8
Intégrales

1 On suppose connue l'intégrale des fonctions continues
par morceaux sur un segment [, b] et on se propose d’étendre
son domaine de définition.

Notion d’intégrale généralisée

2. Hypothéses et notations

On considerera des fonctions a valeurs réelles ou complexes (K
désignera R ou C) et continues par morceaux sur un intervalle |
qui n’est pas nécessairement un segment.

La borne inférieure de 'intervalle I, notée a, est un réel ou —oo;
sa borne supérieure, notée b, est un réel ou +oc0. On supposera
toujours que I n’est ni vide, ni réduit a un point: a < b.

3. Si la fonction f est continue sur morceaux sur l'inter-
valle I, alors elle est continue par morceaux sur chaque segment
contenu dans I.

3.1 Quels que soient x et y dans I, on note

/yf(t) dt= [ fFo)ar
x (%]

six <yet
Y
[ rdr=—[ fa
Jx Jyx]
six > y.
3.2 En particulier,

X
vrel, / F(t)dt =o.
X
3.3 @ On dit que l'intégrale de f sur I est convergente lorsque la

limite

existe (dans IK). Cette limite est appelée intégrale généralisée de f
sur I, est notée

| /ﬂ " f) .

4. = Soit f, une fonction continue par morceaux sur l'intervalle I.
41 Pour tout x € I, l'application

Y
v [Mr0a]
JX
est continue sur I.

4.2 Pour tout y € I, 'application

{x - /xyf(t) dt}

est continue sur I.

5. Discussion sur l'intervalle d’intégration

L'intervalle d’intégration I peut étre de quatre types.

5.1 Lorsque l'intervalle d’intégration est un segment :
I=ab],

le théoréme [4] montre que la définition de I'intégrale généralisée
coincide avec la définition de 'intégrale sur un segment : I'inté-
grale généralisée converge et sa valeur est égale a I'intégrale sur
le segment [a, b].

5.2 Lorsque l'intervalle d'intégration est semi-ouvert :

I =a,b] ou [ =]a,b],

le théoreme [4] assure 1’existence d'une des deux limites.
1. Sil = [a,b], alors 'intégrale de f sur I est convergente si,
et seulement si, I'intégrale

[ o a

(calculée sur le segment [a,y] C I) admet une limite (finie)
lorsque y tend vers b et, dans ce cas,

/abf(t)dt — lim /ayf(t)dt.

y—b

2. Sil =]a,b], alors I'intégrale de f sur I est convergente si,
et seulement si, I'intégrale

/xbf(t) dt

(calculée sur le segment [x,b] C I) admet une limite (finie)
lorsque x tend vers a et, dans ce cas,

/abf(t) dt = lim /xbf(t) dt.

X—a

5.3 C’est seulement dans le cas ot1 I'intervalle d’intégration
estouvert : I = ]a, b qu'il faut étudier la convergence de

/xyf(t) dt

(calculée sur le segment [x,y] C I) a la fois lorsque x tend vers a
et lorsque y tend vers b.

5.4 Dans le cas o1 I'intervalle d’intégration I n’est pas ouvert
([5.1], [5.2]), si l'intégrale de f sur I est convergente, alors l'inté-
grale de f sur l'intervalle ouvert |a, b[ est aussi convergente et

/If(t) dt = /]a’b[f(t) dt.

Cela légitime l'usage de la notation

/abf(t) dt

indépendamment de la nature de l'intervalle I et permet au be-
soin de supposer que l'intervalle d’intégration I est ouvert.

Entrainement
6. Questions pour réfléchir
. - 2w .
1. La suite de terme général u, = fo "Tsint dt est conver-

gente. L'intégrale impropre _[0+°° sint dt est-elle convergente ?
2. Si f est continue par morceaux sur I, on pose

X
Vxg,x €1, Fyx(x)= [ f(¢)dt.
X0

2.a La fonction Fy, est continue sur I.

2.b  Pour tout segment [A,B] C I, la fonction Fy, est lipschit-
zienne sur [A, B].

2.c  Condition pour que Fy, soit lipschitzienne sur I.
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II

Propriétés fondamentales

7. Les propriétés de linéarité, d’additivité et de positivité
sont établies par passage a la limite a partir d’intégrales sur un
segment.

II.1 Linéarité

8. = Si les intégrales de f et de g sur I sont convergentes, alors
Uintégrale de A f + g sur I est aussi convergente et

VAER, /I(/\f—i—g)(t)dt:/\/If(t)dt—i—/lg(t)dt.

Additivité
9. = Soit f, une fonction continue par morceaux sur I = ]a, b[. Quel

que soit xg € I, l'intégrale de f sur I est convergente si, et seulement
si, les intégrales de f sur]a, xo| et sur [xq, b[ sont convergentes.

10. On suppose que l'intégrale de f sur I = ]a, b[ est conver-
gente.
10.1  Pour tout sous-intervalle | C I, I'intégrale de f sur | est

convergente et

/]f(t) dt:/{]l](t)f(t)dt.

10.2 = Relation de Chasles
Quels que soient a < a, B,y < b,

/:f(t)dt:/ff(t)dtf/ﬁ”f(t)dt'

10.3

X

F(H)dt =0

lim
x—a Jg

10.4

lim /bf(t)dt:O

x—b

II.2 Généralisation du théoréme fondamental

11. Si f est continue sur 'intervalle I = |a, b[, alors l'intégrale
de f sur I est convergente si, et seulement si, les primitives de f
ont une limite finie au voisinage de a et au voisinage de b.

12. On suppose que l'intégrale de f sur I = ]a, b[ est conver-
gente.
12.1 = Si la fonction f est continue sur I, alors I'application

{x - /axf(t) dt}

est la primitive de f qui tend vers 0 au voisinage de a.
12.2 = Si f est continue sur 1, alors 'application

{x o /th(t) dt}

est la primitive de — f qui tend vers 0 au voisinage de b.

I1.3 Positivité

13. L'intégrale est un opérateur positif au sens ot les inéga-
lités sont conservées par intégration.

14. = Siles intégrales de f et de g sur I sont convergentes et si
Viel, 0<f(t) <gt)

alors

Og/lf(t)dtg /Ig(t) dt.

15. > Inégalité triangulaire

Si f : I — R est continue par morceaux sur un intervalle borné et s'il

existe deux réels m et M tels que
Viel, m<f(H) <M

alors l'intégrale de f sur I est convergente et
ml1| < [ f(tyar< M
Jr
oi |I| est la longueur de l'intervalle I.

16. On suppose que f est positive sur I et que I'intégrale de
f sur I est convergente.

16.1  Pour tout intervalle | C I,
/f(t) dt < /f(t) dt.
Jy JI
16.2  Quels que soient x et y dans I, I'intégrale

/:f(t) dt

est du signe de (y — x).

17. Cas d’égalité

174 Soit f, une fonction continue par morceaux sur un inter-
valle ouvert non vide I = ]a, b[, dont l'intégrale sur I est conver-
gente.

Si f est positive sur I et sil'intégrale de f sur I est nulle, alors les
limites a gauche et a droite de f sont nulles en tout point :

fle+) = f(x=) = 0

17.2 = Soit f, une fonction continue et positive sur un intervalle ou-
vert non vide I = |a,b[. On suppose que l'intégrale de f sur I est
convergente. Alors

Vxéelabl,

/abf(t)dtzo

si, et seulement si, f(t) = 0 pour tout t € I.

I1.4 Changement de variable avec un intégrande
continu

18. La formule de changement de variable dans une intégrale
repose sur la formule de dérivation des fonctions composées via
le Théoreme fondamental qui relie les primitives aux intégrales.

Pour cette raison, le théoreme [19] se restreint aux intégrandes
continus. —[46.2]

19. = Soient f : I — E, une fonction continue et ¢ : [a,b] — I,
une fonction de classe €. Alors

b , _re®)
[, £low) ¢ wyau= [ s

20. En pratique
Le choix de la nouvelle variable

t=o(u)

vise a simplifier ’expression de l'intégrale et conduit au nouvel
élément différentiel
dt = ¢’ (u) du.

Le changement de variable modifie en général les bornes de I'in-
tégrale : lorsque I’ancienne variable u tend vers a (resp. vers b), la
nouvelle variable ¢ tend vers ¢(a+) (resp. vers ¢(b—)).

I1.5 Intégration par parties

21. = Soient f et g, deux fonctions de classe €' sur I = ]a,b]. On
suppose que l'intégrale de f'g sur I est convergente.

Alors l'intégrale de fg' sur I est convergente si, et seulement si, le pro-
duit fg admet des limites finies aux voisinages de a et de b.



III FONCTIONS INTEGRABLES

Dans ce cas,

b b b /
| Fgwae=[rgol; - [ fwg
ol on note

b . .
[F(Dg(8)]; = lim £ (1)g(6) ~ lim F(D)g1(1).
22. En pratique
L'intégration par parties permet, par dérivation, de faire dis-
paraitre un facteur transcendant dont la dérivée est rationnelle
(comme /n, Arctan...) et d’abaisser le degré d’un facteur polyno-
mial. Elle peut ainsi servir a établir une relation de récurrence ou

a calculer un équivalent. —[87]
Exemples d’intégrales généralisées
23.1 N 1
L A
0 A
23.2 oo 1
1 = =
Va>1, ' /1 i
23.3 1 g
t 1
1 — =
Va <1, il
234
/+°° dt .
Jooo 1T+
23.5
1
/ tdt =-1
J0
23.6
+o0 ;
VneN, / t"e” " dt = n!
0
24. Soit n > 2. L'application L définie par
X
VPER,X], Yx R, L(P)(x)=e* / P(b)e! dt

est un endomorphisme non diagonalisable de R, [X].

III

Fonctions intégrables

25. La notion de fonction intégrable a pour but de justifier
aussi simplement que possible 1'existence d"une intégrale géné-
ralisée, notamment a I'aide de criteres de comparaison [38].

26. Soit f, une fonction continue par morceaux sur I.

26.1  La fonction |f| est continue par morceaux sur I.

26.2  L'expression

[ 150 a

est une fonction croissante de y et décroissante de x.

26.3 # Une fonction f est intégrable sur I lorsqu’elle est continue
par morceaux sur I et que I'intégrale de | f| sur I est convergente.

26.4  On dit parfois que l'intégrale de f sur I est absolument
convergente pour signifier que f est intégrable sur I.

27. Cas des fonctions positives

Une fonction continue par morceaux et positive sur l'intervalle
I est intégrable sur I si, et seulement si, son intégrale sur I est
convergente.

28. De méme que la sommabilité de la famille de vecteurs
(ug)keg est une propriété de la famille de réels positifs (||uk )ker,
I'intégrabilité de la fonction vectorielle f est en fait une propriété
de la fonction positive |f].

29. Comme la fonction |f| est positive, la fonction f est inté-
grable sur [ si, et seulement si, il existe une constante M > 0 telle
que

Virylcl /Xy F(H)]dt < M

et, dans ce cas, l'intégrale généralisée apparait comme une borne
supérieure :

Y
Jlroar= s [lro]a

xy|cI’X

30. # Une fonction continue par morceaux f est de carré intégrable
sur I lorsque la fonction | f|? est intégrable sur I.

Intégrale d’une fonction intégrable

31. = Soient f et g, deux fonctions continues par morceaux sur I,
telles que

viel 0<|f(H]<|s®)]-
Si g est intégrable sur I, alors f est intégrable sur I.

32. Soit f, une fonction intégrable sur I.

321 Si f est une fonction a valeurs réelles, alors f ' et f~ sont
intégrables sur I.

322 Si f est une fonction & valeurs complexes, alors Re(f) et
Jm(f) sont intégrables sur I.

32.3 = Si f est intégrable sur 1, alors l'intégrale de f sur I est conver-
gente.

33.1  Sil'intégrale de f sur I est convergente bien que f ne soit
pas intégrable sur I, on dit que

/1 £(1) dt

est une intégrale impropre.

33.2  Dans la formule d’intégration par parties [21], I'une des
intégrales peut étre impropre sans que l’autre le soit aussi. Cette
formule est donc un moyen de prouver qu'une intégrale im-
propre est convergente. —[40], [51.5]

Fonctions localement intégrables

34. Soit f, une fonction continue par morceaux sur l'inter-
valle I.

34.1 # La fonction f est intégrable au voisinage de a lorsqu’il
existe un intervalle |a, ] C I sur lequel f est intégrable.

34.2 # La fonction f est intégrable au voisinage de b lorsqu’il
existe un intervalle [B, b[ C I sur lequel f est intégrable.

35. En pratique

351  Une fonction continue par morceaux sur I = ]a, b[ est in-
tégrable sur [ si, et seulement si, elle est intégrable au voisinage
de a et au voisinage de b.

35.2  Une fonction continue par morceaux sur [ = [a, b[ est in-
tégrable sur I si, et seulement si, elle est intégrable au voisinage
de b.

35.3  Une fonction continue par morceaux sur I = ]a, b] est in-
tégrable sur I si, et seulement si, elle est intégrable au voisinage
dea.

83
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Fonctions intégrables de référence

36.1  Une fonction constante est intégrable sur tout intervalle
borné.
36.2  La fonction 3 }
1
t— t_”‘

est intégrable au voisinage de +co si, et seulement si, & > 1.
36.3 La fonction

1
b

est intégrable au voisinage droit de 0 si, et seulement si, & < 1.
36.4  Suitede [47.2] — Les fonctions

NN B b
(t—to)* ] (to—1)"

sont intégrables au voisinage de fy si, et seulement si, « < 1.
36.5  Lafonction /n est intégrable au voisinage de 0.
36.6 La fonction

t—

[t—e ]

est intégrable sur R+ si, et seulement si, Re(z) > 0.
36.7  Quel que soit le réel & > 0, la fonction

[t — eI
est intégrable sur R. —[48.1]
36.8 La fonction continue

[t|—>

1
N

est intégrable sur |—1,1].

Critéres pratiques d’intégrabilité

37. Cas d’un intervalle borné

37.1  Silestunsegment, toute fonction continue par morceaux
sur [ est intégrable sur I.

37.2  Si I est un intervalle borné, toute fonction continue par
morceaux et bornée sur I est intégrable sur I.

En particulier, si f admet une limite finie aux bornes de I, alors f
est intégrable sur I.

38. Théorémes de comparaison

On applique les théorémes suivants en comparant la fonction f a
I'une des fonctions de référence [36].

38.1 = Soit f, une fonction continue par morceaux. S’il existe une
fonction g intégrable au voisinage de tg telle que

alors f est intégrable au voisinage de 1.
38.2 = Soient f et g, deux fonctions continues par morceaux telles que

f#) ,~ g(b).

t—to

Alors f est intégrable au voisinage de ty si, et seulement si, g est inté-
grable au voisinage de ty.

38.3  En pratique

Selon la régularité de f, on applique ces théorémes a une seule ex-
trémité ([35.2], [35.3]) ou aux deux extrémités de 'intervalle d'in-
tégration [35.1].

39. Exemples usuels de fonctions intégrables

Les fonctions suivantes peuvent aussi étre considérées comme
des fonctions de référence.

39.1  Lafonction continue

e

est intégrable sur R.

8.4

39.2  Soita # 0. La fonction
[t — ¥ lemal]

est intégrable au voisinage de +oo si, et seulement si, a > 0 (quel
que soit x € R) et sur |0, +o0 si, et seulement si, x > 0 eta > 0.

39.3  Suite de [47.1] — Quels que soient m € R et ¢ > 0, la fonc-
tion
£ o)
est intégrable sur R.
39.4  La fonction )
[t — et ]

est intégrable sur R quels que soientn € N et x > 0.
39.5  Les fonctions

1—cost sinty 2
o] e [ (5]
sont intégrables sur |0, +co|.

40. Exemples d’intégrales impropres [33.2]
40.1  L'intégrale impropre

+oo sint
/ SInE g
0 t
est convergente [6.57].
40.2 Les intégrales impropres
+o gint

+% cos t
—— dt et / — dt
/1 Vit ¢ Vit

sont convergentes.

III.1 Opérations sur les fonctions intégrables
Produits

41. = Sila fonction f est intégrable sur I et si g est continue par
morceaux et bornée sur 1, alors le produit fg est intégrable sur I.

42. = Inégalité de Schwarz
Si f et g sont deux fonctions de carré intégrable sur 1, alors le produit
fg est intégrable sur I et

Jlrwsolar< /[0 e/ g0

Combinaisons linéaires

431 = L'ensemble ' (I) des fonctions intégrables sur I est un sous-
espace vectoriel de 1'espace €% () des fonctions continues par mor-
ceaux sur 1.

43.2  Si f est a valeurs réelles, alors f est intégrable sur I si, et
seulement si, f et f~ sont intégrables sur I.

43.3  Si f esta valeurs complexes, alors f est intégrable sur I si,
et seulement si, Re(f) et Jm(f) sont intégrables sur I.

43.4 = L'ensemble £} (I) des fonctions continues et intégrables sur I
est un sous-espace vectoriel de £ (I).

43.5 = L'ensemble £* (1) des fonctions de carré intégrable sur I est
un sous-espace vectoriel de €% (I).

Inégalité triangulaire
44.1 = Si f est intégrable sur I, alors

[rwal< [lw)a

44.2  Avec l'écriture usuelle des intégrales, I'inégalité triangu-
laire s’écrit :

/abf(t)dt‘ < /]Wb[ |f(#)] dt.
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44.3 = Cas d’un intervalle borné
Si f est continue par morceaux et bornée par M sur un intervalle I :

Viel, |f(H)|<M

alors g
Vo, e I, ‘/ f(t)dt‘gM\/szxL
J

45. Cas d’égalité
451  Soit f : I — C, une fonction intégrable sur I. Il existe
p € Ry etf € R tels que

/If(t) dt = pel® et que ‘/If(t)dt‘:/Izm[e*"@f(t)] dt.

45.2 = Si f est intégrable et continue sur un intervalle ouvert non vide

I, alors
| [rora] = [ 1)

si, et seulement si, I'arqument de f(t) est constant sur I :

J0eR, Vel f(t)=ef(t)

III.2 Changements de variable

46. Cas d’un intégrande continu par morceaux

46.1  Si ¢ est une fonction de classe ¢ et strictement mono-
tone, alors (f o @) - ¢’ est continue par morceaux.

46.2 = Soient f : I — E, une fonction continue par morceaux et
@ : ] — I, une bijection de classe ¢! de ] sur I. Alors f est intégrable
sur I si, et seulement si, (f o @) ¢’ est intégrable sur | et dans ce cas,

Jfwde= [ flpw) o/ ()] du.

46.3  En notant a et b, les bornes inférieure et supérieure de |
(qu’elles soient finies ou infinies), la formule de changement de
variable devient :

[ par= [ plpw) ¢/ au

Jo(a+)

que la fonction ¢ soit croissante ou décroissante.

46.4  Le théoreme [46.2] est un moyen de démontrer qu'une
fonction est (resp. n’est pas) intégrable sur un intervalle donné
en se ramenant a une fonction dont l'intégrabilité (resp. la non-

intégrabilité) est bien connue. —[51.5]
Changements de variable affines
47. Les changements de variable les plus simples sont les

changements de variables affines :
t=au+p

avec o # 0.

47.1 = Soit ¢, un changement de variable affine réalisant une bijection
de ] sur 1. Une fonction f est intégrable sur I si, et seulement si, f o @
est intégrable sur |. Dans ce cas,

vavel [Taepa=1 " s

& Jax+p

) dt.

47.2 = La fonction [t — f(t)] est intégrable au voisinage de t = t si,
et seulement si, la fonction [h — f(to + h)] est intégrable au voisinage
deh = 0.

473  La fonction ¢n(1+ t) est intégrable sur |—1,1].

47.4  Pourtout xy € R,

/+oo 37(x7x0)2 dx — /+oo

a2
e dx.

48. Fonctions paires ou impaires

48.1  Si la fonction f est paire ou impaire, alors elle est inté-
grable au voisinage de —co si, et seulement si, elle est intégrable
au voisinage de +oco.

48.2  Si f est paire et intégrable sur IR, alors
+o00 —+o0
/ F(t)dt =2 / £(£) dt.
J—co JO
48.3  Si f estimpaire et intégrable sur IR, alors
+00
/ F()dt =o.
48.4
/+°° tdt 0
Jowo 1T+ 244
49. Moyenne d’une fonction périodique
Soit f, une fonction continue par morceaux sur R et périodique,
de période T.
49.1

T/a

Va0, f(at)dt:%/on(t)dt

49.2 # La moyenne d'une fonction continue par morceaux et pério-
dique f, de période T, est égale a

% /0 "t

49.3  Pour tout n € N*, la fonction f,, = [t — f(nt)] est pério-
dique et la moyenne de f; est égale a la moyenne de f.

50. Autres exemples de changements de variable affines
50.1

400 e*f +oo o
/ dt =e* / —du —— +o0
Jo x+t Jx u x—0

50.2

/+°° dt _ 4./37

o 1—t+£2 9
50.3
/+°° dt _ 3v27

0 1—V2t+12 4

50.4  Suite de [51.6] —
teo Int T fna
Voro [ amdi= g
50.5 Laseule valeur de @ € R pour laquelle I'intégrale
a  rdr
Jo VB +ad
estindépendante dea € R’ esta = 1/2. —[141]
50.6 Poura < b,
/’7 dt /1 du
—_— = —— =T
Jo \J(b—t)(t—a) J-1V1—-u?
50.7 Pourtout(0 <a <1,
/1 dx _ /1 du
Jo x(U=x)(x—a) Jo JO-a)uta/ul—u)

50.8  Une astuce

Si f est intégrable sur |0, 1], alors [x — xf(x)] est intégrable sur
10,1[ etsi f(x) = f(1 — x) pour tout x € ]0, 1], alors

/lef(x) dx = %/Olf(x) dx.

50.9  Intégrales d’Euler

/2 /2 T
/ {n(cost)dt = / In(sint) dt = —5 /n?2
Jo J0
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Autres changements de variable usuels

51. Pour tout « € R*, la fonction [t — %] est une bijection de
classe €' de I = ]0, +co[ sur I, dont la réciproque est aussi une
bijection de classe &1 de Isurl.

51.1 N N d
(o) (o) t
/ e dx = / e t—
J—o00 JO \/?
51.2  Pour touta > 0,
+00 +00
/ e-Vidt =2 / xe " dx.
Jo Jo
51.3  Suitede [50.2] -
/+°° dt /+°° tdt 237w
0 1+ Jo 1+ 9
51.4  Suite de [50.3] —
1.
/+°° tdt m
o 1+t 4
2.
/+°° dt /+°° 2dt  2m
0 1+4  Jo 1+4 4
51.5  Intégrales de Fresnel

Les intégrales impropres
00 —+00
/ cos(t?)dt et / sin(#?) dt
0 0

sont convergentes [40.2], alors que les fonctions [t — cos(#?)] et

[t — sin(t?)] ne sont pas intégrables sur R. —[105]
51.6 Avecn = —1,
—+00
/ Mt g o,
Jo 1412
51.7  Pourtouta € R,
/+°° dt B /+°° dt _n
Jo (14+£2)1+t7) Jo (1+822)1+4t17) 4
52. La fonction cos réalise une bijection de classe @ ldel; =
10, [ sur Iy = ]—1,1] et la fonction sin réalise une bijection de
classe €' de I, = ]|—7/5,7/2 sur Iy. Les deux bijections réci-

proques sont de classe ¢! sur Iy.

52.1  Pour toute fonction f continue sur [—1,1],
1 f(x) T /2
7dx:/ cost dt:/ sint) dt.
|, e = [ fleosnydr= [ flsin)
52.2 Pour tousa < b,

./ab\/mdx: ”(bT*“)z

53. Intégrale de Dirichlet
/+°° sin x dr — /+°° 1- czosx dr — /+°°(sir1x)2 dx
Jo X Jo X Jo X

Entrainement

54. Questions pour réfléchir

1. Si f est intégrable sur I, alors f est intégrable sur I.

2. Suite de [36] — Quelles sont, parmi les fonctions de réfé-
rence, celles qui sont de carré intégrable?

3. Une fonction constante est-elle intégrable sur |0, +c0[7?

8.6

4. La fonction [x +— 1/4] n’est intégrable ni sur l'intervalle
10,1], ni sur I'intervalle [1, 4o0].

5.  Existe-t-il un réel a tel que la fonction [x — 1/y4] soit inté-
grable sur ]0, +-00[?

6.a Si f est continue par morceaux sur [a,b[, alors f est inté-
grable au voisinage de a.

6.b Si f est continue par morceaux sur ]a,b], alors f est inté-
grable au voisinage de b.

7. Si f est continue par morceaux sur un intervalle borné I
et admet des limites finies en chacune des bornes de I, alors f est
intégrable sur 1.

8. Une fonction continue qui tend vers une limite £ # 0 au
voisinage de +o0 n'est pas intégrable au voisinage de +oo.

9.  On suppose que f est continue sur RR.

9.a Si f est continue, alors toutes les primitives de f sont bor-
nées sur RR.

9.b La réciproque est-elle vraie?

9.c On suppose que, pour toute primitive F de f, il existe xr €
R tel que

VxeR, F(x)= [ f(t)dt

La fonction f est-elle intégrable sur R ?

10. Si @ est lipschitzienne et nulle en 0 et si f est intégrable
sur I, alors @ o f est intégrable sur I.

11.a Si les hypothéses du théoréme [31] sont vérifiées, alors on
peut appliquer le théoréme [38.1] au voisinage de a et au voisinage
de b.

11.b  Pourquoi le théoréme [38.1] est-il plus utile en pratique?

12. Si f est intégrable sur I et si | est un intervalle contenu
dans I, alors le produit 1jf est intégrable sur I.

13. Si f et g sont intégrables sur I, alors les deux fonctions
min{f,g} et max{f, g} sont intégrables sur I.

14.  Condition sur I pour qu’une fonction intégrable soit aussi
une fonction de carré intégrable?

15.  Condition sur I pour qu'une fonction de carré intégrable
soit aussi une fonction intégrable ?

16.  Condition pour que

‘/abf(t)dt‘ < /ab\f(t)]dt.

17.  Suite de [44.3] — Cas d'égalité?

18.  Soit ¢ : I — ], une bijection strictement monotone.

18.a L'intervalle | est ouvert (resp. fermé) si, et seulement si,
I'intervalle I est ouvert (resp. fermé).

18.b  Exprimer les bornes de | en fonction des bornes de I.

19.  Suite de [52.2] — Retrouver la valeur de I'intégrale sans
aucun calcul.

55. Soient f, une fonction continue par morceaux et positive
sur [ =]a,bletxy € L.
1. Si f n’est pas intégrable au voisinage de b, alors

X
lim [ f(t)dt = 4oo.

x—bJxy

2. Si f n’est pas intégrable au voisinage de a, alors

lim xf(t) dt = —o0.

x—a ) x,

56. Condition sur a € R pour que la fonction

t —sint
t— g
soit intégrable sur |0, 4+oo[.

57. Intégrabilité de
cost

NG

sur les intervalles |0, 1], [1, +-oo[ et |0, +oo].



IV INTEGRATION DES FONCTIONS A VALEURS VECTORIELLES

58. Intégrabilité de
/"t

tn’l

aux voisinages de 0, de 1 et de 4o selon m et n.
59. Intégrabilité sur |0, +-co[ de
£ tie~t

— etde
140 140

en fonction des réels a et b.

60. La fonction [t — e~ (%)% est intégrable sur |—oo, +-0co]
pour tout x € R.

61. La fonction

sin t
[t ]

est intégrable sur |0, +oo[ si, et seulement si, 1 < a < 2. —[40.1]

62. Si la fonction f est intégrable sur l'intervalle I, on dit que
l'intégrale [} f(t) dt existe au sens propre. —[33.1]
Pour quelles valeurs de x € R les intégrales suivantes existent-

elles au sens propre?

“+o00 t —xt T tsint +oo —t

[ e [

o e—1 0 1—xcost 0 x+t
63. Soit f, une fonction intégrable sur [0, +co[. Si ¢ et ¢ sont
deux fonctions positives, qui tendent vers +oco au voisinage de
+00, alors I'intégrale

¥(x)
[ s

Jo(x)
tend vers 0 au voisinage de +oo.

64. Exemples d’intégrations par parties

64.1 e )
/0 En(l—;t )dt =n

+o0 |
n ,—kt _m
/0 e dt = s

64.2

VneN,Vk>0,

64.3 Pour toutn € N,

/+°° dt 1 /2n\~m
Jo (A4l an\pn )27

(Il est aussi intéressant de poser t = tan 6.)

64.4  Quels que soient n et p dans N,
1 —1)Pp!
/ P tdt = Lﬁ'l.
0 (n+1)P+

65. Suite de [51.4] —

+° Arctan t

66. Soit f : R — R, une fonction continue qui tend vers ¢_
au voisinage de —oo et vers £ au voisinage de +oo. Alors

+00
Va>0, / Ft+a)— f(H)dt = (4 — ().
S’agit-il d’une intégrale propre ou impropre?
67. Pour tout x > 0,

oo xt d X
e “'costdt = ——,
/0 1+ x2

1
142

—+o0
/ e *sintdt =
0

68.

vieR, [ T et =) 4t = ix / T gt () gy

J —00

v

Intégration des fonctions a valeurs vectorielles

69. On étend ici la théorie de l'intégrale aux fonctions qui
prennent leurs valeurs dans un espace vectoriel vectoriel de di-
mension finie (E, ||-||).

70. On considere une base % = (ex)1<k<q de E, ainsi que sa
base duale Z* = (¢} )1<k<d-

Chaque fonction f a valeurs dans E peut donc étre rapportée a
ses composantes fy =e; o f:

d
ft) =Y fi(t) e
k=1

IV.1 Fonctions intégrables

71. Fonctions continues par morceaux

711 # La fonction f est une fonction en escalier sur I lorsque
toutes ses composantes f1, ..., f; sont des fonctions en escalier sur I.
712 = Si f : I — E est une fonction en escalier, alors || f|| : I = R
est une fonction en escalier.

71.3 Si f est une fonction en escalier sur [a,b], alors il existe
une subdivisiona = ay < a7 < .-+ < ay = b et une famille
(¥k)ock<N de vecteurs de E tels que

YVO<Kk<N,Vte }Dék,ﬂék+1[,

f(t) = x.

71.4 #v Lafonction f est continue par morceaux sur [ lorsque toutes
ses composantes f1, ..., fy sont continues par morceaux sur I.

715 = Si f : I — E est une fonction continue par morceaux, alors
Ilfll : I — Rest une fonction continue par morceaux.

72. Fonctions intégrables

721 # Lafonction f : I — E est intégrable sur I lorsque toutes ses
composantes f, 1 < k < d, sont intégrables sur I.

72.2  On suppose que la fonction f : I — E est continue par
morceaux sur I. La fonction f est intégrable sur I si, et seulement
si, la fonction || f|| : I — R+ est intégrable sur I.

IV.2 Définition de I'intégrale

73. #Sif : I — Eestintégrable sur 1, son intégrale est définie par

/If(t)dt:k‘il(/lfk(t) dt)ek.

74. Sil =]a,bletsif : I — E estintégrable, alors

[ reyar= iﬁnb/ fat,

quelle que soit la norme ||-|| sur E.

75. Cohérence des définitions
Soit f : I — E.

1. Certaines propriétés des composantes de f dépendent de
la base de E choisie pour calculer ces composantes, d’autres pro-
priétés ne dépendent pas de ce choix.

1.a Soit f(t) = (ef,1+#?) € R2. Les composantes de f dans
la base canonique (e1,e;) sont positives. Les composantes de f
dans la base (—ep, —ej) ne sont pas positives.

1.b Un probleme analogue se pose pour définir 'addition et
la multiplication dans Q. Préciser ce probleme et sa résolution.

2. Pour qu'une propriété des composantes de f soit une pro-
priété de f, il faut que cette propriété soit indépendante du choix
de la base.

2.a Soit® = (e1,...,€4), une base de E. On pose

V1<k<d gi=¢iof.

k < d, de f dans la base ¢ aux
dans la base £.
.4], [72] et [73] ont bien un sens.

Relier les composantes ¢y, 1 <
composantes fr, 1 <k < d, de f
2b Les définitions [71.1], [71

8.7
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Linéarité
76.1  Une combinaison linéaire de fonctions intégrables sur I
est intégrable sur I et

JOr+owai=a [ foyde+ [ goa

quelles que soient les fonctions f et g intégrables sur I.
76.2  Relation de Chasles
Sif : I — E estintégrable sur I, alors

/:f(t)dt:/abf(t)dt—i-/bcf(t)dt

quels que soient les réels a, b et c dans I.
76.3  Silestun voisinage de +coetsi f :

sur [, alors
/abf(t)dt:/joof(t)dtf/;mf(t)dt

quels que soient a et b dans I.
76.4 = Soit X : I — My, 1(K), une fonction intégrable. Pour toute
matrice A € M, (K), la fonction AX : T — M, 1(IK) est intégrable

I — E estintégrable

et
[ Axidt = A(/Xtdt)
I I
76.5 > Si f : I — Eestintégrableet si ¢ : E — F est linéaire, alors
@o f : I — Festintégrable et

[wenwa=p( [ ra).

76.6 = Soit A : I — My ,(K), une fonction intégrable. Quelles
que soient les matrices Q € My, (K) et P € My 4(K), la fonction

QAP : I — My, 4(IK) est intégrable et
/QAtht - Q(/At dt)P
J1 I
Positivité
77. L’espace vectoriel E n’est pas muni naturellement d"une

relation d’ordre, a moins que E = IR. La conservation des inéga-
lités par intégration n’a donc pas de sens pour des fonctions a
valeurs vectorielles et seule subsiste I'inégalité triangulaire.

78. = Si f : I — E est intégrable sur I, alors
| [rerae] < [iro)ae
79. Théoreme fondamental

79.1 # Soit f : I — E. Une application F : I — E est une primi-
tive de f lorsque F est dérivable et que sa dérivée est f :

F=f.

79.2 = Si la fonction f : I — E est continue, alors I'application

Fy = {x - /x:f(t) dt}

est une primitive de f pour tout xg € I.
79.3  Sila fonction f : I — E est continue et intégrable sur
l'intervalle I = ]a, b[, alors

Fa:[xHAxf(t)dt} ot Fb:{xH—/xbf(t)dt}

sont des primitives de f.

838

80. Intégration par parties

80.1 = On suppose que E et F sont deux espaces vectoriels normés de
dimension finie.

Soient f : I — Eetg : I — F, deux fonctions de classe € et
B : E x F — G, une application bilinéaire. Alors

b

b
[ B (0)8(0) dt = [B(F(1) (1),
quels que soient a et b dans I.
802 SiA : T — 9My,p(K)etB
fonctions de classe ¢, alors
b dA,
Ja dt

quels que soient a et b dans 1.

- /ab B(f(t),¢'(1)) dt,

I — My 4(K) sont deux

——Bydt =

(A" / At@ dr

IV.3 Accroissements finis

81. On parle d’accroissements finis pour désigner les varia-

tions
fly) = f(x)

par opposition aux accroissements infiniment petits

f(xo+6x) = f(x0) = f'(x0)dx
qui apparaissent quand on relie une fonction et sa dérivée.

81.1 = Egalité des accroissements finis
Si une fonction f a valeurs réelles est continue sur [a,b] et dérivable
sur |a, b[, alors il existe a < ¢ < b tel que

fb) = fa)+ (b—a)f'(c).

81.2  Le théoreme [81.1] repose sur le théoréme de Rolle et en
particulier sur le fait qu'une fonction a valeurs réelles admette un
extremum sur tout segment.

81.3  La fonction définie par f(t) = (cost,sint) pour tout réel
t est dérivable et, bien que f(0) = f(27), sa dérivée n’est jamais
nulle.

814 A défaut pouvoir généraliser 1'égalité des accroissements

finis aux fonctions a valeurs vectorielles, on peut leur étendre
I'inégalité des accroissements finis [81.5] qui rend en définitive
les mémes services que [81.1]. —[82]
81.5 = Si f : I — R est dérivable, alors f est lipschitzienne sur I si,
et seulement si, sa dérivée est bornée sur 1.

82. Inégalité des accroissements finis

Le théoreme des accroissements finis peut étre démontré sous des
hypotheses moins restrictives que celles du théoréeme suivant.
—[149]

82.1 = Soit f, une fonction de classe €' d'un intervalle I C R dans
un espace vectoriel de dimension finie E.

S'il existe une constante K > 0 telle que

viel, |[f'(H)]|<K

alors f est K-lipschitzienne sur I.

82.2  Suitede [81.5] —
V(xy) €R e — o < |x—y]
83. Caractérisation des applications constantes

83.1 = Soient I, un intervalle de R et f :
vable sur 1. Si
f(t) =0,

I — E, une fonction déri-

Vtel,

alors f est constante sur 1.

83.2 = Si f : I — E est continue sur l'intervalle I, dérivable sur son
intérieur 1° et si

Vtel®, f(t)=0
alors f est constante sur 1.

84. Primitives

84.1 = Soient I, un intervalle de R ; f, une application de I dans E;
Fy et Fp, deux primitives de f sur 1. Alors la différence F| — Fp est
constante sur I.
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Entrainement

85. Questions pour réfléchir

1. Les réciproques de [71.2] et de [71.5] sont fausses.

2. Toute fonction en escalier f : [a,b] — E est intégrable sur
[a,b]. Pour toute subdivision

a=ag<m<---<ay=>»

telle que f soit constante sur chaque intervalle ouvert Jay, a1,

b N-1
/a f(t)dt = kz (@pg1 — ag) - xg

=0
ol xy est la valeur prise par f sur Jay, apy1]. —[75]
3. Pourquoi n'est-il pas possible d'établir I'inégalité triangu-
laire [78] en raisonnant sur les composantes de f?
4. Lafonction f : R* — R définie par

Vx#0, f(x)=Arctanx+ Arctanl/y

est dérivable, sa dérivée est identiquement nulle, mais f n’est pas
constante.

v

Intégrales et ordres de grandeur

86. Exploitation de la positivité
86.1 Pour toute > 0,

et lorsque a tend vers +co, —[87.3]
20 p—X e 1
—dx=0(—).
[ a=e(S)
86.2  Lorsque a tend vers +oo,
/1 dx s
da—x)V1-22 a
86.3  Pour toutn > 2, lorsque x tend vers +oo, —[87.4]
+oco e*tz efxz
/x T df:o(ian)'
86.4  L'intégrale
1 dt
F@) = [ s
Jo /(x4 1) (14 12)
est définie pour tout x > 0.
1. Auvoisinage de +oo,
1 /1 dt 1
X)=— —+0(=).
fx) x,/o V1+£2 <x3)
2. Auvoisinage de 0,
L dt
x) = —+0(1
f) = [ g+ O)
donc f(x) ~ — fnx. —[91.5]
87. Par intégration par parties
87.1  Pour tout entier n € IN, on pose
1
I = / t" sin(7tt) dt.
JO
Comme
I 1 (n+1)(n+2)I
2= T Ty
alors I;; ~ 7/;2 et la série ) I, converge absolument. —[122.5]

87.2  Lorsque n tend vers +oo,
too ot 1 1 2 1
dt=-— — + = o(—).
,/0 n+t R R n4
87.3  Lorsque x tend vers +oo,
2x p—t —x
[ 5~
Jx t X
87.4  Suitede [86.3] — Pour tout n € N et tout x > 0,

+oo p—t? e pl e et
/ dt = _nt / at.
¥ m an+1 2 ¥ thrZ
En particulier, lorsque x tend vers oo,
2

too e ™
—f
e " dt ~ .
/x 2x

87.5  Lorsque x tend vers +oo,

+ gint 1
/ sme sinxtdt:0(7>.
2 t x

7T

Intégration des relations de comparaison

88. On approfondit I’analogie entre les intégrales et les séries
avec les résultats suivants, qu’on comparera avec [6.87] dans le
cas ot1 la fonction de référence g est intégrable et avec [6.90] dans
le cas contraire.

89. Cas intégrable

On considere une fonction de référence g, qu’on suppose positive
et intégrable sur l'intervalle I = [a, b].

89.1  Lorsque x tend vers b, I'intégrale

b
[ star
JX
est un infiniment petit.
89.2  Si f est continue par morceaux sur [ etsi f(x) = O(g(x))

au voisinage de b, alors f est intégrable sur [x, b[ pour tout x € I
et

Flx) = /xbf(t)dt

tend vers 0 lorsque x tend vers b.
89.3 = Si f(x) = O(g(x)) au voisinage de b, alors

/xbf(t)dt - O(/xbg(t) dt>
au voisinage de b.

89.4 = Si f(x) = o(g(x)) au voisinage de b, alors

/xbf(t) dt = o(/xbg(t) dt)
au voisinage de b.

89.5 = Si f(x) ~ g(x) au voisinage de b, alors

/xbf(t) dt ~ /xbg(t) dt

au voisinage de b.

90. Lorsque la fonction g est positive et intégrable au voisi-
nage de a et qu’on peut comparer f(f) a g(t) au voisinage de 4,
on peut comparer de la méme maniere les intégrales

/axf(t) dt et /ﬂxg(t) dr

lorsque x tend vers a.

89
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91. Cas non intégrable

Cette fois, la fonction de référence g est encore supposée continue
par morceaux et positive sur l'intervalle I = [a, b], mais n’est plus
intégrable sur I.

91.1  Lafonction G définie par

Vrel Gx)= /xg(t)dt

est croissante sur I et tend vers o au voisinage de b.
91.2 Soit f, une fonction continue par morceaux sur I. L'ex-
pression

F(x) = /:f(t) dt

est définie pour tout x € I.
91.3 = Si f(x) = O(g(x)) au voisinage de b, alors

/axf(t)dt: (’)(/ﬂxg(t)dt>
au voisinage de b.

91.4 = Si f(x) = o(g(x)) au voisinage de b, alors

X X
/ F(£)dt=o (/ 2(t) dt)
a a
au voisinage de b.

91.5 = Si f(x) ~ g(x) au voisinage de b, alors f n’est pas intégrable

sur [ et
/axf(t)dt ~ /axg(t)dt

au voisinage de b.

92. On suppose que f et g sont continues par morceaux sur
l'intervalle |a, b] et que g est une fonction positive.

Lorsqu’on peut comparer la fonction f a la fonction g au voisi-
nage de a et que g n’est pas intégrable au voisinage de a, on peut
comparer de la méme maniere les intégrales

/xbf(t)dt et /xhg(t)dt

lorsque x tend vers a.
93. Exemples

93.1  Lorsque x tend vers 1,
A X / ! dt \/E 1—x
rccos x = — ~V2V1 —x.
x /1 —#?
93.2  Lorsque x tend vers 0,
+% cos t 1
X t X
93.3 Pour tout x > 0, on pose

+o0 eft
X

Alors F(x) = o(e™™) au voisinage de +oo et F(x) ~ —{nx au
voisinage de 0. —[99]
93.4  Lorsque x tend vers +oo,

/" Arctan t
0

T
; dtwiénx.

93.5

+o rsin £y 2 1
[oE e L
a t a—+oc0 20

8.10

Entrainement
94. Questions pour réfléchir
1. Sur quel intervalle 'intégration par parties
XM —xmtl m+1 XM
/ a—dx = — + + —— dx
(" x (n—1)m"1x n—1J m" 1y

est-elle légitime?

95. Soient f et g, deux fonctions continues sur ]0, 1]. On sup-
pose que g est positive et qu’elle n’est pas intégrable au voisinage
de 0.

1. Si f(t) ~ g(t) lorsque t tend vers 0, alors

/: F(£) dt ~ /X1 g(t)dt.

2. Siladifférence g — f estintégrable au voisinage de 0, alors

[orwar ~

x—0 X

X
, g(t) dt.
96. Suite de [93.3] — La fonction F est intégrable sur |0, +oco] et

—+o0
/0 Fx)dx=1

en intégrant par parties.
97. Suite de [93.3] — Au voisinage de oo,

—X

Fo="+0(%5).

98. Suite de [93.3] — Pour tout x > 0, on pose

+o0 efxt
f(x):/o i

Alors f(x) = esz(xz), donc f(x) ~ —2¢% fnxau voisinage de 0

et 1 1
210()

flx) =

au voisinage de +oco.

99. On considere la fonction / définie par
+oo 1
Vx>1, h(x)= .
X (%) n;:z n*fnn
99.1 Pour tout x > 1 ettouta > 2,

Foo dt
—x/int -
/a e énth((x 1) fna).

99.2  Suitede [97] - On a h(x) ~ — {n(x — 1) au voisinage de 1
et
1 —X
au voisinage de +oo.
100. Lorsque x tend vers +oo,
+o0 eftxz 1
——dt=0(-).
/0 1+ © ( x2 )
101. Comme
1—t
VOSESL, 0SV2-VItt<—
alors

1 dt

A 1-—x :/ =V2x + O(xv/x
rccos( ) A V2x 4+ O(xv/x)
lorsque x — 0.

102.  Répartition asymptotique de la loi normale [87.4]
Lorsque x tend vers +co,

2 7}(2

too e X e
—t
=5 ¢ 0(—)
/x ¢ 2x 4x3 + x5
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103.  Approximation de la mesure de Dirac
Soit h, une fonction continue par morceaux sur [0, 1].

1. Ilexiste M € R tel que |h(t)| < M pour tout f € [0,1].

2. Sihtend vers 0 au voisinage de 1, alors, pour tout ¢ > 0,
il existe & > 0 tel que

1
VneN, ‘/ (n+1)"h(t) dt‘ et M(1—a)"1,
0
3. Sih est continue en 1, alors

1
n

104. Répartition asymptotique de laloi I’
Pour tout a > 0, lorsque x tend vers +oo,

O a1 1
/ et dt ~ x e
JX

et, pour toutn € IN,

+oo  py a1 ~1 ~1@-2
e"‘/ (—) etdt=1+2"" 4 (a )ga ) +
x X X X

105.  Vitesse de convergence des intégrales de Fresnel [51.5]
Pour tout x > 0,

/+weif2dt:l/+w£dt_&
x 2i x t2 2ix

et lorsque x tend vers oo,

400 | _ix?
o= o)
df = — o=
/x ¢ 2ix + x3
106.  Suite de [95] -
Tp—1 Xp—1 2 q
— t:lim/ ———dt = lim —u:EnZ
0o Int x—1Jo Int x—=1Jx fnu
VI
Les théorémes lebesguiens
107.  On considereici des suites et des séries de fonctions, c’est-

a-dire des suites et des séries dont les termes généraux dépendent
d’un parametre.

VI.1 Modes de convergence d’'une suite de fonctions

108.  Ily a plusieurs notions de convergence pour les suites de
fonctions : convergence simple, convergence uniforme, conver-
gence dominée, convergence normale... Il faut donc toujours
prendre soin de répondre a deux questions :

Comment? en précisant le mode de convergence : la série con-
verge simplement, uniformément, normalement...

Ou? en précisant le domaine de convergence : sur tout l'intervalle
I, sur tout segment contenu dans l'intervalle I, sur l'inter-
valle [a, +oo[ pour tout a > 0...

Convergence simple

109. Convergence simple d’une suite de fonctions
109.140 Une suite de fonctions ( fu)nen, définies sur I, converge sim-
plement sur I vers la fonction f lorsque

Viel, f(t)= ngrrwfn(t).
La fonction f est appelée la limite simple de la suite (fn)pen.
109.2  La suite des fonctions f, = [t e~ "'sin(nt)] converge
simplement sur [0, +-oo[ vers la fonction nulle.
109.3 Lasuite des fonctions f,, = [t — "] converge simplement
sur |0, 1] vers la fonction nulle. Cette suite converge simplement
sur [0, 1], mais sa limite n’est pas continue sur [0, 1].
109.4 La suite des fonctions f, = [t — nte "] converge sim-
plement sur [0, +oo[ vers la fonction nulle.

110.  Convergence simple d'une série de fonctions

110.14 Une série de fonctions Y uy,, définies sur I, converge sim-
plement sur I lorsque, pour tout t € 1, la série numérique Y uy(t)
converge.

La fonction S définie sur I par

Viel, S(t)= +Zmun(t)
n=0

est appelée la somme de la série de fonctions Y uy.
110.2  Les séries de fonctions

R

convergent simplement sur |1, +oo[ et sur ]0,4co[ respective-
ment.

110.3 La série de fonctions ) " converge simplement sur [0,1]
et sa somme est continue.

1104 La série de fonctions ) e~
]0, +c0[ et sa somme est continue.
110.5 La série de fonctions )" fnt converge simplement sur
10,1] et sa somme est continue sur |0, 1[.

"t converge simplement sur

Convergence dominée

111.14 Soit (fu)neN, une suite de fonctions qui converge simplement

sur I vers une fonction f. La convergence de la suite (fy)nenN est do-

minée sur [ lorsqu’il existe une fonction g intégrable sur I telle que
Viel, VneN, |fu(t)] <g(t).

111.2  Méthode

Pour montrer que la convergence d’une suite de fonctions est do-

minée sur I, on vérifie d’abord que la suite de fonctions converge

simplement sur I, puis on cherche un majorant de |f,(t)| sur I

qui soit indépendant de n € N et qui soit intégrable sur I en tant

fonction de t.

112. 4o Soit Y uy, une série de fonctions qui converge simplement sur
I. La convergence de la série ) u, est dominée sur I lorsque la conver-
gence de la suite des sommes partielles est dominée sur 1.

n

Y w(B)] < g(t).

k=0

JgeZYI),Vtel, VneN,

113. = Si la suite de fonctions continues par morceaux (fn)peN
converge simplement sur I vers une fonction continue par morceaux
f et si la convergence est dominée sur I, alors les fonctions f, et la
fonction f sont intégrables sur 1.

114. Convergence en moyenne

114.14 Soient f € LY(I) et (fn)nen, une suite de fonctions inté-
grables sur 1. La suite (f,),cN converge en moyenne sur [ vers
f lorsque

lim /I]f(t)ff,,(t)\dt:O.

n—r+oo,

8.11
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114.24 Pour toute fonction f € £1(I), on pose

£l = [ 1£(0)]de

114.3=> Si la suite de fonctions (fu)nen converge en moyenne sur I
vers f, alors

lim
n— 400

Jrwar= tim_ [ fue)a

115. Convergence en moyenne quadratique

115.14 Soient f € £2(I) et (fu)ueN, une suite de fonctions de carré
intégrable sur 1. La suite (f,),cN converge en moyenne quadra-
tique sur [ vers f lorsque

J 1= gt dt = 0.

lim
n—r+o00

115.24 Pour toute fonction f € £?(I), on pose

£ =/ [ Lro) a

VI.2 Théoréme de convergence dominée

116.  La conclusion du théoréme de convergence dominée peut
s’écrire :
ngrﬂw/lfn(t) dt — /Ingrﬂwfn(t) dt.

Ce théoreme, que nous admettons, énonce donc une condition
suffisante pour justifier un passage a la limite sous le signe |.

116.1~> Soit (fu)neN, une suite de fonctions intégrables sur I qui
converge simplement sur I vers une fonction f continue par morceaux
sur 1. Si la convergence est dominée sur I, alors f est intégrable sur I

! /If(t)dt: lim /Ifn(t) dt.

n——+oo,
116.20> Sous les hypotheses du théoreme [116.1], la suite (fn)neN
converge en moyenne sur I vers f.

Hf—anl =0

lim
n—+o0

116.3> Soient (f) re|qp|, une famille de fonctions intégrables sur I et
i€ [a, bl
S'il existe une fonction g intégrable sur I telle que

VAelab[,Vtel, |fat)] <g)

et si la fonction ¢ définie par
Viel, o¢(t) = lim f,(t)
A=

est continue par morceaux sur 1, alors ¢ est intégrable sur I et

/qu(t) dt = }L“; /1 fa(t) dt.

117.  Exemples d’application
117.1  Si g est une fonction intégrable sur |0, 1[, alors
. 1 n

ngrfw ; t"g(t)dt = 0.
117.2 .

nljrfm' ; e g =1
117.3 La suite de terme général

Feo dt

Jn = ' /0 W

tend vers 0. —[136]

8.12

117.4  Si f est intégrable sur [0, +oo], alors

L f(nt) oo
7’10 1+tdtm/0 f(x)dx

Lorsque n tend vers +oo,

/On,/1+(1—f/n)ndt~n.

Si f est intégrable sur |0, +oo], alors

117.5

117.6

. 1 Xn
lim —
n—-+oo Xy JO

tf(t)dt =0

pour toute suite (x,),en qui tend vers +oco.

117.7 Lorsque n tend vers +oo,
/+°° Arctant/, T
0 t+ 13 2n’
117.8 Les intégrales

+o00 +00 |gin™ ¢
/ e t[sin” t| dt / Jsin” £ dt
0 0

+o00 tn 4
——— dt
/0 $2n +1 12

tendent vers 0 lorsque 7 tend vers +co.

117.9 Par convexité de la fonction exp,
n n —+oo
lim (1+fi> e 2t dt = / etdt = 1.
n—-+o Jo n JO
117.10
+o0 N oo,
lim (qu w:/ et dt
n—+o ) _—co n J—c0

117.11 Limite continue par morceaux
Lorsque 1 tend vers +oo, les intégrales

too dt too +oo dt
bowve homeat o rreee
o t+et” Joo 241 0 1424t

tendent respectivement vers 1 — 1/, 1 et /4.
117.12 Majorant défini par morceaux
La suite de terme général

+o gsinnt
/ dt
0o nt+t2

tend vers 0.
117.13 Suite de [50.7] —

lim

[
a—1Ja x(1—x)(x—a) 0 Vx(1—x)

118. Théoreme de convergence bornée

118.1~> On suppose que I est un intervalle borné. Si (fu)nen est une
suite de fonctions intégrables sur I qui converge simplement sur I vers
une fonction continue par morceaux f et s’il existe un réel M tel que

Viel,VneN, |fu(t)| <M
alors f est intégrable sur I et
J = tim [ £ a

118.2 Soient K, une fonction intégrable sur I et (f;),eN, une
suite de fonctions continues par morceaux sur I qui converge
simplement sur I vers une fonction continue par morceaux f. S'il
existe un réel M tel que

VteLVneN, |[fu(t)|<M

alors le produit fK est intégrable sur I et

[rokwma= tim_ [ oK a

lim
n—+o0
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118.3
/4
lim tan" tdt =0
n—-+o0 /o
118.4
+o0 _1n+1 11— —tN
27( ) = lim /7( ) dt =/n2
— n N—+00J0 1+t
n=1
118.5 La fonction

+o0 e,th
F = — — dt
g /0 142

tend vers 0 au voisinage de +oo.
118.6 La fonction

P e [0y

Int

tend vers 0 au voisinage de +co. —[9.36]

119.  On considere la suite de fonctions (f;),en définie par la
donnée de
sint pourt € [0, 7],

fo)=|"0" pourt ¢ [0,7]

et la relation :
VneN, VteR, fu(t)=f(t—n).

119.1 La suite de fonctions (f,),en converge simplement sur
R vers la fonction nulle.
119.2 Comme la convergence n’est pas dominée, si une fonction

g vérifie
VteR, VneR, |fa(t)<glt)

alors g n’est pas intégrable sur R.

VI.3 Théoréme d’intégration terme a terme (version

lebesguienne)
120.1  Siles fonctions uy, ..., u, sont intégrables sur I, alors
n n
/ Y u(t)ydt=)_ /uk(t) dt
= k=1"1
par [8].

Comme la conclusion du théoréme [121.1] peut s’écrire

—+o0 —+o0
/In;)un(t) dt = ng)/fun(t) dt,

il faut retenir qu’il énonce une condition suffisante pour intégrer
terme a terme la somme d’une famille infinie de fonctions inté-
grables. Nous admettrons ce théoreme.

120.2=> Théoréeme de Fubini-Tonelli

Soit (vn)nen, une série de fonctions positives et intégrables sur I qui
converge simplement sur 1. Si la somme ¥. définie par

Viel, X(t)= +Zoovn(t)
n=0

est continue par morceaux sur 1, alors ¥. est intégrable sur I si, et seule-
ment si, la série de terme général positif

Z/Ivn(t) dt

est convergente.

121.1~> Théoreme de Fubini
Soit (un)nen, une suite de fonctions intégrables sur I.
On suppose que :

— la série de fonctions Y u, converge simplement sur I;

— sa somme S est continue par morceaux sur I

— et la série de terme général [, |u,(t)| dt est convergente.
Dans ces conditions,

— la fonction S est intégrable sur I;

— la série de terme général [, u,(t) dt converge absolument

— et sa somme est 'intégrale de S sur I.

:ZOZ/Iun(t) dt:/IS(t)dt

121.21> Théoreme de convergence croissante

Soit (wy)yeN, une suite croissante de fonctions positives et intégrables
sur I qui converge simplement sur I vers une fonction continue par
morceaux W.

La fonction W est intégrable sur I si, et seulement si, la suite de terme

général
/1 wn(b) dt

est convergente et, dans ce cas,

W(t)dt = 1L t) dt.
fwoar= tim_ [t
122.  Exemples
1221  Suite de [64.2] —
oo pdt ot R
—_— = te” " dt = —
/0 e —1 k;‘/o n;lnz
122.2  Suite de [64.4] et de [6.37] —
1.
1 ¢/nt +oo 01 1 77.[2
——dt= /tkéntdt:— R
/0 1—t k;()' 0 n;l n2 6
2.
1 +oo —1)" 2
/ Int dt=y (-1) _-n
Jo 1+t = n2 12
3.
1 fnt too 1 & =yt
dt = / —2)"ntdt = Y ——
/o 1412 n;o,o( ) EO(2n+1)2
122.3
o (1 k+1 400 1
CO_ e i)
= ket Ji 1+t e
122.4 D’apres [67], pour tout x € R,
+ sin(xt) =ox
dt = .
./o et —1 V; n? +x2
122.5  Suite de [87.1] —

+oo T gin t
Z I, = / snt dt
n=0 J0 t
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Comparaison des théorémes lebesguiens

123.  On consideére une série ) u, de fonctions intégrables sur
I'intervalle I, qui converge simplement sur I et dont la somme S
est continue par morceaux sur I.

123.1  Lorsque la série numérique

Z~/I|un(t)|dt

est divergente, on ne peut appliquer le théoreme [121.1] d’inté-
gration terme a terme.

123.2  On peut cependant essayer d’appliquer le théoréme de
convergence dominée [116.1] en cherchant un majorant de

S
n=0

qui soit a la fois indépendant de N € N et intégrable comme
fonctionde t € I.
123.3

+oo dt +00 -1 n+1 +oo 1
/0 i Z( T Z/O (—1)** dt = tn2

=1 " k=0
123.4 N .
= (-1) 1 dr
vV p e N¥, = / .
k;) 1+pk  Jo 1+¢tP
123.5 N
0o 400 1
Y / (—=1)fe M dt = n =
k=170 2
123.6 .
© 1 T gin t
y / P sin 7t dt = / S ar
n=0"0 0 t
Entrainement
124.  Questions pour réfléchir

1. La suite des fonctions g, = [t — ne "] converge-t-elle
simplement sur [0, +-00[?

2. Soit Y uy,, une série de fonctions qui converge simplement
sur [.

2.a La suite (Ry),en des restes est une suite de fonctions qui
converge simplement sur I vers la fonction nulle.

2.b Si la convergence de la suite (R;),en est dominée, la
convergence de la série ) u, est-elle dominée?

3. Soit (fu)nenN, une suite de fonctions intégrables sur I qui
converge en moyenne sur [ vers f et vers g. Comparer les fonctions
fetg.

4. Suite de [117] = A quels exemples peut-on appliquer le
théoréme de convergence bornée?

5. Soit Y_uy, une série de fonctions positives et intégrables sur
I, qui converge simplement sur I et dont la somme S est continue
par morceaux sur I. La convergence de la série }_u, est dominée
sur I si, et seulement si, la série numérique

Z/Iu,,(t) dt

est convergente.

125.  Lafonction F définie par

F(x) = ~/0+°° dt

T+x3+183

est décroissante et positive sur [0, +oo. Elle tend vers 0 au voisi-
nage de +co.

126.  Suite de [99] — On admet la continuité de h. Par [121.1] et
[6.180], la fonction  est intégrable sur |1, +oco] et

o +o0
/: h(x)dx = Z#

= nm’n

127.  Approximation de la transformée de Laplace
Pour tout n > 1, on considere la fonction #,, : R4+ — R définie

par
t\"
VEeRy, unlt) = (1) 1. (0)

1. Pourtoutn € N* ettoutt € [0,n],
()] < [/ = e,

2. Si [t e !g(t)] estintégrable sur |0, 4-c0], alors

lim
n—4oo

0" (1- 1) sty ar = ~/Om eto(t)dt.

128.
pose

Soit f : R4+ — R, une fonction continue et bornée. On

X +00
Vx>0, F(x):/o fdr et glx) = [ fHear
1. Il existe une constante K > 0 telle que

Vx>0, |F(x)|<Kx.

2. Si f tend vers 1 au voisinage de +co, alors F(x) ~ x au
voisinage de 40 et comme

— te u —u
Vx>0, xg(x)—/o xF(;)e du,

alors g(x) ~ 1/y au voisinage de 0.
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Questions, exercices & problémes

Perfectionnement

129. Exemples et contre-exemples

1. Pour tout intervalle I, l'indicatrice 1; est continue par
morceaux sur RR.

2. Lafonction [x — [x]] est continue par morceaux sur R.

3. Exemple de fonction continue par morceaux sur un seg-
ment qui n’a ni maximum, ni minimum.

4. Exemple de fonction f, non continue par morceaux sur I,
mais telle que | f| soit continue par morceaux sur I.

5. Exemple de fonction continue et bornée sur R qui n’est
pas intégrable sur IR.

6. Exemple de fonction continue et intégrable sur I qui n’est
pas bornée sur I.

7. Exemple de fonction continue sur R, qui tend vers 0 aux
voisinages de +oo0 et —oco mais qui n’est pas intégrable sur R.

8. Exemple de fonction intégrable au voisinage de +oco mais
qui ne tend pas vers 0 au voisinage de +co.

9. Exemple de deux fonctions intégrables sur I dont le pro-
duit n’est pas intégrable sur I.

10. Exemple de fonctions continues par morceaux f et g telles
que f + g soit intégrable, tandis que ni [} f(t) dt, ni [} g(t) dt
n’existent (que ce soit au sens propre ou en tant qu'intégrales im-
propres convergentes).

11.  Exemple de fonction non continue qui vérifie la condition
de Dirichlet [146].

12.  Exemple de changement de variable ¢ : ] — I et de
fonction f € .#1(I) tels que f o ¢ ne soit pas intégrable sur J.

13. Exemple d'une suite de fonctions intégrables sur I qui
converge simplement sur I vers la fonction nulle w alors qu’elle
ne converge pas en moyenne sur I vers w.

14. Exemple d’une suite de fonctions intégrables sur I qui
converge en moyenne sur I vers la fonction nulle w alors qu’elle
ne converge pas simplement sur [ vers w.

130. Méthodes

1. Comment démontrer qu'une fonction n’est pas intégrable
sur un intervalle donné?

2. Comment démontrer qu'une intégrale est strictement po-
sitive?

3.  Comment démontrer qu’'une intégrale impropre est con-
vergente?

4.  Soit) uy, une série de fonctions qui converge simplement
sur I. Comment s’assurer que la somme de cette série de fonc-
tions est continue par morceaux sur [ ?

5. Comment caractériser les applications constantes a va-
leurs dans un espace vectoriel de dimension finie sans utiliser
le théoreme [83.1]?

6. Une fonction f est fonction affine de R dans E lorsqu’il
existe deux vecteurs a et b de E tels que

VteR, f(t)=t-a+b.

Comment caractériser les fonctions affines de IR dans E?

131.  Questions pour réfléchir

1. Comparer la notion de fonction intégrable avec la notion de
série absolument convergente.

2. Une fonction continue, périodique et intégrable sur R est
nulle.

3. Soit (fu)nenN, une suite de fonctions intégrables sur I qui
converge en moyenne vers une fonction intégrable f.

3.a La suite (f;),eN converge-t-elle simplement vers f7?

3.b  Sila suite (f,),en converge simplement vers f, la conver-
gence est-elle dominée ?

4. Soient f et (fu)nen, des fonctions de £ (I) N .Z2(I).

4.a Si la suite (fy)yen converge en moyenne sur [ vers f,
converge-t-elle aussi en moyenne quadratique sur I vers f7?

4.b Si la suite (fu),eN converge en moyenne quadratique sur
I vers f, converge-t-elle aussi en moyenne sur I vers f?

Approfondissement
132.  Suite de [118.6] - Comme

+oo o=l _ p—2u 2e p— U
Ve>0, / 7du:/ — du,
€ u € u

alors F(0) = {n2.

133.  Lafonction g définie par

+o0 e*fxd . +oo€7fd
g(x)*/o 1+t t*e/x A

est la solution de I'équation différentielle

Vi>0, g(x)—glx) = —
qui tend vers 0 au voisinage de +o0 et g(x) ~ 1/x lorsque x tend
vers +00.

134.  Lafonction F définie par

+oco efxf
F(x) = / dt
0

Vx>0,
x+t

est décroissante et positive sur R’ et tend vers 0 au voisinage de
+00. Comme

“+o0 671{

Vx>0, F(x):exz/ ——du,
Jx2 u

la fonction F est une solution de 1’équation différentielle

2

2xy(x) —y/ () = =.

Vx>0,

De plus F(x) ~ 1/,2 lorsque x tend vers +oo et F(x) ~ —2{nx
lorsque x tend vers 0.

135.  Un calcul d’équivalent
Pour tout entier n > 1, on pose

I _/+°° dt
" A+

1. Lasuite (I,),>1 vérifie la relation de récurrence suivante :

V=1 ILyq= (17 %)1,1.

2. On en déduit que la série Yy ({n I, — {nl,) est diver-
gente et que fn I, ~ Inl/ /.

3. On considere donc la suite de terme général u, = /nl,.
Cette fois, la série Y- (¢nu, 1 — fnuy) est absolument conver-
gente, donc il existe une constante K > 0 telle que

Iy~

Vn

lorsque n tend vers +co.

136.  Suitede [117.3] — Pour tout n € N,
3n+2
I = g gl

En posant v, = n"J,, la série }_(¢nv, 11 — nv,) est absolument
convergente si, et seulement si, « = 1/3 et il existe A > 0 tel que

A
In"‘%

lorsque n tend vers +co.
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137.  On considere la fonction F définie sur |—1, 1] par

F(x) :/1 dt
0 VH1—1)(1—2t)

1. Lafonction F est paire et croissante sur [0, 1.
2. Pourtout0<a <1,

1-w d+
lim F(x) > —_
x—1 Jo Vi1 —1t)
donc F tend vers +oo au voisinage de 1. —[1.14]
3. Lorsque x tend vers 1,
1 1 1
F(x)w/ *zfén +x~—£n(1—x).
Jo /(1—-t)(1—=x2) x 1-x

138.  Pour tout entier 1, on pose

1
ay :/ t"\/1 — 12 dt.
0
1. Lasuite (a,),en tend vers 0 en décroissant.
2. Suitede [6.33] —

n+1
n+4

VneN, ap0= ay.

3. Lasuite de terme général (n +1)(n +2)(n + 3)ana,,1 est

constante et
. T 1
V2 ny/n

lorsque n tend vers +oco.

4.a
+o0 1 1 t
Za,,:/ \/Ldfzz+l
o Jo 11—t 2
4b
oo 1 [1—¢ s
Z(fl)”an:/ —dt=— -1
= Jo 1+t 2
139. Sommes de Riemann
Pour tout n € IN*, on pose
k(b —
VOo<k<n af=a+ (n a)

Si f est continue sur [a, ], alors la suite de fonctions en escalier
fn définies sur le segment [a, b] par

n—1
fn= Z f(“l?)]l[agﬂ;gﬂ[
k=0

converge simplement sur [a, b] vers f et la convergence est domi-
née, donc

hf(t)dt: lim b‘“nff<a+M).

k=0 n

Pour aller plus loin

140.  Questions pour réfléchir

1. Une fonction croissante de [a,b] dans R n’a que des dis-
continuités de premiére espéce : elle admet une limite a gauche
finie en tout point de [a,D[ et une limite & droite finie en tout
point de |a, b]. Est-elle nécessairement continue par morceaux sur
[a,b]?

2. Si f est continue par morceaux sur un intervalle ouvert
I, alors I’ensemble des points de discontinuité est fini ou dénom-
brable.
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3. Suitede [110] — Pour quelles séries de fonctions la conver-
gence est-elle uniforme?

4.  Suite de [139] — Peut-on étendre le résultat aux fonctions
continues par morceaux sur le segment [a, b]?

5. Suitede [139] - Comment généraliser le résultat aux fonc-
tions continues et intégrables sur [0, +-00[?

141.  Suite de [50.5] - Avec a = 1/,
LVide 2
Vidt 2 (1 +2).
Jo vV/3+1 3
142. Sommes de deux séries trigonométriques

Soit t € 10,27t].
1. Pourtoutn € N* ettoutu € [ <> ],

| 35 ek
k=1

1
sin(t/2)”

<

2. Bien qu’on ne puisse pas appliquer le théoréme de con-
vergence dominée, on peut déduire

+oo int t iu
o _tn2—i / ¢ du
=1 n T i __ 1
de [118.4], c’est-a-dire
+o00 _: +00
nt T—t nt t
Zsm = —— et Zﬁz—én@sin—).
o= on 2 = on 2
143.  Soit I = ]a,b|, un intervalle ouvert borné. Si f est inté-

grable sur I, alors la fonction

(o [t

est continue sur [a,b] x [a, b].

144. Composition des fonctions continues par morceaux
1. Lafonction f définie par f(0) = 1 et par

f(x) = |

est continue par morceaux sur R. La fonction ¢ = [x — 1/y] est
continue sur R% = f4(IR). La composée g o f est définie sur R,
mais pas continue par morceaux sur RR.

2. Si f est continue par morceaux sur [ et si g est continue
sur l'adhérence de f;(I), alors g o f est continue par morceaux
sur I.

145. Intégrabilité et limite en +oo

1. Soit f, declasse ©!. Si f et f’ sont intégrables au voisinage
de 4o, alors f tend vers 0 au voisinage de +co.

2. Si une fonction est monotone et intégrable au voisinage
de o0, alors elle tend vers 0 au voisinage de +oo.

3. Une fonction uniformément continue et intégrable sur un
voisinage de 4o tend vers 0 au voisinage de +oo.

146. Condition de Dirichlet [17.1]

Une fonction f continue par morceaux sur l'intervalle ouvert I
vérifie la condition de Dirichlet lorsque, en chaque point, elle est
égale a la moyenne des ses limites & droite et a gauche :

fl+) + fla-)

VxeRY,

Vxel f(x)= >
146.1 Toute fonction continue sur I vérifie la condition de Diri-
chlet.
146.2  On suppose que f est continue par morceaux, positive et

d’intégrale nulle sur l'intervalle ]a, b[.

1. Si f est continue par morceaux sur le segment [a, b], alors
I’ensemble [f(x) > 0] est fini (éventuellement vide).

2. Si f est continue par morceaux sur |a,b[, 'ensemble
[f(x) > 0] est-il fini? dénombrable ?
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146.3 Si de plus f vérifie la condition de Dirichlet sur l'inter-
valle ouvert non vide I = |a, b|, alors f(t) = 0 pour tout ¢ € ]a, b|.
146.4 Le théoreme [45.2] est vrai pour les fonctions intégrables
qui vérifient la condition de Dirichlet.

147.  Intégration par parties généralisée

On étend la formule d’intégration par parties a des fonctions qui
ne sont pas de classe .

147.14 Une fonction f : [a,b] — C est de classe ¢! par mor-
ceaux lorsqu’il existe une subdivision

a=wnp<m<---<wa,=>
et, pour tout 0 < k < n, une application de classe &1
¢ [ag ap1] = C
telles que
VOSk<n Vite]uagaeal, f(t)=gt).

1472 Onsuppose que f : [a,b] — C est de classe ¢! par mor-
ceaux et continue. Alors il existe une fonction ¢ : [a,0] — C,
continue par morceaux, telle que

Vx € b, f(x)=f(a)+ / "ot dt.

Une telle fonction ¢ n’est pas unique.

147.3 On suppose que f et g sont deux applications de classe
%' par morceaux et continues sur [a, b] et on considére deux fonc-
tions continues par morceaux ¢ et ¢ telles que

f(x) = f(a) + f,,x p(t)dt
Vx€lab], {g(x) =ga) + [ p(t)dt.

Alors

b b b
| Fp@ar=[mso]; - [ ezt ar

147.4 Peut-on étendre la formule d’intégration par parties aux
fonctions de classe ¢! par morceaux qui ne sont pas continues?

148.  Une propriété de connexité
Les seules parties d"un intervalle I qui soient a la fois des fermés
et des ouverts relatifs a I sont égauxa I.
148.1 Soient A = [a,b], un segment et X, une partie fermée de
A qui contient a. L'ensemble Ax = {x € [a,b] : [4,x] C X} aun
plus grand élément My.
148.2  Si X est une partie fermée de [a, b] qui contient 7 et telle
que

VxpeX, 3a>0, [xo,x0+a[N]ab] CX
alors X = [a,b].
149. Inégalité des accroissements finis [148]
Soit f : [A, B] — E, une application continue.
149.1  Si f estlipschitzienne sur | A, B], alors f est lipschitzienne
sur [A, B].
149.2  Si f est dérivable sur [a, b] et si

3K>0,Vte(ab], |f(H)|<K
alors, pour tout € > 0,

{telab] : ||f(t) —f(a)HE < (K+e)(t—a)} = [ab].

149.3=> Soit f : I — E, une fonction continue sur l'intervalle I et
dérivable sur l'intérieur 1° de cet intervalle. S’il existe une constante
K > 0 telle que

Viel°, ||f/(t)HE <K,

alors f est K-lipschitzienne sur I.
149.4 a quoi sert 'hypotheése sur la dimension de E dans la dé-
monstration de [149]?



