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On note E, l’espace vectoriel des applications continues de [0, 1] dans R. Cet espace est normé par la
norme de la convergence uniforme, définie par

∀ f ∈ E, ∥f∥∞ = sup
x∈[0,1]

∣∣f(x)∣∣.
On ne demande pas de vérifier que ∥·∥∞ est une norme sur E.

Pour un endomorphisme u de E, on note aussi

|||u||| = sup
∥f∥∞=1

∥∥u(f)∥∥∞
lorsque cette borne supérieure existe dansR.

Partie A.

1. On définit une application
K : [0, 1]× [0, 1] → R

en posant

K(x, t) =

∣∣∣∣ t si 0 ⩽ t ⩽ x ⩽ 1,
x si 0 ⩽ x ⩽ t ⩽ 1.

1. a. Vérifier que K est bien définie.
1. b. Vérifier que K est symétrique :

∀ u, v ∈ [0, 1], K(u, v) = K(v, u).

1. c. Soit 0 < x0 < 1. Tracer le graphe de la fonction

[t 7→ K(x0, t)]

et calculer l’intégrale ∫1
0

K(x0, t) dt.

2. Tracer le graphe de la fonction définie sur [0, 1] par[
x 7→ −x2

2
+ x

]
.

Préciser les tangentes aux points d’abscisses x0 = 0 et x1 = 1.

Partie B.

Pour f ∈ E, on définit la fonction
Φ(f) : [0, 1] → R

en posant

∀ x ∈ [0, 1], Φ(f)(x) =

∫1
x

f(t) dt.

3. Démontrer que Φ est un endomorphisme de E.
4. L’endomorphisme Φ est-il surjectif ? injectif ?
5. Soit f ∈ E. Démontrer que

∀ x ∈ [0, 1],
∣∣Φ(f)(x)

∣∣ ⩽ ∥f∥∞.

La borne supérieure |||Φ||| est-elle définie?
6. On considère la fonction constante

f0 = [x 7→ 1] ∈ E.

Calculer
∥∥Φ(f0)

∥∥∞. Que peut-on en déduire?
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Partie C.

Pour f ∈ E, on définit la fonction
V(f) : [0, 1] → R

en posant

∀ x ∈ [0, 1], V(f)(x) =

∫1
0

K(x, t)f(t) dt.

7. Démontrer que, pour tout f ∈ E, la fonction V(f) est de classe C 2 sur [0, 1]. Préciser sa valeur
V(f)(0), la valeur de sa dérivée [V(f)] ′(1) ainsi que sa dérivée seconde [V(f)] ′′(x).
8. Démontrer que V est un endomorphisme de E.
9. L’endomorphisme V est-il injectif ?
10. a. Pourquoi l’endomorphisme V n’est-il pas surjectif ?
10. b. Caractériser les fonctions qui appartiennent à ImV .
10. c. Expliciter une application linéaire

W : ImV → E

telle que W ◦ V = IE.
11. Démontrer que V est lipschitzienne et que

|||V ||| =
1

2
.

☞ On pourra calculer V(f0) (où f0 a été définie au [6.]).
12. Démontrer que, pour tout f ∈ E, la fonction V(f) est ∥f∥∞-lipschitzienne sur [0, 1].

Partie D.

Pour tout f ∈ E, on pose

Q(f) =

∫1
0

[
V(f)(t)

]2 dt.

13. Expliquer pourquoi Q est une application bien définie sur E.
14. Démontrer que Q(f) ⩾ 0 pour toute fonction f ∈ E. Étudier le cas d’égalité : pour quelles fonctions
f ∈ E a-t-on Q(f) = 0?
15. L’application Q est-elle une norme sur E?
16. Soient f ∈ E et g0 ∈ E, fixées. On suppose que Q(g0) = 1 et on considère l’application q définie
par

∀ x ∈ R, q(x) = Q(f+ xg0).

16. a. Vérifier que q est convexe.
16. b. Démontrer que infx∈R q(x) existe dansR. Quelle est sa valeur?
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Solution ❀ Opérateur à noyau

Partie A.

1. a. Soit (x, t) ∈ [0, 1]× [0, 1]. On distingue trois cas :
— si t < x, alors K(x, t) = t ;
— si x > t, alors K(x, t) = x ;
— si x = t, alors K(x, t) = t = x : il y a deux définitions possibles dans ce cas, mais ces deux

définitions sont cohérentes.
Bref, la quantité K(x, t) est bien définie pour tout couple (x, t) ∈ [0, 1]× [0, 1].

1. b. Soit (u, v) ∈ [0, 1]× [0, 1]. On distingue deux cas :
— si u ⩽ v, alors K(u, v) = u (pour x = u et t = v) et comme u ⩽ v, alors K(v, u) = u (pour x = v

et t = u) ;
— si v < u, alors K(u, v) = v (pour x = u et t = v) et K(v, u) = v (pour x = v et t = u).

Variante : On peut aussi remarquer que

∀ (x, t) ∈ [0, 1]× [0, 1], K(x, t) = min{x, t}

expression dont la symétrie est évidente.
1. c. Par définition de K,

— pour t ∈ [0, x0], on a K(x0, t) = t (fonction linéaire) ;
— pour t ∈ [x0, 1], on a K(x0, t) = x0 (fonction constante).

(1−x0)

x0

x0

x0

0 1

L’intégrale est donc l’aire d’un trapèze :∫1
0

K(x0, t) dt =
1+ (1− x0)

2
× x0 = x0 −

x20
2
.

(On rappelle que l’aire d’un trapèze est le produit de la moyenne des bases par la hauteur.)
2. Il s’agit d’un trinôme du second degré dont la concavité est tournée vers le bas (le coefficient de x2

est strictement négatif). La parabole atteint son sommet à l’abscisse x = 1 (= −b/2a). L’allure du graphe
est donc parfaitement connue.

0 1

1/2

La tangente au point d’abscisse x1 = 1 est donc horizontale (tangente au sommet de la parabole).
Quant à la tangente au point d’abscisse x0 = 0, un développement limité à l’ordre 1 suffit :

−x2

2
+ x =

x→0
x+ O(x).

La tangente à l’origine est donc la droite d’équation y = x.

Partie B.

3. Comme f est continue sur l’intervalle [0, 1], on peut appliquer le Théorème fondamental de l’Ana-
lyse : l’application

x 7→ Φ(f)(x) =

∫x
1

−f(t) dt

est la primitive de −f qui s’annule en x = 1. En particulier, il s’agit d’une fonction de classe C 1 sur [0, 1]
et donc d’une fonction continue. Cela prouve déjà que Φ est bien une application de E dans E.
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La linéarité de Φ :

∀ x ∈ [0, 1], ∀ f, g ∈ E, ∀ λ ∈ R,

Φ(λf+ g)(x) = λΦ(f)(x) +Φ(g)(x)

est une conséquence directe de la linéarité de l’intégration.
4. On a vu à la question précédente que Φ(f) était une fonction de classe C 1. Comme E est l’ensemble
des fonctions continues et que certaines fonctions continues ne sont pas de classe C 1, l’endomorphisme
Φ n’est pas surjectif.

❧ Soit f ∈ KerΦ. Comme on l’a vu à la question précédente, la fonction Φ(f) est une primitive
de −f. Si on suppose que Φ(f) est identiquement nulle, on en déduit que sa dérivée est elle aussi
identiquement nulle. Ainsi KerΦ est réduit à la fonction nulle et l’endomorphisme Φ est injectif.
5. Soit x ∈ [0, 1]. La borne supérieure ∥f∥∞ étant un majorant, on a

∀ t ∈ [x, 1],
∣∣f(t)∣∣ ⩽ ∥f∥∞.

Par positivité de l’intégrale, on en déduit que∫1
x

∣∣f(t)∣∣ dt ⩽
∫1
x

∥f∥∞ dt = (1− x)∥f∥∞
et d’après l’inégalité de la Moyenne, ∣∣∣∣ ∫1

x

f(t) dt
∣∣∣∣ ⩽ ∫1

x

∣∣f(t)∣∣ dt.

Bref,
∀ x ∈ [0, 1],

∣∣Φ(f)(x)
∣∣ ⩽ (1− x)∥f∥∞ ⩽ ∥f∥∞.

❧ Comme le majorant est indépendant de x ∈ [0, 1], on peut passer au sup par rapport à x dans cet
encadrement :

∀ f ∈ E, ∥Φ(f)∥∞ ⩽ ∥f∥∞.

Notons Σ, la sphère unité de E, c’est-à-dire l’ensemble des fonctions f ∈ E telles que ∥f∥∞ = 1. On vient
de prouver que

∀ f ∈ Σ, ∥Φ(f)∥∞ ⩽ 1

(soit : 1 est un majorant), ce qui prouve l’existence de la borne supérieure

|||Φ||| = sup
f∈Σ

∥Φ(f)∥∞
et aussi que

|||Φ||| ⩽ 1

(la borne supérieure est le plus petit des majorants).
6. Pour tout x ∈ [0, 1],

Φ(f0)(x) = 1− x ⩾ 0

donc
∥Φ(f0)∥∞ = sup

x∈[0,1]

(1− x) = 1.

Or f0 ∈ Σ, donc (la borne sup est un majorant)

|||Φ||| ⩾ ∥Φ(f0)∥∞ = 1.

D’après la question précédente,
|||Φ||| = 1.
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Partie C.

7. D’après la relation de Chasles,

V(f)(x) =

∫x
0

K(x, t)f(t) dt+
∫1
x

K(x, t)f(t) dt

=

∫x
0

tf(t) dt+ x

∫1
x

f(t) dt.

Il est donc clair que
V(f)(0) = 0.

Comme au [[3.]], on peut invoquer le Théorème fondamental pour établir que V(f) est une fonction
de classe C 1 et que

∀ x ∈ [0, 1], [V(f)] ′(x) = xf(x) +Φ(f)(x) − xf(x)

= Φ(f)(x).

Cela prouve que [V(f)] ′ est de classe C 1 d’après [[3.]] et donc que V(f) est de classe C 2 sur [0, 1]. On
déduit encore de [[3.]] que

[V(f)] ′(1) = 0

et que
∀ x ∈ [0, 1], [V(f)] ′′(x) = −f(x).

8. On a établi à la question précédente que V(f) était une fonction continue sur [0, 1] pour tout f ∈ E.
D’autre part, la linéarité de V est évidente (comme au [[3.]]).
9. Si V(f) est identiquement nulle, alors sa dérivée seconde est identiquement nulle et donc [[7.]] la
fonction f est identiquement nulle. L’endomorphisme V est donc injectif.
10. a. Pour tout f ∈ E, l’application V(f) est de classe C 2 [[7.]] et il existe des fonctions continues qui
ne sont pas de classe C 2, donc l’endomorphisme V n’est pas surjectif.
10. b. D’après [[7.]], toutes les fonctions g qui appartiennent à ImV sont de classe C 2 et vérifient

g(0) = g ′(1) = 0.

Réciproquement, si g est une fonction de classe C 2 telle que g(0) = g ′(1) = 0, alors on pose f = −g ′′. Il
est clair que f ∈ E et [d’après [7.]] on a

∀ x ∈ [0, 1], [V(f)] ′′(x) = −f(x) = g ′′(x)

ce qui prouve que la différence V(f) − g est une fonction affine. Or cette différence est nulle en x = 0 et
la pente de cette fonction affine est nulle, donc V(f) = g, ce qui prouve que g appartient à l’image de
V .

L’image de V est donc l’ensemble{
g ∈ C 2([0, 1],R) : g(0) = g ′(1) = 0

}
.

10. c. On a vu à la question précédente que −g ′′ est un antécédent de g ∈ ImV . On sait [[9.]] que
l’endomorphisme V est injectif, donc −g ′′ est l’unique antécédent de g ∈ ImV par V .

En posant
∀ g ∈ ImV, W(g) = −g ′′

on définit bien une application linéaire
W : ImV → E

telle que
∀ f ∈ E, W

(
V(f)

)
= f

c’est-à-dire W ◦ V = IE.
11. On va suivre la méthode usuelle, rappelée au [[5.]] et au [[6.]].

❧ Soient f ∈ E et x ∈ [0, 1].
D’après l’inégalité triangulaire et l’inégalité de la Moyenne,

∣∣V(f)(x)∣∣ ⩽ ∣∣∣∣ ∫x
0

tf(t) dt
∣∣∣∣+ ∣∣∣∣x ∫1

x

f(t) dt
∣∣∣∣

⩽
∫x
0

∣∣tf(t)∣∣ dt+ x

∫1
x

∣∣f(t)∣∣ dt



Sujet pp2004 6

(puisque 0 ⩽ x et x ⩽ 1). Pour tout t ∈ [0, 1], on a∣∣f(t)∣∣ ⩽ ∥f∥∞
(la borne sup est un majorant). On en déduit d’une part que

∀ t ∈ [0, x],
∣∣tf(t)∣∣ ⩽ t∥f∥∞

(puisque t ⩾ 0) et d’autre part que

∀ t ∈ [x, 1],
∣∣f(t)∣∣ ⩽ ∥f∥∞.

Par positivité de l’intégrale, on en déduit que

∣∣V(f)(x)∣∣ ⩽ (∫x
0

t dt+ x

∫1
x

dt
)
∥f∥∞ =

(
x−

x2

2

)
∥f∥∞.

D’après [[2.]],

∀ x ∈ [0, 1],
∣∣V(f)(x)∣∣ ⩽ 1

2
∥f∥∞.

Comme le majorant est indépendant de x, on peut passer au sup :

∀ f ∈ E, ∥V(f)∥∞ ⩽
1

2
∥f∥∞.

On en déduit, comme au [[5.]], que |||V ||| est bien définie et que

|||V ||| ⩽
1

2
.

❧ On a bien sûr ∥f0∥∞ = 1 et donc
|||V ||| ⩾ ∥V(f0)∥∞

(puisque le sup est un majorant). Mais la fonction V(f) n’est autre que la fonction étudiée au [2.] (calculs
effectués au [1.c.]). On en déduit que

∥V(f0)∥∞ =
1

2

et donc que |||V ||| = 1/2.
12. Soit f ∈ E. D’après [[7.]], la fonction V(f) est de classe C 1 sur [0, 1] et [V(f)] ′ = Φ(f). D’après [[5.]],

∀ x ∈ [0, 1],
∣∣[V(f)] ′(x)∣∣ ⩽ ∥f∥∞

et d’après l’Inégalité des accroissements finis, la fonction V(f) est lipschitzienne et admet ∥f∥∞ pour
constante de Lipschitz.

Partie D.

13. D’après [[7.]], la fonction V(f) est continue sur le segment [0, 1]. Il en va donc de même pour la
fonction [V(f)]2, ce qui prouve l’existence de l’intégrale. Ainsi, la fonction Q est bien définie sur E.
14. Soit f ∈ E. Alors

∀ t ∈ [0, 1], [V(f)(t)]2 ⩾ 0

et Q(f) ⩾ 0 puisque l’intégration conserve les inégalités.
❧ Si f est la fonction nulle, il est clair que Q(f) = 0 (par linéarité de V).

Réciproquement, si Q(f) = 0, alors la fonction [V(f)]2 est une fonction continue et positive sur [0, 1]
dont l’intégrale est nulle : par conséquent, V(f) est la fonction nulle. Or V est un endomorphisme
injectif [[9.]], donc f est la fonction nulle.

On a donc Q(f) = 0 si, et seulement si, f est la fonction nulle.
15. L’application Q n’est pas positivement homogène :

∀ f ̸= 0E, Q(2f) = 4Q(f) ̸= 2Q(f)

donc ce n’est pas une norme sur E.
16. a. Par linéarité de V et de l’intégrale,

q(x) = Q(f) + 2xφ(f, g0) +Q(g0)x
2
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où

φ(f, g0) =

∫1
0

V(f)(t)V(g0)(t) dt.

Or Q(g0) = 1 par hypothèse, donc q est une fonction polynomiale de degré 2 dont le coefficient domi-
nant est strictement positif : c’est bien une fonction convexe.
16. b. On sait que la fonction polynomiale[

x 7→ x2 + 2bx+ c
]

atteint son minimum en x0 = −b et ce minimum est donc égal à c − b2. Par conséquent, la fonction q
admet une borne inférieure et

inf
x∈R

q(x) = min
x∈R

q(x) = Q(f) −

(∫1
0

V(f)(t)V(g0)(t) dt
)2

.


