Estimation d’'une somme partielle [Mines25-04-2]
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@ En comparant une somme et une intégrale, déterminer un équivalent simple de u,,.

@ Etudier la suite de terme général v,, (variations, convergence).
@ On rappelle que
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ol y est un réel fixé (la constante d’Euler).
Apres avoir justifié la convergence de la série, démontrer que
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La fonction f définie par

est de classe ¢! et
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donc elle est décroissante sur [e, +ool.
@ On trace la figure 1égendée habituelle pour obtenir
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On en déduit comme d’habitude que
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#  Compte-tenu des variations de la fonction f, la comparaison entre la somme et l'intégrale ne peut se faire
que sur le segment [3,n] et donc pour n > 4. Méme si c’est sans importance pour la suite du raisonnement, il
faut veiller a ajouter les termes supplémentaires pour pouvoir encadrer correctement n,.

@ On sait calculer 'intégrale :
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et donc, comme ({nn)? tend vers +oo,
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# On n'est pas surpris par 'équivalent trouvé, compte-tenu de la question qui suit !
Il est clair que /. = o(un) et donc que la série )y, diverge (comparaison de séries de terme général
positif). 1l est donc normal de trouver un équivalent infiniment grand pour les sommes partielles.



Puisque I'étude des variations est suggérée, allons-y !
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On déduit de cet équivalent que la variation v, — v, est négative a partir d’un certain rang et donc
que la suite (vy,) est décroissante a partir d"un certain rang.

# L'étude des variations de la suite (v ) n’a aucun intérét. C'est en fait une indication déguisée pour inciter
a considérer vy, comme une somme partielle d'une série télescopique.

On déduit du développement asymptotique précédent que
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Par conséquent, la série télescopique }_(vn, —vn_1) est (absolument) convergente, ce qui prouve que
la suite (vy,) est convergente.

#v On a ainsi amélioré le résultat démontré a la premiere question, puisqu’on sait maintenant qu’il existe
une constante C (= la limite de la suite v) telle que
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On a démontré que la suite de terme général ¥ était décroissante a partir d’un certain rang.
Il est clair qu’elle tend vers 0. On peut donc invoquer le Critére spécial des séries alternées, qui nous
assure que la série

est convergente.
a Ensuite, il faut penser a 1’astuce habituelle! Pour tout entier n > 2,
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et, d’apres le développement asymptotique bien connu (et rappelé par 1’énoncé, merci!) :
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C’est parti pour une nouvelle comparaison de somme et d'intégrale, cette fois sur le segment [n, 2n],
toujours en supposant n > 3 pour exploiter la monotonie de la fonction f.

# Bien entendu, ce n’est pas une restriction puisque nous allons faire tendre n vers +oo.

On reprend la méme figure en modifiant la légende et on obtient cette fois
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Comme plus haut, on peut facilement calculer I'intégrale :
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On déduit alors de (3) que
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et dong, en revenant a (2),
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