Problème de Mathématiques

Référence pp1911 — Version du 15 octobre 2025

Les trois parties de ce problème sont complèment indépendantes.

Partie A. Coefficients de Fourier

1. a. Donner un exemple de série divergente $\sum u_n$ telle que la série $\sum u_n^2$ soit convergente.

1.b. On considère cette fois une série absolument convergente $\sum u_n$. Démontrer qu'il existe un entier n_0 tel que

$$\forall n \geqslant n_0, \quad |u_n|^2 \leqslant |u_n|$$

et en déduire que la série $\sum u_n^2$ est absolument convergente.

1.c. Donner un exemple de série convergente $\sum u_n$ telle que la série $\sum u_n^2$ soit divergente.

2. Dans cette question, on considère une fonction

$$f:[0,2\pi]\to\mathbb{R}$$

de classe \mathscr{C}^1 , telle que $f(0) = f(2\pi)$ et on pose

$$\begin{split} \forall \, n \in \mathbb{N}, \quad c_n &= \frac{1}{2\pi} \int_0^{2\pi} f(t) e^{-int} \, dt, \\ d_n &= \frac{1}{2\pi} \int_0^{2\pi} f'(t) e^{-int} \, dt. \end{split}$$

2. a. Démontrer que

$$\forall n \geqslant 1, \qquad c_n = \frac{-id_n}{n}.$$

- **2.b.** En déduire que la série $\sum c_n^2$ est convergente.
- 2. c. Démontrer que

$$\forall n \geqslant 1, \quad |c_n| \leqslant \frac{1}{2n^2} + \frac{|d_n|^2}{2}.$$

- **2. d.** *En admettant que* la série $\sum d_n^2$ soit absolument convergente (Théorème de Bessel), démontrer que la série $\sum c_n$ est absolument convergente.
- 3. On conserve les notations de la question précédente et on considère maintenant la fonction

$$f = [t \mapsto t(2\pi - t)]$$
.

- **3. a.** Tracer le graphe de f.
- 3.b. Vérifier que

$$\forall \ n \in \mathbb{N}^*, \quad \int_0^{2\pi} t e^{-i n t} \ dt = \frac{2 i \pi}{n}.$$

3.c. En déduire que la série $\sum c_n$ est absolument convergente.

Partie B. Transformée de Fourier

Soit f, une fonction intégrable sur \mathbb{R}_+ . Pour tout entier $n \ge 1$, on pose

$$u_n = \int_0^{+\infty} f(t)e^{-it/n} dt.$$

- **4.** Démontrer que la suite $(u_n)_{n\geqslant 1}$ est bien définie.
- 5. Démontrer que la suite $(u_n)_{n\geqslant 1}$ est bornée.
- **6.** Démontrer que la suite $(u_n)_{n\geqslant 1}$ converge. (On précisera sa limite.)

Partie C. Transformée de Laplace

Soit f, une fonction continue et bornée sur $\mathbb{R}_+.$ Pour tout $\mathfrak{n}\in\mathbb{N},$ on pose

$$v_n = \int_0^{+\infty} f(t)e^{-nt} dt.$$

- 7. La suite $(v_n)_{n\in\mathbb{N}}$ est-elle bien définie?
- 8. Démontrer que la suite (ν_n) est bornée.
- **9.** Démontrer que la suite de terme général $w_n = nv_n$ converge vers f(0).

Sujet pp1911

Solution Calcul intégral

Coefficients de Fourier Partie A.

La série harmonique $\sum \frac{1}{n}$ est divergente, tandis que la série de Riemann $\sum \frac{1}{n^2}$ est convergente 1. a. (cours).

Comme la série $\sum u_n$ est absolument convergente, son terme général u_n tend vers 0, donc (en prenant $\varepsilon = 1 > 0$ dans la définition) il existe un rang $n_0 \in \mathbb{N}$ tel que

$$\forall n \geqslant n_0, \quad |u_n - 0| \leqslant 1$$

et donc tel que

$$\forall n \geqslant n_0, \quad |u_n^2| \leqslant |u_n|.$$

Par hypothèse, la série $\sum |u_n|$ est convergente. Par comparaison, la série de terme général positif $\sum |u_n^2|$

est elle aussi convergente, ce qui signifie que la série $\sum u_n$ est absolument convergente.

1. c. La série $\sum \frac{(-1)^n}{\sqrt{n}}$ est convergente (Critère spécial des séries alternées), tandis que la série harmonique $\sum \frac{1}{n}$ est divergente.

REMARQUE. — D'après [1.b.], pour trouver un contre-exemple, il faut choisir une série semi-convergente : c'est pour cette raison qu'on a choisi une série alternée.

Comme la fonction f est de classe \mathscr{C}^1 , on peut intégrer par parties (on intègre ici sur un segment). Comme $f(0) = f(2\pi)$,

$$\left[\frac{f(t)e^{-int}}{-in}\right]_0^{2\pi} = 0.$$

On en déduit que

$$\int_0^{2\pi} f(t) e^{-i\pi t} \; dt = \frac{1}{i\pi} \int_0^{2\pi} f'(t) e^{-i\pi t} \; dt$$

et donc que

$$\forall n \geqslant 1, \qquad c_n = \frac{-id_n}{n}.$$

La fonction f' est continue sur le segment $[0, 2\pi]$, donc elle est bornée :

$$\forall t \in [0, 2\pi], |f'(t)e^{-int}| = |f'(t)| \le ||f'||_{\infty}.$$

On en déduit (Inégalité de la moyenne) que

$$|d_n| \leqslant \frac{1}{2\pi} \int_0^{2\pi} |f'(t)e^{-int}| dt \leqslant ||f'||_{\infty}$$

pour tout $n \in \mathbb{N}$ et que $c_n = \mathcal{O}(\frac{1}{n})$ lorsque n tend vers $+\infty$ d'après [2.a.] Par conséquent,

$$c_n^2 = \mathcal{O}\Big(\frac{1}{n^2}\Big)$$

lorsque n tend vers $+\infty$ et, par comparaison à une série de Riemann, la série $\sum c_n^2$ est absolument convergente.

Comme la convergence absolue implique la convergence (pour les séries complexes au moins), on en déduit que la série $\sum c_n^2$ est convergente.

D'après [2.a.],

$$\forall n \geqslant 1, \quad 2|c_n| = \frac{2|d_n|}{n}.$$

Or, pour tout $n \ge 1$,

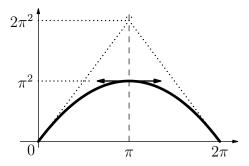
$$0 \le \left(|d_n| - \frac{1}{n} \right)^2 = |d_n|^2 + \frac{1}{n^2} - 2|c_n|$$

donc on a bien:

$$\forall \, n\geqslant 1, \quad |c_n|\leqslant \frac{1}{2n^2}+\frac{|d_n|^2}{2}.$$

- **2. d.** La série de Riemann $\sum \frac{1}{n^2}$ et, d'après l'énoncé, la série $\sum |d_n|^2$ convergent. On peut donc appliquer le Théorème de comparaison pour les séries de terme général positif à l'inégalité établie ci-dessus. Cela prouve que la série $\sum |c_n|$ est convergente, c'est-à-dire que la série $\sum c_n$ est absolument convergente.
- Étude sans difficulté. Il est intéressant de mettre en évidence l'axe de symétrie et les tangentes aux deux extrémités du graphe.

Sujet pp1911 ______ 3



REMARQUE.— On rappelle qu'un graphe doit être lisible et légendé...

3.b. Il suffit d'intégrer par parties en remarquant que

$$\int_0^{2\pi} e^{-int} dt = 0.$$

3. c. On reprend les notations utilisées plus haut :

$$\forall t \in [0, 2\pi], f'(t) = 2\pi - 2t.$$

D'après la question précédente,

$$\forall n \geqslant 1, \quad d_n = \frac{-2i}{n}$$

et d'après **[2.a.]** (puisque la fonction f est de classe \mathscr{C}^1 et que $f(0)=f(2\pi)$),

$$\forall n \geqslant 1, \quad c_n = \frac{-2}{n^2}.$$

Comme $c_n = \mathcal{O}(\frac{1}{n^2})$, la série $\sum c_n$ est bien absolument convergente.

Partie B. Transformée de Fourier

4. L'intégrande

$$\left[t\mapsto f(t)e^{-\mathfrak{i}t/n}\right]$$

est le produit de la fonction f, intégrable sur \mathbb{R}_+ par hypothèse, et d'une fonction continue et bornée sur \mathbb{R}_+ . Cette fonction est donc intégrable sur \mathbb{R}_+ , ce qui prouve que la suite $(\mathfrak{u}_n)_{n\geqslant 1}$ est bien définie.

5. Soit $n \ge 1$. Pour tout $t \in \mathbb{R}_+$,

$$|f(t)e^{-it/n}| = |f(t)|$$

et comme la fonction f est intégrable sur \mathbb{R}_+ (par hypothèse), on déduit de l'Inégalité de la moyenne que

$$|u_n| \leqslant \int_0^{+\infty} \left| f(t) e^{-it/n} \right| dt = \int_0^{+\infty} \left| f(t) \right| dt.$$

Comme le majorant est indépendant de $n \in \mathbb{N}^*$, cela prouve que la suite $(u_n)_{n\geqslant 1}$ est bornée.

6. D'après [4.], les fonctions

$$\varphi_n = \left[t \mapsto f(t) e^{-it/n} \right]$$

sont intégrables sur \mathbb{R}_+ . D'autre part, pour tout $t \in \mathbb{R}_+$ (y compris pour t = 0),

$$\lim_{n\to+\infty}e^{it/n}=e^0=1$$

donc la suite de fonctions $(\phi_n)_{n\geqslant 1}$ converge simplement sur \mathbb{R}_+ vers la fonction f. Enfin, comme on vient de le voir en [5.], la convergence est dominée :

$$\forall n \geqslant 1, \forall t \in \mathbb{R}_+, \quad |\varphi_n(t)| \leqslant |f(t)|.$$

D'après le Théorème de convergence dominée, la suite $(\mathfrak{u}_n)_{n\geqslant 1}$ est convergente et

$$\int_0^{+\infty} f(t)e^{-it/n} dt \xrightarrow[n \to +\infty]{} \int_0^{+\infty} f(t) dt.$$

Sujet pp1911 ______ 4

Partie C. Transformée de Laplace

7. Pour n = 0, la fonction f est continue et bornée sur \mathbb{R}_+ , donc il n'y a aucune raison d'imaginer qu'elle soit intégrable sur \mathbb{R}_+ .

Mais, pour $n \ge 1$,

$$\forall t \in \mathbb{R}_+, \quad \left| f(t)e^{-nt} \right| \leqslant \left\| f \right\|_{\infty} e^{-t}$$

et comme $[t\mapsto e^{-t}]$ est intégrable sur \mathbb{R}_+ (fonction de référence), on conclut que

$$[t \mapsto f(t)e^{-nt}]$$

est intégrable sur \mathbb{R}_+ . Ainsi l'intégrale ν_n est bien définie pour $n\geqslant 1$ (et seulement pour $n\geqslant 1$ en général).

8. En intégrant la majoration établie au [7.], on obtient

$$\begin{split} \forall \ n \geqslant 1, \quad |\nu_n| \leqslant \int_0^{+\infty} \left| f(t) e^{-nt} \right| dt \\ \leqslant \|f\|_{\infty} \int_0^{+\infty} e^{-t} \ dt = \|f\|_{\infty}. \end{split}$$

Le majorant étant indépendant de n, cela prouve que la suite $(v_n)_{n\geqslant 1}$ est bornée.

9. Soit $n \ge 1$. D'après [7.], la fonction

$$\left[t\mapsto f(t)ne^{-nt}\right]$$

est intégrable sur \mathbb{R}_+ . Le changement de variable affine

$$u = nt$$

prouve alors que la fonction

$$\phi_n = \left[u \mapsto f \left(\frac{u}{n} \right) e^{-u} \right]$$

est elle aussi intégrable sur \mathbb{R}_+ et que

$$\int_0^{+\infty} \varphi_n(u) du = \int_0^{+\infty} f(t)e^{-nt}n dt = w_n.$$

Pour tout $u\in\mathbb{R}_+$, le quotient $u/_n$ tend vers 0 lorsque n tend vers $+\infty$. Comme f est continue en 0, le Théorème de composition des limites montre que

$$\varphi_n(u) \xrightarrow[n \to +\infty]{} f(0)e^{-u}$$
.

Enfin, comme f est bornée, il est clair que

$$\forall u \in \mathbb{R}_+, \ \forall n \geqslant 1, \quad |\varphi_n(u)| \leqslant ||f||_{\infty} e^{-u}.$$

Le majorant est indépendant de l'indice n et intégrable sur \mathbb{R}_+ en tant que fonction de u (fonction intégrable de référence). On vient ainsi d'établir que la convergence est dominée et par conséquent,

$$\int_{0}^{+\infty} \varphi_{n}(u) du \xrightarrow[n \to +\infty]{} \int_{0}^{+\infty} f(0)e^{-u} du$$

ce qui revient à

$$w_n \xrightarrow[n \to +\infty]{} f(0).$$

Remarque.— En particulier, cela prouve que la suite $(\nu_n)_{n\geqslant 1}$ converge vers 0 (ce qui est plus précis que le résultat du [8.]).