
Estimation d'une somme partielle [Mines25-04-2]

Pour tout n ∈ N∗, on pose

un =

n∑
k=1

ℓnk

k
et vn = un −

(ℓnn)2

2
.

1. En comparant une somme et une intégrale, déterminer un équivalent simple de un.
2. Étudier la suite de terme général vn (variations, convergence).
3. On rappelle que

n∑
k=1

1

k
=

n→+∞ ℓnn+ γ+ O(1)

où γ est un réel fixé (la constante d’Euler).
Après avoir justifié la convergence de la série, démontrer que

+∞∑
k=1

(−1)k
ℓnk

k
= γ ℓn 2−

(ℓn 2)2

2
.

1. La fonction f définie par

∀ t ⩾ 1, f(t) =
ℓn t

t

est de classe C 1 et
∀ t ⩾ 1, f ′(t) =

1− ℓn t

t2
,

donc elle est décroissante sur [e,+∞[.
❧ On trace la figure légendée habituelle pour obtenir

∀ n ⩾ 4,

n∑
k=4

ℓnk

k
⩽

∫n
3

ℓn t

t
dt ⩽

n−1∑
k=3

ℓnk

k
.

On en déduit comme d’habitude que

∀ n ⩾ 4,

∫n
3

ℓn t

t
dt+

ℓn 2

2
+

ℓnn

n
⩽ un =

n∑
k=2

ℓnk

k
⩽

ℓn 2

2
+

ℓn 3

3
+

∫n
3

ℓn t

t
dt. (1)

✍ Compte-tenu des variations de la fonction f, la comparaison entre la somme et l’intégrale ne peut se faire
que sur le segment [3, n] et donc pour n ⩾ 4. Même si c’est sans importance pour la suite du raisonnement, il
faut veiller à ajouter les termes supplémentaires pour pouvoir encadrer correctement un.

❧ On sait calculer l’intégrale :

∀ n ⩾ 4,

∫n
3

ℓn t

t
dt =

[ (ℓn t)2

2

]n
3
=

(ℓnn)2 − (ℓn 3)2

2
.

On peut alors déduire de (1) que

un −
(ℓnn)2

2
=

n→+∞ O(1)

et donc, comme (ℓnn)2 tend vers +∞,

un ∼
n→+∞ (ℓnn)2

2
.

✍ On n’est pas surpris par l’équivalent trouvé, compte-tenu de la question qui suit !
Il est clair que 1/n = O(un) et donc que la série

∑
un diverge (comparaison de séries de terme général

positif). Il est donc normal de trouver un équivalent infiniment grand pour les sommes partielles.



2. Puisque l’étude des variations est suggérée, allons-y !

vn − vn−1 =
ℓnn

n
−

[ℓnn]2 − [ℓn(n− 1)]2

2

=
ℓnn

n
+

[ℓn(n− 1) − ℓnn][ℓn(n− 1) + ℓnn]

2

=
ℓnn

n
+ ℓn

(
1−

1

n

)
· ℓnn ·

[
1+

ℓn(1− 1/n)

ℓnn

]
=

ℓnn

n
+ ℓnn · ℓn

(
1−

1

n

)
+
[
ℓn
(
1−

1

n

)]2
=

[
− ℓnn

2n2
+O

( ℓnn

n3

)]
+O

( 1

n2

)
=

− ℓnn

2n2
+ O

( ℓnn

n2

)
.

On déduit de cet équivalent que la variation vn−vn−1 est négative à partir d’un certain rang et donc
que la suite (vn) est décroissante à partir d’un certain rang.

✍ L’étude des variations de la suite (vn) n’a aucun intérêt. C’est en fait une indication déguisée pour inciter
à considérer vn comme une somme partielle d’une série télescopique.

On déduit du développement asymptotique précédent que

vn − vn−1 ∼
n→+∞ − ℓnn

2n2
= O

( 1

n3/2

)
.

Par conséquent, la série télescopique
∑

(vn − vn−1) est (absolument) convergente, ce qui prouve que
la suite (vn) est convergente.

✍ On a ainsi amélioré le résultat démontré à la première question, puisqu’on sait maintenant qu’il existe
une constante C (= la limite de la suite v) telle que

un =
n→+∞ (ℓnn)2

2
+ C+ O(1).

3. On a démontré que la suite de terme général ℓn k
k

était décroissante à partir d’un certain rang.
Il est clair qu’elle tend vers 0. On peut donc invoquer le Critère spécial des séries alternées, qui nous
assure que la série ∑

(−1)k
ℓnk

k

est convergente.
❧ Ensuite, il faut penser à l’astuce habituelle ! Pour tout entier n ⩾ 2,

2n∑
k=1

(−1)k
ℓnk

k
= 2

n∑
p=1

ℓn(2p)
2p

−

2n∑
k=1

ℓnk

k

= ℓn 2 ·Hn +

n∑
p=1

ℓnp

p
−

2n∑
k=1

ℓnk

k

= ℓn 2 ·Hn −

2n∑
k=n+1

ℓnk

k

et, d’après le développement asymptotique bien connu (et rappelé par l’énoncé, merci !) :

2n∑
k=1

(−1)k
ℓnk

k
=

n→+∞ γ ℓn 2+ ℓn 2 · ℓnn−

2n∑
k=n+1

ℓnk

k
+ O(1). (2)

C’est parti pour une nouvelle comparaison de somme et d’intégrale, cette fois sur le segment [n, 2n],
toujours en supposant n ⩾ 3 pour exploiter la monotonie de la fonction f.

✍ Bien entendu, ce n’est pas une restriction puisque nous allons faire tendre n vers +∞.

On reprend la même figure en modifiant la légende et on obtient cette fois

∀ n ⩾ 3,

2n∑
k=n+1

ℓnk

k
⩽

∫2n
n

ℓn t

t
dt ⩽

2n∑
k=n+1

ℓnk

k
+

ℓnn

n
−

ℓn(2n)
2n

. (3)



Comme plus haut, on peut facilement calculer l’intégrale :∫2n
n

ℓn t

t
dt =

(ℓn 2n)2 − (ℓnn)2

2
= ℓn 2 · ℓnn+

(ℓn 2)2

2
.

On déduit alors de (3) que

2n∑
k=n+1

ℓnk

k
=

n→+∞ ℓn 2 · ℓnn+
(ℓn 2)2

2
+O

( ℓnn

n

)
= ℓn 2 · ℓnn+

(ℓn 2)2

2
+ O(1)

et donc, en revenant à (2),

2n∑
k=1

(−1)k
ℓnk

k
=

n→+∞ γ ℓn 2−
(ℓn 2)2

2
+ O(1).


