Problème de Mathématiques

Référence pp1910 — Version du 14 octobre 2025

Pour tout entier $n \ge 1$, on pose

$$H_{n} = \sum_{k=1}^{n} \frac{1}{k},$$

$$a_{n} = H_{n} - \ln n,$$

$$u_{n} = \prod_{k=1}^{n} \left(1 + \frac{(-1)^{k-1}}{\sqrt{k}}\right).$$

- **1.a.** Démontrer que la série $\sum (a_{n+1} a_n)$ est convergente.
- **1.b.** En déduire que la suite $(a_n)_{n\in\mathbb{N}}$ converge vers un réel γ .
- 1. c. Démontrer que

$$\gamma - a_n \sim \frac{1}{2n}$$

lorsque n tend vers $+\infty$.

2. Démontrer que la série de terme général

$$v_k = \ell n \Big(1 + \frac{(-1)^{k-1}}{\sqrt{k}} + \frac{(-1)^k}{\sqrt{k}} + \frac{1}{2k} \Big)$$

est absolument convergente.

3. a. Démontrer que la suite de terme général

$$V_n = \ell n(\sqrt{n}u_n) + \sum_{k=1}^n \frac{(-1)^k}{\sqrt{k}} + \frac{\alpha_n}{2}$$

est convergente.

3. b. En déduire un équivalent de u_n lorsque n tend vers $+\infty$, puis la nature de la série $\sum u_n$.

Solution * Une série numérique

1. a. Pour tout $n \ge 1$,

$$a_{n+1} - a_n = \frac{1}{n+1} - \ln\left(1 + \frac{1}{n}\right)$$

donc

$$a_{n+1}-a_n \sim \frac{1}{2n^2}$$

lorsque n tend vers $+\infty$.

Comme $\sum 1/2n^2$ est une série *convergente* de terme général *positif*, la série $\sum (a_{n+1} - a_n)$ est absolument convergente (et donc convergente) et de plus

$$\sum_{k=n}^{+\infty} (a_{k+1} - a_k) \sim \sum_{k=n}^{+\infty} \frac{1}{2k^2}$$
 (eq.1)

lorsque n tend vers $+\infty$ (Théorème de comparaison par équivalence pour les séries de *terme général positif* et Théorème de sommation des relations de comparaison).

1.b. Comme $\sum (a_{n+1} - a_n)$ est une série télescopique, on en déduit que la *suite* $(a_n)_{n \in \mathbb{N}}$ est convergente.

1.c. Puisqu'il s'agit du reste d'une série télescopique,

$$\sum_{k=n}^{+\infty} (\alpha_{k+1} - \alpha_k) = \left[\lim_{k \to +\infty} \alpha_k\right] - \alpha_n = \gamma - \alpha_n.$$

On a vu en cours que

$$\sum_{k=n}^{+\infty} \frac{1}{k^2} \sim \frac{1}{n}$$

lorsque n tend vers $+\infty$. Donc on peut déduire de (eq.1) que

$$\gamma - a_n \sim \frac{1}{2n}$$

lorsque n tend vers $+\infty$.

2. D'après la formule de Taylor,

$$ln(1 + h) = h - \frac{1}{2}h^2 + \mathcal{O}(h^3)$$

lorsque h tend vers 0. On applique cette formule avec

$$h = \frac{(-1)^{k-1}}{\sqrt{k}}$$

où k tend vers $+\infty$. On en déduit que

$$\nu_k = \mathcal{O}\Big(\frac{1}{k\sqrt{k}}\Big)$$

lorsque k tend vers $+\infty$. Comme la série (de Riemann) $\sum 1/k^{3/2}$ est une série convergente de terme général positif, on en déduit que la série $\sum v_k$ est absolument convergente (et donc convergente).

3. a. Il est facile de vérifier que

$$\forall n \geqslant 1, \quad V_n = \sum_{k=1}^n v_k.$$

Comme la série $\sum \nu_k$ est convergente (question précédente), la suite $(V_n)_{n\geqslant 1}$ est elle aussi convergente.

3.b. D'après ce qui précède,

$$\forall \ n\geqslant 1, \quad \ell n(\sqrt{n}u_n)=\sum_{k=1}^n\frac{(-1)^{k-1}}{\sqrt{k}}+\frac{a_n}{2}+V_n.$$

Or la série alternée

$$\sum \frac{(-1)^{k-1}}{\sqrt{k}}$$

Sujet pp1910 _____

est convergente (puisque $^1\!/\!\sqrt{k}$ tend vers 0 en décroissant); la suite $(\mathfrak{a}_n)_{n\geqslant 1}$ est convergente (par **1.b.**) et la suite $(V_n)_{n\geqslant 1}$ est convergente (question précédente). Donc la suite de terme général $\ell n(\sqrt{n}\mathfrak{u}_n)$ converge vers un certain réel λ .

Par continuité de la fonction exp (en λ), on en déduit que la suite de terme général $\sqrt{n}u_n$ converge vers e^{λ} et donc que

$$u_n \sim \frac{e^{\lambda}}{\sqrt{n}}$$

lorsque n tend vers $+\infty$.

La série $\sum e^{\lambda}/\sqrt{n}$ est une série (de Riemann) divergente de terme général positif, donc la série $\sum u_n$ est divergente (Théorème de comparaison par équivalence pour les séries de terme général positif).