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Pour tout entier n ⩾ 1, on pose

∀ x ∈ R, fn(x) =
e−x

√
n

n
√
n

et pour tout x tel que la série
∑
fn(x) converge, on note

f(x) =

+∞∑
n=1

fn(x).

Partie A. Variations de f

1. Démontrer que la série
∑
fn(x) converge si, et seulement si, x ∈ R+. La somme f est donc définie

surR+.
2. Démontrer que f est positive et décroissante surR+.
☞ Pour la décroissance de f, on comparera f(x) à f(y) en supposant que 0 ⩽ x ⩽ y.
3. Expliciter une suite (un)n∈N telle que la série

∑
un converge et que

∀ n ⩾ 1, ∀ x ⩾ 0,
∣∣fn(x)∣∣ ⩽ un.

4. a. Calculer f ′n(x).
4. b. Soit a > 0. Expliciter une suite (vn)n∈N telle que la série

∑
vn converge et que

∀ n ⩾ 1, ∀ x ⩾ a,
∣∣f ′n(x)∣∣ ⩽ vn.

4. c. Justifier l’existence de
wn = sup

x⩾0

∣∣f ′n(x)∣∣
pour tout n ⩾ 1. La série

∑
wn est-elle convergente?

5. Pour 5/2 uniquement. Exploiter les résultats des questions précédentes.

Partie B. Étude de f au voisinage de +∞
6. Que sait-on déjà du comportement de f au voisinage de +∞?
7. Démontrer que f(x) = O(e−x) au voisinage de +∞. Que peut-on en déduire?
8. Pour tout x > 0, on pose

ψ(x) =

+∞∑
n=2

e−x(
√
n−1)

n
√
n

.

8. a. Expliciter un réel λ > 0 tel que ψ(x) = O(e−λx) lorsque x tend vers +∞.
8. b. Exprimer f(x)ex au moyen de ψ(x) et en déduire un équivalent simple de f(x) au voisinage de
+∞.
8. c. Pour 5/2 uniquement. La fonction f est-elle intégrable au voisinage de +∞?

Partie C. Allure du graphe de f

9. On rappelle qu’une fonction φ est convexe sur un intervalle I lorsque

φ
(
(1− λ)x+ λy

)
⩽ (1− λ)φ(x) + λφ(y)

quels que soient x, y ∈ I et λ ∈ [0, 1]. On rappelle aussi que la fonction exp est convexe surR.
9. a. Démontrer que f est convexe surR+.
9. b. En déduire que l’expression

f(x) − f(0)

x

admet une limite lorsque x tend vers 0.
9. c. Démontrer que cette limite est infinie.
10. Tracer l’allure du graphe de f.
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Solution ❀ Étude d'une série de fonctions

Partie A. Variations de f

1. Si x ⩾ 0, alors 0 < e−
√
nx ⩽ 1 pour tout n ⩾ 1, donc

fn(x) = O
( 1

n3/2

)
lorsque n tend vers +∞. Comme la série de Riemann

∑
1/n3/2 est (absolument) convergente, on en

déduit que la série
∑
fn(x) est (absolument) convergente.

❧ Si x < 0, alors e−x > 1 et

fn(x) =
(e−x)

√
n

n3/2
−−−−−→
n→+∞ +∞

par croissances comparées des puissances de n et des suites géométriques. Dans ce cas, la série
∑
fn(x)

est grossièrement divergente.
❧ Finalement, la série

∑
fn(x) converge si, et seulement si, x ⩾ 0.

2. Pour tout x ⩾ 0, la série
∑
fn(x) est une série de terme général positif, donc sa somme f(x) est un

réel positif.
❧ Pour tout α ⩾ 1, la fonction [x 7→ e−αx] est décroissante, donc

∀ 0 ⩽ x ⩽ y, ∀ k ⩾ 1, fk(y) ⩽ fk(x).

En sommant sur k, on en déduit que

∀ 0 ⩽ x ⩽ y, ∀ n ⩾ 1,
n∑

k=1

fk(y) ⩽
n∑

k=1

fk(x)

et en passant à la limite (puisque x et y sont positifs) :

∀ 0 ⩽ x ⩽ y, f(y) =

+∞∑
k=1

fk(y) ⩽
+∞∑
k=1

fk(x) = f(x)

ce qui prouve que f est décroissante surR+.
3. Il est clair que

∀ n ⩾ 1, ∀ x ⩾ 0,
∣∣fn(x)∣∣ ⩽ 1

n3/2

et comme la série de Riemann
∑

1/n3/2 est convergente, on peut choisir

un =
1

n3/2
.

REMARQUE.—
1

n3/2
= sup

x∈R+

∣∣fn(x)∣∣
4. a.

∀ n ⩾ 1, ∀ x ⩾ 0, f ′n(x) = −
e−

√
nx

n
.

4. b. Pour tout n ⩾ 1 et tout x ⩾ a,

∣∣f ′n(x)∣∣ = e−
√
nx

n
⩽

(e−a)
√
n

n
.

Choisissons donc

∀ n ⩾ 1, vn =
(e−a)

√
n

n
= sup

x∈[a,+∞[

∣∣f ′n(x)∣∣.
Par croissances comparées de ℓnn et de

√
n,

nαvn = e−
√
na+(α−1) ℓn n −−−−−→

n→+∞ 0

donc
∀ α > 1, vn = O

( 1

nα

)
,
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ce qui prouve que la série
∑
vn est absolument convergente (par comparaison aux séries de Riemann).

REMARQUE.— On ne peut pas invoquer la règle de D’Alembert ici car le quotient vn+1/vn tend vers 1.
4. c. D’après l’axiome de la borne supérieure, toute fonction bornée par M admet une borne supé-
rieure et cette borne supérieure est inférieure àM.

❧ Il est clair que

∀ n ⩾ 1, ∀ x ⩾ 0,
∣∣f ′n(x)∣∣ ⩽ 1

n
,

ce qui prouve d’une part que la borne supérieure wn existe et d’autre part qu’elle est majorée par 1/n.
❧ De plus

∣∣f ′n(0)∣∣ = 1/n, donc 1/n est bien le plus petit majorant possible et par conséquent

∀ n ⩾ 1, wn =
1

n
.

Chacun sait que la série harmonique diverge, donc
∑
wn diverge.

5. Par 1., la série de fonctions
∑
fn converge simplement sur [0,+∞[.

Toutes les fonctions fn sont continues et, d’après 3., la série de fonctions
∑
fn converge normale-

ment sur [0,+∞[, donc la somme f est continue sur [0,+∞[.
Par 4.b., la série dérivée

∑
f ′n converge normalement sur [a,+∞[ pour tout a > 0, donc la somme

f est dérivable terme à terme sur ]0,+∞[ :

∀ x > 0, f ′(x) = −

+∞∑
n=1

e−
√
nx

n
.

Partie B. Étude de f au voisinage de +∞
6. Par 2., la fonction f est décroissante et positive, donc admet une limite finie (et positive) au voisi-
nage de +∞.
7. Il est clair que

∀ x ⩾ 0, ∀ n ⩾ 1, 0 ⩽ fn(x) ⩽
e−x

n3/2
.

Comme les séries
∑
fn(x) et

∑
1/n3/2 sont convergentes, on en déduit par sommation que

∀ x ⩾ 0, 0 ⩽ f(x) ⩽ e−x
+∞∑
n=1

1

n3/2

et par conséquent f(x) = O(e−x) lorsque x tend vers +∞.
En particulier, la limite de f au voisinage de +∞ est nulle.

8. a. Prenons λ =
√
2− 1 > 0 pour que (

√
n− 1) ⩾ λ pour tout n ⩾ 2. Alors

∀ x ⩾ 0, ∀ n ⩾ 2, 0 ⩽ fn(x) ⩽
e−λx

n3/2
.

Comme les séries
∑
fn(x) et

∑
1/n3/2 sont convergentes, on en déduit par sommation que

∀ x ⩾ 0, 0 ⩽ ψ(x) ⩽ e−λx
+∞∑
n=2

1

n3/2

et en particulier que ψ(x) = O(e−λx) lorsque x tend vers +∞.
8. b. Comme λ > 0, il est clair que

exf(x) = 1+ψ(x) = 1+O(e−λx) = 1+ O(1)

ce qui prouve que f(x) ∼ e−x au voisinage de +∞.
8. c. La fonction f est continue sur [0,+∞[ et équivalente à e−x au voisinage de +∞, donc f est
intégrable au voisinage de +∞ (et intégrable sur [0,+∞[ en fait).

Partie C. Allure du graphe de f

9. a. Par convexité de la fonction exp sur R, les fonctions fn sont convexes sur R+. En effet, quels
que soient x, y ⩾ 0 et 0 ⩽ λ ⩽ 1,
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e−
√
n
[
(1−λ)x+λy

]
= e(1−λ)(−

√
nx)+λ(−

√
ny)

⩽ (1− λ)e−
√
nx + λe−

√
ny.

(On pouvait aussi étudier le signe de f ′′n.)
❧ Fixons x, y ⩾ 0, 0 ⩽ λ ⩽ 1 et z = (1− λ)x+ λy ⩾ 0. Par convexité des fn,

∀ n ⩾ 1, fn(z) ⩽ (1− λ)fn(x) + λfn(y).

Comme les séries
∑
fn(x),

∑
fn(y) et

∑
fn(z) convergent (puisque x, y et z sont positifs), on en déduit

par sommation que
f(z) ⩽ (1− λ)f(x) + λf(y)

ce qui prouve que la fonction f est convexe sur [0,+∞[.
REMARQUE.— On peut prouver que f est deux fois dérivable terme à terme sur ]0,+∞[, ce qui permet
de prouver facilement que f est convexe sur l’intervalle ouvert ]0,+∞[. Mais comment justifier ensuite
que f est convexe sur l’intervalle fermé [0,+∞[?
9. b. Par convexité de f sur [0,+∞[, le taux d’accroissement

f(x) − f(0)

x
=
f(x) − f(0)

x− 0

est une fonction croissante de x sur ]0,+∞[ et on sait que toute fonction monotone sur ]0,+∞[ admet
une limite, finie ou infinie, au voisinage de 0.
9. c. Soit x > 0. Pour tout k ⩾ 1, la fonction fk est de classe C 1 sur [0, x], donc il existe 0 < ck < x tel
que

fk(x) − fk(0)

x
= f ′k(ck) = −

e−
√
kck

k
⩽ −

e−
√
kx

k
⩽ 0.

Comme la somme d’une série de terme général négatif est un minorant de la suite des sommes par-
tielles, on en déduit que

∀ x > 0, ∀ n ⩾ 1,
f(x) − f(0)

x
⩽ −

n∑
k=1

e−
√
kx

k
.

D’après 9.b., on peut faire tendre x vers 0 (les limites existent, celle du membre de gauche étant éven-
tuellement infinie) :

∀ n ⩾ 1, lim
x→0

f(x) − f(0)

x
⩽ −

n∑
k=1

1

k
.

Comme la série harmonique est une série divergente de terme général positif, on en déduit en faisant
tendre n vers +∞ que

lim
x→0

f(x) − f(0)

x
= −∞,

ce qui signifie que le graphe de f admet une tangente verticale au point d’abscisse x = 0.
10.


