparer de la même manière les intégrales

∫ x

a
f (t) dt et

∫ x

a
g(t) dt

lorsque x tend vers a.

8.9



INTÉGRALES

91. Cas non intégrable
Cette fois, la fonction de référence g est encore supposée continue
par morceaux et positive sur l’intervalle I = [a, b[, mais n’est plus
intégrable sur I.
91.1 La fonction G définie par

∀ x ∈ I, G(x) =
∫ x

a
g(t) dt

est croissante sur I et tend vers +∞ au voisinage de b.
91.2 Soit f , une fonction continue par morceaux sur I. L’ex-
pression

F(x) =
∫ x

a
f (t) dt

est définie pour tout x ∈ I.
91.3 ➙ Si f (x) = O(g(x)) au voisinage de b, alors

∫ x

a
f (t) dt = O

(

∫ x

a
g(t) dt

)

au voisinage de b.
91.4 ➙ Si f (x) = O(g(x)) au voisinage de b, alors

∫ x

a
f (t) dt = O

(

∫ x

a
g(t) dt

)

au voisinage de b.
91.5 ➙ Si f (x) ∼ g(x) au voisinage de b, alors f n’est pas intégrable
sur I et

∫ x

a
f (t) dt ∼

∫ x

a
g(t) dt

au voisinage de b.

92. On suppose que f et g sont continues par morceaux sur
l’intervalle ]a, b] et que g est une fonction positive.
Lorsqu’on peut comparer la fonction f à la fonction g au voisi-
nage de a et que g n’est pas intégrable au voisinage de a, on peut
comparer de la même manière les intégrales

∫ b

x
f (t) dt et

∫ b

x
g(t) dt

lorsque x tend vers a.
93. Exemples
93.1 Lorsque x tend vers 1,

Arccos x =
∫ 1

x

dt√
1 − t2

∼

√
2
√

1 − x.

93.2 Lorsque x tend vers 0,

∫ +∞

x

cos t

t2 dt ∼
1
x

.

93.3 Pour tout x > 0, on pose

F(x) =
∫ +∞

x

e−t

t
dt.

Alors F(x) = O(e−x) au voisinage de +∞ et F(x) ∼ − ℓn x au
voisinage de 0. →[99]
93.4 Lorsque x tend vers +∞,

∫ x

0

Arctan t

t
dt ∼

π

2
ℓn x.

93.5
∫ +∞

a

( sin t

t

)2
dt ∼

a→+∞

1
2a

Entraînement

94. Questions pour réfléchir
1. Sur quel intervalle l’intégration par parties

∫

xm

ℓnn x
dx =

−xm+1

(n − 1) ℓnn−1 x
+

m + 1
n − 1

∫

xm

ℓnn−1 x
dx

est-elle légitime?

95. Soient f et g, deux fonctions continues sur ]0, 1]. On sup-
pose que g est positive et qu’elle n’est pas intégrable au voisinage
de 0.

1. Si f (t) ∼ g(t) lorsque t tend vers 0, alors
∫ 1

x
f (t) dt ∼

∫ 1

x
g(t) dt.

2. Si la différence g− f est intégrable au voisinage de 0, alors
∫ x

x2
f (t) dt ∼

x→0

∫ x

x2
g(t) dt.

96. Suite de [93.3] – La fonction F est intégrable sur ]0,+∞[ et
∫ +∞

0
F(x) dx = 1

en intégrant par parties.
97. Suite de [93.3] – Au voisinage de +∞,

F(x) =
e−x

x
+O

( e−x

x2

)

.

98. Suite de [93.3] – Pour tout x > 0, on pose

f (x) =
∫ +∞

0

e−xt

t + x
dt.

Alors f (x) = ex2
F(x2), donc f (x) ∼ −2ex2

ℓn x au voisinage de 0
et

f (x) =
1
x2 +O

( 1
x4

)

au voisinage de +∞.
99. On considère la fonction h définie par

∀ x > 1, h(x) =
+∞

∑
n=2

1
nx ℓn n

.

99.1 Pour tout x > 1 et tout a > 2,
∫ +∞

a
e−x ℓn t dt

ℓn t
= F

(

(x − 1) ℓn a
)

.

99.2 Suite de [97] – On a h(x) ∼ − ℓn(x − 1) au voisinage de 1
et

h(x) =
1

2x ℓn 2
+O(3−x)

au voisinage de +∞.
100. Lorsque x tend vers +∞,

∫ +∞

0

e−tx2

1 + t3 dt = O
( 1

x2

)

.

101. Comme

∀ 0 6 t 6 1, 0 6
√

2 −
√

1 + t 6
1 − t

2
alors

Arccos(1 − x) =
∫ 1

1−x

dt√
1 − t2

=
√

2x +O(x
√

x)

lorsque x → 0+.
102. Répartition asymptotique de la loi normale [87.4]
Lorsque x tend vers +∞,

∫ +∞

x
e−t2

dt =
e−x2

2x
− e−x2

4x3 +O
( e−x2

x5

)

.
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103. Approximation de la mesure de Dirac
Soit h, une fonction continue par morceaux sur [0, 1].

1. Il existe M ∈ R tel que |h(t)| 6 M pour tout t ∈ [0, 1].
2. Si h tend vers 0 au voisinage de 1, alors, pour tout ε > 0,

il existe α > 0 tel que

∀ n ∈ N,
∣

∣

∣

∣

∫ 1

0
(n + 1)tnh(t) dt

∣

∣

∣

∣

6 ε + M(1 − α)n+1.

3. Si h est continue en 1, alors

n
∫ 1

0
tnh(t) dt −−−−→

n→+∞
h(1).

104. Répartition asymptotique de la loi Γ

Pour tout a > 0, lorsque x tend vers +∞,

∫ +∞

x
ta−1e−t dt ∼ xa−1e−x

et, pour tout n ∈ N,

ex
∫ +∞

x

( t

x

)a−1
e−t dt = 1 +

a − 1
x

+
(a − 1)(a − 2)

x2 + · · ·

+
(a − 1) · · · (a − n)

xn
+ O

( 1
xn

)

.

105. Vitesse de convergence des intégrales de Fresnel [51.5]
Pour tout x > 0,

∫ +∞

x
eit2

dt =
1
2i

∫ +∞

x

eit2

t2 dt − eix2

2ix

et lorsque x tend vers +∞,

∫ +∞

x
eit2

dt =
−eix2

2ix
+O

( 1
x3

)

.

106. Suite de [95] –

∫ 1

0

t − 1
ℓn t

dt = lim
x→1

∫ x

0

t − 1
ℓn t

dt = lim
x→1

∫ x2

x

du

ℓn u
= ℓn 2

VI

Les théorèmes lebesguiens

107. On considère ici des suites et des séries de fonctions, c’est-
à-dire des suites et des séries dont les termes généraux dépendent
d’un paramètre.

VI.1 Modes de convergence d’une suite de fonctions

108. Il y a plusieurs notions de convergence pour les suites de
fonctions : convergence simple, convergence uniforme, conver-
gence dominée, convergence normale... Il faut donc toujours
prendre soin de répondre à deux questions :

Comment? en précisant le mode de convergence : la série con-
verge simplement, uniformément, normalement...

Où ? en précisant le domaine de convergence : sur tout l’intervalle
I, sur tout segment contenu dans l’intervalle I, sur l’inter-
valle [a,+∞[ pour tout a > 0...

Convergence simple

109. Convergence simple d’une suite de fonctions
109.1✍ Une suite de fonctions ( fn)n∈N, définies sur I, converge sim-
plement sur I vers la fonction f lorsque

∀ t ∈ I, f (t) = lim
n→+∞

fn(t).

La fonction f est appelée la limite simple de la suite ( fn)n∈N.
109.2 La suite des fonctions fn =

[

t 7→ e−nt sin(nt)
]

converge
simplement sur [0,+∞[ vers la fonction nulle.
109.3 La suite des fonctions fn = [t 7→ tn] converge simplement
sur ]0, 1[ vers la fonction nulle. Cette suite converge simplement
sur [0, 1], mais sa limite n’est pas continue sur [0, 1].
109.4 La suite des fonctions fn =

[

t 7→ nte−nt
]

converge sim-
plement sur [0,+∞[ vers la fonction nulle.
110. Convergence simple d’une série de fonctions
110.1✍ Une série de fonctions ∑ un, définies sur I, converge sim-
plement sur I lorsque, pour tout t ∈ I, la série numérique ∑ un(t)
converge.
La fonction S définie sur I par

∀ t ∈ I, S(t) =
+∞

∑
n=0

un(t)

est appelée la somme de la série de fonctions ∑ un.
110.2 Les séries de fonctions

∑
1
nt et ∑

(−1)n

nt

convergent simplement sur ]1,+∞[ et sur ]0,+∞[ respective-
ment.
110.3 La série de fonctions ∑ tn converge simplement sur [0, 1[
et sa somme est continue.
110.4 La série de fonctions ∑ e−nt converge simplement sur
]0,+∞[ et sa somme est continue.
110.5 La série de fonctions ∑ tn ℓn t converge simplement sur
]0, 1] et sa somme est continue sur ]0, 1[.

Convergence dominée

111.1✍ Soit ( fn)n∈N, une suite de fonctions qui converge simplement
sur I vers une fonction f . La convergence de la suite ( fn)n∈N est do-
minée sur I lorsqu’il existe une fonction g intégrable sur I telle que

∀ t ∈ I, ∀ n ∈ N,
∣

∣ fn(t)
∣

∣ 6 g(t).

111.2 Méthode
Pour montrer que la convergence d’une suite de fonctions est do-
minée sur I, on vérifie d’abord que la suite de fonctions converge
simplement sur I, puis on cherche un majorant de

∣

∣ fn(t)
∣

∣ sur I
qui soit indépendant de n ∈ N et qui soit intégrable sur I en tant
fonction de t.
112. ✍ Soit ∑ un, une série de fonctions qui converge simplement sur
I. La convergence de la série ∑ un est dominée sur I lorsque la conver-
gence de la suite des sommes partielles est dominée sur I.

∃ g ∈ L
1(I), ∀ t ∈ I, ∀ n ∈ N,

∣

∣

∣

n

∑
k=0

uk(t)
∣

∣

∣
6 g(t).

113. ➙ Si la suite de fonctions continues par morceaux ( fn)n∈N
converge simplement sur I vers une fonction continue par morceaux
f et si la convergence est dominée sur I, alors les fonctions fn et la
fonction f sont intégrables sur I.

114. Convergence en moyenne
114.1✍ Soient f ∈ L 1(I) et ( fn)n∈N, une suite de fonctions inté-
grables sur I. La suite ( fn)n∈N converge en moyenne sur I vers
f lorsque

lim
n→+∞

∫

I

∣

∣ f (t)− fn(t)
∣

∣ dt = 0.
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114.2✍ Pour toute fonction f ∈ L 1(I), on pose

‖ f ‖1 =
∫

I

∣

∣ f (t)
∣

∣ dt.

114.3➙ Si la suite de fonctions ( fn)n∈N converge en moyenne sur I
vers f , alors

∫

I
f (t) dt = lim

n→+∞

∫

I
fn(t) dt.

115. Convergence en moyenne quadratique
115.1✍ Soient f ∈ L 2(I) et ( fn)n∈N, une suite de fonctions de carré
intégrable sur I. La suite ( fn)n∈N converge en moyenne quadra-
tique sur I vers f lorsque

lim
n→+∞

∫

I

∣

∣ f (t)− fn(t)
∣

∣

2 dt = 0.

115.2✍ Pour toute fonction f ∈ L 2(I), on pose

‖ f ‖2 =

√

∫

I

∣

∣ f (t)
∣

∣

2 dt.

VI.2 Théorème de convergence dominée

116. La conclusion du théorème de convergence dominée peut
s’écrire :

lim
n→+∞

∫

I
fn(t) dt =

∫

I
lim

n→+∞
fn(t) dt.

Ce théorème, que nous admettons, énonce donc une condition
suffisante pour justifier un passage à la limite sous le signe

∫

.
116.1➙ Soit ( fn)n∈N, une suite de fonctions intégrables sur I qui
converge simplement sur I vers une fonction f continue par morceaux
sur I. Si la convergence est dominée sur I, alors f est intégrable sur I
et

∫

I
f (t) dt = lim

n→+∞

∫

I
fn(t) dt.

116.2⊲ Sous les hypothèses du théorème [116.1], la suite ( fn)n∈N
converge en moyenne sur I vers f .

lim
n→+∞

∥

∥ f − fn

∥

∥

1 = 0

116.3➙ Soient ( fλ)λ∈]a,b[, une famille de fonctions intégrables sur I et

µ ∈ [a, b].
S’il existe une fonction g intégrable sur I telle que

∀ λ ∈ ]a, b[ , ∀ t ∈ I,
∣

∣ fλ(t)
∣

∣ 6 g(t)

et si la fonction ϕ définie par

∀ t ∈ I, ϕ(t) = lim
λ→µ

fλ(t)

est continue par morceaux sur I, alors ϕ est intégrable sur I et

∫

I
ϕ(t) dt = lim

λ→µ

∫

I
fλ(t) dt.

117. Exemples d’application
117.1 Si g est une fonction intégrable sur ]0, 1[, alors

lim
n→+∞

∫ 1

0
tng(t) dt = 0.

117.2

lim
n→+∞

∫ 1

0
e−tn+itn

dt = 1

117.3 La suite de terme général

Jn =
∫ +∞

0

dt

(1 + t3)n+1

tend vers 0. →[136]

117.4 Si f est intégrable sur [0,+∞[, alors

n
∫ 1

0

f (nt)

1 + t
dt −−−−→

n→+∞

∫ +∞

0
f (x) dx.

117.5 Lorsque n tend vers +∞,
∫ n

0

√

1 + (1 − t/n)n dt ∼ n.

117.6 Si f est intégrable sur ]0,+∞[, alors

lim
n→+∞

1
xn

∫ xn

0
t f (t) dt = 0

pour toute suite (xn)n∈N qui tend vers +∞.
117.7 Lorsque n tend vers +∞,

∫ +∞

0

Arctan t/n

t + t3 dt ∼
π

2n
.

117.8 Les intégrales
∫ +∞

0

tn

t2n + 1
dt

∫ +∞

0
e−t|sinn t| dt

∫ +∞

0

|sinn t|
t2 dt

tendent vers 0 lorsque n tend vers +∞.
117.9 Par convexité de la fonction exp,

lim
n→+∞

∫ n

0

(

1 +
t

n

)n
e−2t dt =

∫ +∞

0
e−t dt = 1.

117.10

lim
n→+∞

∫ +∞

−∞

(

1 +
t2

n

)−n
dt =

∫ +∞

−∞
e−t2

dt

117.11 Limite continue par morceaux
Lorsque n tend vers +∞, les intégrales

∫ +∞

0

dt

tn + et ,
∫ +∞

0

tn

tn+2 + 1
dt,

∫ +∞

0

dt

1 + t2 + tne−t

tendent respectivement vers 1 − 1/e, 1 et π/4.
117.12 Majorant défini par morceaux
La suite de terme général

∫ +∞

0

sin nt

nt + t2 dt

tend vers 0.
117.13 Suite de [50.7] –

lim
a→1

∫ 1

a

dx
√

x(1 − x)(x − a)
=

∫ 1

0

dx
√

x(1 − x)

118. Théorème de convergence bornée
118.1➙ On suppose que I est un intervalle borné. Si ( fn)n∈N est une
suite de fonctions intégrables sur I qui converge simplement sur I vers
une fonction continue par morceaux f et s’il existe un réel M tel que

∀ t ∈ I, ∀ n ∈ N,
∣

∣ fn(t)
∣

∣ 6 M

alors f est intégrable sur I et
∫

I
f (t) dt = lim

n→+∞

∫

I
fn(t) dt.

118.2 Soient K, une fonction intégrable sur I et ( fn)n∈N, une
suite de fonctions continues par morceaux sur I qui converge
simplement sur I vers une fonction continue par morceaux f . S’il
existe un réel M tel que

∀ t ∈ I, ∀ n ∈ N,
∣

∣ fn(t)
∣

∣ 6 M

alors le produit f K est intégrable sur I et
∫

I
f (t)K(t) dt = lim

n→+∞

∫

I
fn(t)K(t) dt.
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118.3

lim
n→+∞

∫ π/4

0
tann t dt = 0

118.4

+∞

∑
n=1

(−1)n+1

n
= lim

N→+∞

∫ 1

0

1 − (−t)N

1 + t
dt = ℓn 2

118.5 La fonction

F =

[

x 7→
∫ +∞

0

e−xt2

1 + t2 dt

]

tend vers 0 au voisinage de +∞.
118.6 La fonction

F =

[

x 7→
∫ 1

0

(t − 1)tx

ℓn t
dt

]

tend vers 0 au voisinage de +∞. →[9.36]
119. On considère la suite de fonctions ( fn)n∈N définie par la
donnée de

f0(t) =

∣

∣

∣

∣

sin t pour t ∈ [0, π],
0 pour t /∈ [0, π]

et la relation :

∀ n ∈ N∗, ∀ t ∈ R, fn(t) = f (t − n).

119.1 La suite de fonctions ( fn)n∈N converge simplement sur
R vers la fonction nulle.
119.2 Comme la convergence n’est pas dominée, si une fonction
g vérifie

∀ t ∈ R, ∀ n ∈ R,
∣

∣ fn(t)
∣

∣ 6 g(t)

alors g n’est pas intégrable surR.

VI.3 Théorème d’intégration terme à terme (version
lebesguienne)

120.1 Si les fonctions u1, . . ., un sont intégrables sur I, alors

∫

I

n

∑
k=1

uk(t) dt =
n

∑
k=1

∫

I
uk(t) dt

par [8].
Comme la conclusion du théorème [121.1] peut s’écrire

∫

I

+∞

∑
n=0

un(t) dt =
+∞

∑
n=0

∫

I
un(t) dt,

il faut retenir qu’il énonce une condition suffisante pour intégrer
terme à terme la somme d’une famille infinie de fonctions inté-
grables. Nous admettrons ce théorème.
120.2➙ Théorème de Fubini-Tonelli
Soit (vn)n∈N, une série de fonctions positives et intégrables sur I qui
converge simplement sur I. Si la somme Σ définie par

∀ t ∈ I, Σ(t) =
+∞

∑
n=0

vn(t)

est continue par morceaux sur I, alors Σ est intégrable sur I si, et seule-
ment si, la série de terme général positif

∑
∫

I
vn(t) dt

est convergente.

121.1➙ Théorème de Fubini
Soit (un)n∈N, une suite de fonctions intégrables sur I.
On suppose que :

— la série de fonctions ∑ un converge simplement sur I ;

— sa somme S est continue par morceaux sur I

— et la série de terme général
∫

I

∣

∣un(t)
∣

∣ dt est convergente.

Dans ces conditions,

— la fonction S est intégrable sur I ;

— la série de terme général
∫

I un(t) dt converge absolument

— et sa somme est l’intégrale de S sur I.

+∞

∑
n=0

∫

I
un(t) dt =

∫

I
S(t) dt

121.2⊲ Théorème de convergence croissante
Soit (wn)n∈N, une suite croissante de fonctions positives et intégrables
sur I qui converge simplement sur I vers une fonction continue par
morceaux W.
La fonction W est intégrable sur I si, et seulement si, la suite de terme
général

∫

I
wn(t) dt

est convergente et, dans ce cas,

∫

I
W(t) dt = lim

n→+∞

∫

I
wn(t) dt.

122. Exemples
122.1 Suite de [64.2] –

∫ +∞

0

t dt

et − 1
=

+∞

∑
k=1

∫ +∞

0
te−kt dt =

+∞

∑
n=1

1
n2

122.2 Suite de [64.4] et de [6.37] –
1.

∫ 1

0

ℓn t

1 − t
dt =

+∞

∑
k=0

∫ 1

0
tk
ℓn t dt = −

+∞

∑
n=1

1
n2 =

−π2

6

2.
∫ 1

0

ℓn t

1 + t
dt =

+∞

∑
n=1

(−1)n

n2 =
−π2

12

3.

∫ 1

0

ℓn t

1 + t2 dt =
+∞

∑
n=0

∫ 1

0
(−t2)n

ℓn t dt =
+∞

∑
n=0

(−1)n+1

(2n + 1)2

122.3

+∞

∑
k=1

(−1)k+1

kek
=

∫ +∞

1

dt

1 + et = ℓn
(

1 +
1
e

)

122.4 D’après [67], pour tout x ∈ R,

∫ +∞

0

sin(xt)

et − 1
dt =

+∞

∑
n=1

x

n2 + x2 .

122.5 Suite de [87.1] –

+∞

∑
n=0

In =
∫ π

0

sin t

t
dt
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Comparaison des théorèmes lebesguiens

123. On considère une série ∑ un de fonctions intégrables sur
l’intervalle I, qui converge simplement sur I et dont la somme S
est continue par morceaux sur I.
123.1 Lorsque la série numérique

∑
∫

I

∣

∣un(t)
∣

∣ dt

est divergente, on ne peut appliquer le théorème [121.1] d’inté-
gration terme à terme.
123.2 On peut cependant essayer d’appliquer le théorème de
convergence dominée [116.1] en cherchant un majorant de

∣

∣

∣

N

∑
n=0

un(t)
∣

∣

∣

qui soit à la fois indépendant de N ∈ N et intégrable comme
fonction de t ∈ I.
123.3

∫ +∞

0

dt

1 + et =
+∞

∑
n=1

(−1)n+1

n
=

+∞

∑
k=0

∫ 1

0
(−1)ktk dt = ℓn 2

123.4

∀ p ∈ N∗,
+∞

∑
k=0

(−1)k

1 + pk
=

∫ 1

0

dt

1 + tp .

123.5
+∞

∑
k=1

∫ +∞

0
(−1)ke−kt dt = ℓn

1
2

123.6
+∞

∑
n=0

∫ 1

0
tn sin πt dt =

∫ π

0

sin t

t
dt

Entraînement

124. Questions pour réfléchir
1. La suite des fonctions gn =

[

t 7→ ne−nt
]

converge-t-elle
simplement sur [0,+∞[ ?

2. Soit ∑ un, une série de fonctions qui converge simplement
sur I.

2.a La suite (Rn)n∈N des restes est une suite de fonctions qui
converge simplement sur I vers la fonction nulle.

2.b Si la convergence de la suite (Rn)n∈N est dominée, la
convergence de la série ∑ un est-elle dominée ?

3. Soit ( fn)n∈N, une suite de fonctions intégrables sur I qui
converge en moyenne sur I vers f et vers g. Comparer les fonctions
f et g.

4. Suite de [117] – À quels exemples peut-on appliquer le
théorème de convergence bornée ?

5. Soit ∑ un, une série de fonctions positives et intégrables sur
I, qui converge simplement sur I et dont la somme S est continue
par morceaux sur I. La convergence de la série ∑ un est dominée
sur I si, et seulement si, la série numérique

∑
∫

I
un(t) dt

est convergente.

125. La fonction F définie par

F(x) =
∫ +∞

0

dt

1 + x3 + t3

est décroissante et positive sur [0,+∞[. Elle tend vers 0 au voisi-
nage de +∞.

126. Suite de [99] – On admet la continuité de h. Par [121.1] et
[6.180], la fonction h est intégrable sur ]1,+∞[ et

∫ +∞

1
h(x) dx =

+∞

∑
n=2

1

n ℓn2 n
.

127. Approximation de la transformée de Laplace
Pour tout n > 1, on considère la fonction un : R+ → R définie
par

∀ t ∈ R+, un(t) =
(

1 − t

n

)n
1[0,n](t).

1. Pour tout n ∈ N∗ et tout t ∈ [0, n],

∣

∣un(t)
∣

∣ 6 [e−t/n]n = e−t.

2. Si
[

t 7→ e−tg(t)
]

est intégrable sur ]0,+∞[, alors

lim
n→+∞

∫ n

0

(

1 − t

n

)n
g(t) dt =

∫ +∞

0
e−tg(t) dt.

128. Soit f : R+ → R, une fonction continue et bornée. On
pose

∀ x > 0, F(x) =
∫ x

0
f (t) dt et g(x) =

∫ +∞

0
f (t)e−xt dt.

1. Il existe une constante K > 0 telle que

∀ x > 0,
∣

∣F(x)
∣

∣ 6 Kx.

2. Si f tend vers 1 au voisinage de +∞, alors F(x) ∼ x au
voisinage de +∞ et comme

∀ x > 0, xg(x) =
∫ +∞

0
xF

(u

x

)

e−u du,

alors g(x) ∼ 1/x au voisinage de 0.
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Questions, exercices & problèmes

Perfectionnement

129. Exemples et contre-exemples
1. Pour tout intervalle I, l’indicatrice 1I est continue par

morceaux surR.
2. La fonction [x 7→ ⌊x⌋] est continue par morceaux surR.
3. Exemple de fonction continue par morceaux sur un seg-

ment qui n’a ni maximum, ni minimum.
4. Exemple de fonction f , non continue par morceaux sur I,

mais telle que | f | soit continue par morceaux sur I.
5. Exemple de fonction continue et bornée sur R qui n’est

pas intégrable surR.
6. Exemple de fonction continue et intégrable sur I qui n’est

pas bornée sur I.
7. Exemple de fonction continue sur R, qui tend vers 0 aux

voisinages de +∞ et −∞ mais qui n’est pas intégrable surR.
8. Exemple de fonction intégrable au voisinage de +∞ mais

qui ne tend pas vers 0 au voisinage de +∞.
9. Exemple de deux fonctions intégrables sur I dont le pro-

duit n’est pas intégrable sur I.
10. Exemple de fonctions continues par morceaux f et g telles

que f + g soit intégrable, tandis que ni
∫

I f (t) dt, ni
∫

I g(t) dt
n’existent (que ce soit au sens propre ou en tant qu’intégrales im-
propres convergentes).

11. Exemple de fonction non continue qui vérifie la condition
de Dirichlet [146].

12. Exemple de changement de variable ϕ : J → I et de
fonction f ∈ L 1(I) tels que f ◦ ϕ ne soit pas intégrable sur J.

13. Exemple d’une suite de fonctions intégrables sur I qui
converge simplement sur I vers la fonction nulle ω alors qu’elle
ne converge pas en moyenne sur I vers ω.

14. Exemple d’une suite de fonctions intégrables sur I qui
converge en moyenne sur I vers la fonction nulle ω alors qu’elle
ne converge pas simplement sur I vers ω.
130. Méthodes

1. Comment démontrer qu’une fonction n’est pas intégrable
sur un intervalle donné?

2. Comment démontrer qu’une intégrale est strictement po-
sitive?

3. Comment démontrer qu’une intégrale impropre est con-
vergente?

4. Soit ∑ un, une série de fonctions qui converge simplement
sur I. Comment s’assurer que la somme de cette série de fonc-
tions est continue par morceaux sur I ?

5. Comment caractériser les applications constantes à va-
leurs dans un espace vectoriel de dimension finie sans utiliser
le théorème [83.1] ?

6. Une fonction f est fonction affine de R dans E lorsqu’il
existe deux vecteurs a et b de E tels que

∀ t ∈ R, f (t) = t · a + b.

Comment caractériser les fonctions affines deR dans E ?

131. Questions pour réfléchir
1. Comparer la notion de fonction intégrable avec la notion de

série absolument convergente.
2. Une fonction continue, périodique et intégrable sur R est

nulle.
3. Soit ( fn)n∈N, une suite de fonctions intégrables sur I qui

converge en moyenne vers une fonction intégrable f .
3.a La suite ( fn)n∈N converge-t-elle simplement vers f ?
3.b Si la suite ( fn)n∈N converge simplement vers f , la conver-

gence est-elle dominée ?
4. Soient f et ( fn)n∈N, des fonctions de L 1(I) ∩ L 2(I).
4.a Si la suite ( fn)n∈N converge en moyenne sur I vers f ,

converge-t-elle aussi en moyenne quadratique sur I vers f ?
4.b Si la suite ( fn)n∈N converge en moyenne quadratique sur

I vers f , converge-t-elle aussi en moyenne sur I vers f ?

Approfondissement

132. Suite de [118.6] – Comme

∀ ε > 0,
∫ +∞

ε

e−u − e−2u

u
du =

∫ 2ε

ε

e−u

u
du,

alors F(0) = ℓn 2.
133. La fonction g définie par

g(x) =
∫ +∞

0

e−tx

1 + t
dt = ex

∫ +∞

x

e−t

t
dt

est la solution de l’équation différentielle

∀ x > 0, g′(x)− g(x) =
−1
x

qui tend vers 0 au voisinage de +∞ et g(x) ∼ 1/x lorsque x tend
vers +∞.
134. La fonction F définie par

∀ x > 0, F(x) =
∫ +∞

0

e−xt

x + t
dt

est décroissante et positive surR∗
+ et tend vers 0 au voisinage de

+∞. Comme

∀ x > 0, F(x) = ex2
∫ +∞

x2

e−u

u
du,

la fonction F est une solution de l’équation différentielle

∀ x > 0, 2xy(x)− y′(x) =
2
x

.

De plus F(x) ∼
1/x2 lorsque x tend vers +∞ et F(x) ∼ −2 ℓn x

lorsque x tend vers 0.
135. Un calcul d’équivalent
Pour tout entier n > 1, on pose

In =
∫ +∞

0

dt

(1 + t2)n
.

1. La suite (In)n>1 vérifie la relation de récurrence suivante :

∀ n > 1, In+1 =
(

1 − 1
2n

)

In.

2. On en déduit que la série ∑(ℓn In+1 − ℓn In) est diver-
gente et que ℓn In ∼ ℓn 1/√n.

3. On considère donc la suite de terme général un =
√

nIn.
Cette fois, la série ∑(ℓn un+1 − ℓn un) est absolument conver-
gente, donc il existe une constante K > 0 telle que

In ∼

K√
n

lorsque n tend vers +∞.
136. Suite de [117.3] – Pour tout n ∈ N,

Jn+1 =
3n + 2
3n + 3

Jn.

En posant vn = nα Jn, la série ∑(ℓn vn+1 − ℓn vn) est absolument
convergente si, et seulement si, α = 1/3 et il existe A > 0 tel que

Jn ∼

A
3
√

n

lorsque n tend vers +∞.
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137. On considère la fonction F définie sur ]−1, 1[ par

F(x) =
∫ 1

0

dt
√

t(1 − t)(1 − x2t)
.

1. La fonction F est paire et croissante sur [0, 1[.
2. Pour tout 0 < α < 1,

lim
x→1

F(x) >
∫ 1−α

0

dt√
t(1 − t)

donc F tend vers +∞ au voisinage de 1. →[1.14]
3. Lorsque x tend vers 1,

F(x) ∼
∫ 1

0

dt
√

(1 − t)(1 − x2t)
=

1
x
ℓn

1 + x

1 − x
∼ − ℓn(1 − x).

138. Pour tout entier n, on pose

an =
∫ 1

0
tn
√

1 − t2 dt.

1. La suite (an)n∈N tend vers 0 en décroissant.
2. Suite de [6.33] –

∀ n ∈ N, an+2 =
n + 1
n + 4

an.

3. La suite de terme général (n + 1)(n + 2)(n + 3)anan+1 est
constante et

an ∼

√

π

2
1

n
√

n

lorsque n tend vers +∞.
4.a

+∞

∑
n=0

an =
∫ 1

0

√

1 + t

1 − t
dt =

π

2
+ 1

4.b
+∞

∑
n=0

(−1)nan =
∫ 1

0

√

1 − t

1 + t
dt =

π

2
− 1

139. Sommes de Riemann
Pour tout n ∈ N∗, on pose

∀ 0 6 k 6 n, αn
k = a +

k(b − a)

n
.

Si f est continue sur [a, b], alors la suite de fonctions en escalier
fn définies sur le segment [a, b] par

fn =
n−1

∑
k=0

f (αn
k )1[αn

k ,αn
k+1[

converge simplement sur [a, b] vers f et la convergence est domi-
née, donc

∫ b

a
f (t) dt = lim

n→+∞

b − a

n

n−1

∑
k=0

f
(

a +
k(b − a)

n

)

.

Pour aller plus loin

140. Questions pour réfléchir
1. Une fonction croissante de [a, b] dans R n’a que des dis-

continuités de première espèce : elle admet une limite à gauche
finie en tout point de [a, b[ et une limite à droite finie en tout
point de ]a, b]. Est-elle nécessairement continue par morceaux sur
[a, b] ?

2. Si f est continue par morceaux sur un intervalle ouvert
I, alors l’ensemble des points de discontinuité est fini ou dénom-
brable.

3. Suite de [110] – Pour quelles séries de fonctions la conver-
gence est-elle uniforme?

4. Suite de [139] – Peut-on étendre le résultat aux fonctions
continues par morceaux sur le segment [a, b] ?

5. Suite de [139] – Comment généraliser le résultat aux fonc-
tions continues et intégrables sur [0,+∞[?
141. Suite de [50.5] – Avec α = 1/2,

∫ 1

0

√
t dt√

t3 + 1
=

2
3
ℓn(1 +

√
2).

142. Sommes de deux séries trigonométriques
Soit t ∈ ]0, 2π[.

1. Pour tout n ∈ N∗ et tout u ∈ [π ↔ t],

∣

∣

∣

n

∑
k=1

eiku
∣

∣

∣
6

1
sin(t/2)

.

2. Bien qu’on ne puisse pas appliquer le théorème de con-
vergence dominée, on peut déduire

+∞

∑
n=1

eint

n
= − ℓn 2 − i

∫ t

π

eiu

eiu − 1
du

de [118.4], c’est-à-dire

+∞

∑
n=1

sin nt

n
=

π − t

2
et

+∞

∑
n=1

cos nt

n
= − ℓn

(

2 sin
t

2

)

.

143. Soit I = ]a, b[, un intervalle ouvert borné. Si f est inté-
grable sur I, alors la fonction

[

(x, y) 7→
∫ y

x
f (t) dt

]

est continue sur [a, b]× [a, b].
144. Composition des fonctions continues par morceaux

1. La fonction f définie par f (0) = 1 et par

∀ x ∈ R∗, f (x) = |x|

est continue par morceaux sur R. La fonction g = [x 7→ 1/x] est
continue sur R∗

+ = f∗(R). La composée g ◦ f est définie sur R,
mais pas continue par morceaux surR.

2. Si f est continue par morceaux sur I et si g est continue
sur l’adhérence de f∗(I), alors g ◦ f est continue par morceaux
sur I.
145. Intégrabilité et limite en +∞

1. Soit f , de classe C 1. Si f et f ′ sont intégrables au voisinage
de +∞, alors f tend vers 0 au voisinage de +∞.

2. Si une fonction est monotone et intégrable au voisinage
de +∞, alors elle tend vers 0 au voisinage de +∞.

3. Une fonction uniformément continue et intégrable sur un
voisinage de +∞ tend vers 0 au voisinage de +∞.
146. Condition de Dirichlet [17.1]
Une fonction f continue par morceaux sur l’intervalle ouvert I
vérifie la condition de Dirichlet lorsque, en chaque point, elle est
égale à la moyenne des ses limites à droite et à gauche :

∀ x ∈ I, f (x) =
f (x+)+ f (x−)

2
.

146.1 Toute fonction continue sur I vérifie la condition de Diri-
chlet.
146.2 On suppose que f est continue par morceaux, positive et
d’intégrale nulle sur l’intervalle ]a, b[.

1. Si f est continue par morceaux sur le segment [a, b], alors
l’ensemble [ f (x) > 0] est fini (éventuellement vide).

2. Si f est continue par morceaux sur ]a, b[, l’ensemble
[ f (x) > 0] est-il fini? dénombrable?
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146.3 Si de plus f vérifie la condition de Dirichlet sur l’inter-
valle ouvert non vide I = ]a, b[, alors f (t) = 0 pour tout t ∈ ]a, b[.
146.4 Le théorème [45.2] est vrai pour les fonctions intégrables
qui vérifient la condition de Dirichlet.
147. Intégration par parties généralisée
On étend la formule d’intégration par parties à des fonctions qui
ne sont pas de classe C 1.
147.1✍ Une fonction f : [a, b] → C est de classe C 1 par mor-
ceaux lorsqu’il existe une subdivision

a = α0 < α1 < · · · < αn = b

et, pour tout 0 6 k < n, une application de classe C 1

ϕk : [αk, αk+1] → C

telles que

∀ 0 6 k < n, ∀ t ∈ ]αk, αk+1[ , f (t) = ϕk(t).

147.2 On suppose que f : [a, b] → C est de classe C 1 par mor-
ceaux et continue. Alors il existe une fonction ϕ : [a, b] → C,
continue par morceaux, telle que

∀x ∈ [a, b], f (x) = f (a) +
∫ x

a
ϕ(t) dt.

Une telle fonction ϕ n’est pas unique.
147.3 On suppose que f et g sont deux applications de classe
C 1 par morceaux et continues sur [a, b] et on considère deux fonc-
tions continues par morceaux ϕ et ψ telles que

∀ x ∈ [a, b],
{

f (x) = f (a) +
∫ x

a ϕ(t) dt

g(x) = g(a) +
∫ x

a ψ(t) dt.

Alors
∫ b

a
f (t)ψ(t) dt =

[

f (t)g(t)
]b

a
−

∫ b

a
ϕ(t)g(t) dt.

147.4 Peut-on étendre la formule d’intégration par parties aux
fonctions de classe C 1 par morceaux qui ne sont pas continues?
148. Une propriété de connexité
Les seules parties d’un intervalle I qui soient à la fois des fermés
et des ouverts relatifs à I sont égaux à I.
148.1 Soient A = [a, b], un segment et X, une partie fermée de
A qui contient a. L’ensemble AX =

{

x ∈ [a, b] : [a, x] ⊂ X
}

a un
plus grand élément MX.
148.2 Si X est une partie fermée de [a, b] qui contient a et telle
que

∀ x0 ∈ X, ∃ α > 0, [x0, x0 + α[ ∩ [a, b] ⊂ X,

alors X = [a, b].
149. Inégalité des accroissements finis [148]
Soit f : [A, B] → E, une application continue.
149.1 Si f est lipschitzienne sur ]A, B[, alors f est lipschitzienne
sur [A, B].
149.2 Si f est dérivable sur [a, b] et si

∃ K > 0, ∀ t ∈ [a, b],
∥

∥ f ′(t)
∥

∥

E
6 K

alors, pour tout ε > 0,
{

t ∈ [a, b] :
∥

∥ f (t)− f (a)
∥

∥

E
6 (K + ε)(t − a)

}

= [a, b].

149.3➙ Soit f : I → E, une fonction continue sur l’intervalle I et
dérivable sur l’intérieur I◦ de cet intervalle. S’il existe une constante
K > 0 telle que

∀ t ∈ I◦,
∥

∥ f ′(t)
∥

∥

E
6 K,

alors f est K-lipschitzienne sur I.
149.4 à quoi sert l’hypothèse sur la dimension de E dans la dé-
monstration de [149] ?
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