Problème de Mathématiques

Référence pp1909 — Version du 14 octobre 2025

Soit $0 < \alpha < 1$. Pour tout entier $n \geqslant 2$, on pose

$$u_n = (n + (-1)^n)^{\alpha} - n^{\alpha}.$$

- 1. Calculer un équivalent simple ν_n de \mathfrak{u}_n et démontrer que la série $\sum \nu_n$ est convergente. La série $\sum u_n$ est-elle absolument convergente? **2.** Démontrer que la série de terme général $w_n = u_n - v_n$ est absolument convergente.

Solution * Séries numériques

1. Lorsque n tend vers $+\infty$,

$$u_n = n^{\alpha} \left[\left(1 + \frac{(-1)^n}{n} \right)^{\alpha} - 1 \right] \sim v_n$$

où on a posé

$$\forall \ n\geqslant 2, \quad \nu_n=\frac{(-1)^n\alpha}{n^{1-\alpha}}.$$

Comme $1 - \alpha > 0$, la suite de terme général $|v_n|$ tend vers 0 en décroissant, donc la série alternée $\sum v_n$ converge (Critère spécial des séries alternées).

- Comme la série $\sum v_n$ n'est pas absolument convergente (puisque $1 \alpha < 1$), la série $\sum u_n$ n'est pas absolument convergente (Théorème de comparaison par équivalence).
- 2. En poussant plus loin le développement asymptotique de u_n , on obtient

$$u_n - \nu_n \sim \frac{\alpha(\alpha-1)}{2} \cdot \frac{1}{n^{2-\alpha}}$$

lorsque n tend vers $+\infty$. Comme $2-\alpha>1$ (puisque $\alpha<1$), la série de terme général (négatif)

$$\frac{\alpha(\alpha-1)}{2}\cdot\frac{1}{n^{2-\alpha}}$$

est absolument convergente, donc la série $\sum (u_n - v_n)$ est absolument convergente elle aussi (Théorème de comparaison par équivalence).

Comme $u_n = (u_n - v_n) + v_n$, la série $\sum u_n$ est la somme d'une série convergente et d'une série absolument convergente, donc la série $\sum u_n$ est convergente.

On a donc prouvé que $\sum u_n$ était semi-convergente pour tout $0 < \alpha < 1$.