Problème de Mathématiques

Référence pp1905 — Version du 14 octobre 2025

Pour tout entier $n \in \mathbb{N}$, on pose

$$w_n = \int_{-\pi/4}^{\pi/4} \tan^n t \, dt.$$

- **1.** Démontrer que la suite $(w_n)_{n\in\mathbb{N}}$ est bornée.
- **2.** Calculer w_{2k+1} pour $k \in \mathbb{N}$.
- 3. Démontrer que la série $\sum w_n z^n$ est absolument convergente pour tout $z \in \mathbb{C}$ tel que |z| < 1.
- **4. a.** Démontrer que la suite extraite $(w_{2n})_{n\in\mathbb{N}}$ est décroissante et positive.
- **4.b.** Vérifier que

$$\forall n \in \mathbb{N}, \quad w_{2n+2} + w_{2n} = \frac{2}{2n+1}.$$

- **4. c.** En déduire un équivalent de w_{2n} lorsque n tend vers $+\infty$.
- **4. d.** Que dire de la série $\sum w_n z^n$ lorsque |z| > 1?
- **4. e.** Étudier la nature des séries $\sum w_{2n}$ et $\sum (-1)^n w_{2n}$.

Sujet pp1905

Solution * Séries numériques

Pour tout $n \in \mathbb{N}$, la fonction

$$[t \mapsto tan^n t]$$

est continue sur le segment $[-\pi/4, \pi/4]$, donc l'intégrale w_n a bien un sens.

1. Pour tout $t \in [-\pi/4, \pi/4]$,

$$|\tan t| \leq 1$$

donc, pour tout $n \in \mathbb{N}$,

$$|w_n| \leqslant \int_{-\pi/4}^{\pi/4} |\tan^n t| dt \leqslant \frac{\pi}{2} \times 1.$$

La suite $(w_n)_{n\in\mathbb{N}}$ est donc bornée.

2. Comme l'exposant n = 2k + 1 est *impair*, l'intégrande tan^n t est une fonction impaire de t. Comme cette fonction est intégrable sur le segment $[-\pi/4, \pi/4]$ et que ce segment est symétrique par rapport à 0, l'intégrale est nulle. Ainsi

$$\forall k \in \mathbb{N}, \quad w_n = 0.$$

3. D'après l'encadrement de w_n ,

$$\forall n \in \mathbb{N}, \quad |w_n z^n| \leqslant \frac{\pi}{2} \cdot |z|^n.$$

Si |z| < 1, alors le majorant est le terme général d'une série (géométrique) absolument convergente et par comparaison, la série $\sum w_n z^n$ est absolument convergente.

4. a. Pour tout $t \in [-\pi/4, \pi/4]$,

$$0 \le \tan^2 t \le 1$$

donc

$$0 \le \tan^{2n+2} t \le \tan^{2n} t$$

pour tout $n \in \mathbb{N}$. Par positivité de l'intégrale, on en déduit que

$$\forall n \in \mathbb{N}, \quad 0 \leqslant w_{2n+2} \leqslant w_{2n}.$$

4.b. Par linéarité de l'intégrale,

$$w_{2n+2} + w_{2n} = \int_{-\pi/4}^{\pi/4} \tan^{2n} t (1 + \tan^2 t) dt.$$

La fonction $[u \mapsto u^{2n}]$ est continue sur le segment [-1,1] et la fonction $[t \mapsto tan \, t]$ est de classe \mathscr{C}^1 sur $[-\pi/4,\pi/4]$, donc le changement de variable $u=tan \, t$ donne

$$w_{2n+2} + w_{2n} = \int_{-1}^{1} u^{2n} du = \frac{2}{2n+1}$$

(puisque $du = (1 + \tan^2 t) dt$).

4.c. Comme la suite $(w_{2n})_{n\in\mathbb{N}}$ est décroissante,

$$\forall n \ge 1, \quad w_{2n+2} + w_{2n} \le 2w_{2n} \le w_{2n} + w_{2n-2}$$

et donc

$$\forall n \geqslant 1, \quad \frac{1}{2n+1} \leqslant w_{2n} \leqslant \frac{1}{2n-1}.$$

On en déduit que

$$w_{2n} \sim \frac{1}{2n}$$

lorsque n tend vers $+\infty$.

4. d. Si |z| > 1, alors $w_{2n}|z|^{2n}$ tend vers $+\infty$ et par conséquent la série $\sum w_n z^n$ est grossièrement divergente.

4. e. On a démontré que

$$w_{2n} \sim \frac{1}{2n}$$

lorsque n tend vers $+\infty$. Or la série $\sum 1/2n$ est une série *divergente* de terme général *positif*. Donc, d'après le Théorème de comparaison par équivalence, la série $\sum w_{2n}$ est divergente.

La suite de terme général w_{2n} tend vers 0 en *décroissant*. D'après le Critère spécial des séries alternées, la série alternée $\sum (-1)^n w_{2n}$ est convergente.