Problème de Mathématiques

Référence pp1806 — Version du 15 octobre 2025

On note $I =]-1, +\infty[$ et $I^* = I \setminus \{0\}$. On étudie ici la fonction f définie par f(0) = 1 et par

$$\forall \ x \in I^*, \quad f(x) = \frac{1-e^{-x}}{x(1+x)}.$$

On rappelle que la série de Poisson $\sum \frac{\lambda^n}{n!}$ converge absolument pour tout $\lambda \in \mathbb{C}$ et que

$$\sum_{n=0}^{+\infty} \frac{\lambda^n}{n!} = e^{\lambda}.$$

1. Dans cette question, on étudie la fonction φ définie par

$$\forall x \in I, \quad \varphi(x) = e^{-x}(x^2 + 3x + 1) - (1 + 2x).$$

- **1.a.** Calculer la dérivée φ' . Préciser la valeur de $\varphi'(0)$ et la limite de φ' au voisinage de $+\infty$.
- **1.b.** Calculer la dérivée seconde φ'' . Préciser la valeur de $\varphi''(0)$.
- **1.c.** En déduire le tableau des variations de φ . Que dire du signe de φ ?
- **1.d.** Tracer l'allure du graphe de φ .
- **2.** Démontrer que f est de classe \mathscr{C}^1 sur I*.
- **3. a.** Calculer le développement limité à l'ordre deux au voisinage de 0 de f.
- **3.b.** La fonction f est-elle continue en 0? dérivable en 0?
- **3. c.** En étudiant f'(x) au voisinage de x = 0, démontrer que f est de classe \mathscr{C}^1 sur I.
- 4. a. Démontrer que

$$\forall x \in \mathbb{R}^*, \quad \frac{1 - e^{-x}}{x} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(n+1)!} x^n.$$

4. b. Expliciter une suite $(a_n)_{n\in\mathbb{N}}$ telle que

$$\forall x \in]-1,1[, f(x) = \sum_{n=0}^{+\infty} a_n x^n.$$

- **4. c.** Démontrer que la suite $(|a_n|)_{n\in\mathbb{N}}$ converge vers une limite non nulle.
- **4. d.** En déduire que la série $\sum a_n x^n$ est convergente si, et seulement si, |x| < 1.

Solution * Étude de fonctions

1. a. La fonction φ est clairement de classe \mathscr{C}^{∞} sur I et

$$\forall \ x \in I, \quad \phi'(x) = e^{-x}(-x^2-x+2)-2.$$

En particulier, $\varphi'(0) = 0$ et $\varphi'(x)$ tend vers -2 au voisinage de $+\infty$ (par croissances comparées de e^{-x} et des polynômes en x).

1.b. Pour tout $x \in I$,

$$\varphi''(x) = e^{-x}(x^2 - x - 3)$$

et en particulier $\varphi''(0) = -3$.

1. c. La dérivée seconde $\varphi''(x)$ est du signe du trinôme $x^2 - x - 3$. Comme le coefficient dominant de ce trinôme est positif, il est négatif entre ses racines. Le discriminant étant égal à 13, ces racines sont

$$\frac{1-\sqrt{13}}{2} < \frac{1-\sqrt{9}}{2} = -1 \quad \text{et} \quad \alpha = \frac{1+\sqrt{13}}{2} \in I.$$

Ainsi $\phi''(x) < 0$ pour $-1 < x < \alpha$ et $\phi''(x) > 0$ pour $x > \alpha$.

La dérivée φ' est donc strictement décroissante sur $]-1,\alpha]$. Comme $\varphi'(0)=0$, on en déduit que $\varphi'(x)>0$ pour -1< x<0 et $\varphi'(x)<0$ pour $0< x\leqslant \alpha$.

D'autre part, la dérivée φ' est strictement croissante sur $[\alpha, +\infty[$. Mais comme elle tend vers -2 au voisinage de $+\infty$, on en déduit qu'elle reste strictement négative sur $[\alpha, +\infty[$ et donc en fait sur $]0, +\infty[$.

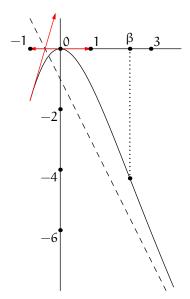
La fonction φ est donc strictement croissante sur]-1,0], atteint son maximum en x=0 (et ce maximum est nul : $\varphi(0)=0$) et est strictement décroissante sur $[0,+\infty[$.

Finalement, $\varphi(0) = 0$ et $\varphi(x) < 0$ pour tout $x \in I^*$.

1.d. On connaît maintenant les variations de φ sur I et en particulier on sait que son graphe possède une tangente horizontale à l'origine. Par ailleurs,

$$\varphi(x) + (1 + 2x) = e^{-x}(x^2 + 3x + 1)$$

tend vers 0 par valeurs *positives* lorsque x tend vers $+\infty$, ce qui signifie que la droite d'équation y = 2x + 1 est asymptote au graphe de φ et que ce graphe est situé *au-dessus* de son asymptote au voisinage de $+\infty$.



2. Comme la fonction exp est de classe \mathscr{C}^1 sur \mathbb{R} , le numérateur

$$\left[x\mapsto 1-e^{-x}\right]$$

est de classe \mathscr{C}^1 sur I^* .

Le dénominateur est une expression polynomiale, donc de classe \mathscr{C}^1 sur \mathbb{R} , donc sur \mathbb{I} . Cette expression s'annule seulement pour x=-1 et pour x=0, donc le quotient est de classe \mathscr{C}^1 sur \mathbb{I} privé de -1 (qui n'appartient pas à \mathbb{I}) et de 0, c'est-à-dire de classe \mathscr{C}^1 sur \mathbb{I}^* .

Sujet pp1806 _______ 3

REMARQUE.— Surveillez votre langage! L'ensemble I* est réunion de deux intervalles, mais n'est pas un intervalle.

3. a. Pour x voisin de 0,

$$1 - e^{-x} = x - \frac{x^2}{2} + \frac{x^3}{6} + o(x^3)$$

donc pour x voisin de 0 mais non nul (pour ne pas diviser par zéro):

$$\frac{1 - e^{-x}}{x} = 1 - \frac{x}{2} + \frac{x^2}{6} + o(x^2).$$

Comme

$$\frac{1}{1+x} = 1 - x + x^2 + o(x^2),$$

on en déduit que

$$f(x) = 1 - \frac{3x}{2} + \frac{5x^2}{3} + o(x^2).$$

3.b. On juge de la continuité de f en comparant la valeur f(0) avec la limite de f au voisinage de 0. Or f(0) = 1 par définition et f(x) tend vers 1 lorsque x tend vers 0 d'après le développement limité précédent. La fonction f est donc bien continue en 0.

Le développement limité de f calculé en [3.a.] est donc vrai au voisinage de 0, y compris en x = 0. Comme l'ordre de ce développement limité est supérieur à 1, on en déduit que la fonction f est dérivable en x = 0 et que la valeur de f'(0) est égale au coefficient de x dans le développement limité. Autrement dit, f'(0) = -3/2.

3.c. Comme f est continue sur I* d'après [2.] et continue en 0 d'après [3.b.], elle est continue sur l'intervalle I tout entier

Toujours d'après [2.], la fonction f est de classe \mathscr{C}^1 sur I^* et d'après [3.b.], elle est dérivable en x=0 avec f'(0)=-3/2.

Or, pour tout $x \in I^*$,

$$f'(x) = \frac{\phi(x)}{x^2(1+x)^2}$$

et au voisinage de 0,

$$\phi(x) = \frac{-3}{2}x^2 + o(x^2)$$

donc

$$f'(x) = \frac{-3}{2} + o(1)$$

ce qui signifie que f'(x) tend vers f'(0) lorsque x tend vers 0.

D'après le théorème du prolongement de classe \mathscr{C}^1 , la fonction f est donc de classe \mathscr{C}^1 sur I.

REMARQUE.— L'expression de la dérivée f'(x) en fonction de ϕ montre que f'(x) < 0 pour tout $x \in I$. Comme la fonction f est de classe \mathscr{C}^1 et strictement décroissante sur l'intervalle I, elle réalise une bijection de I sur l'intervalle

$$J = \lim_{+\infty} f, \lim_{-1} f[=] -\infty, \frac{e-1}{2} [$$

et comme f' ne s'annule pas, la bijection réciproque est aussi de classe \mathscr{C}^1 (sur J).

4. a. Pour tout $x \in \mathbb{R}$,

$$1 - e^{-x} = 1 - \sum_{k=0}^{+\infty} \frac{(-x)^k}{k!} = 1 - 1 + \sum_{k=1}^{+\infty} \frac{(-1)^{k+1} x^k}{k!}$$
$$= x \sum_{n=0}^{+\infty} \frac{(-1)^{n+2} x^n}{(n+1)!}$$
 (n = k - 1)

donc, pour tout $x \in \mathbb{R}^*$ (pour ne pas diviser par zéro),

$$\frac{1 - e^{-x}}{x} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(n+1)!} x^n.$$

4.b. Pour tout $x \in I^*$, le réel f(x) est le produit de

$$\frac{1 - e^{-x}}{x} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(n+1)!} x^n.$$

Sujet pp1806 ______ 4

par

$$\frac{1}{1+x} = \sum_{n=0}^{+\infty} (-1)^n x^n.$$

La première série converge absolument pour tout $x \in I^*$ (règle de D'Alembert), tandis que la seconde converge absolument seulement pour |x| < 1 (série géométrique de raison (-x)). On peut donc appliquer le théorème sur le produit de Cauchy pour 0 < |x| < 1: la série de terme général

$$\sum_{k=0}^{n} \frac{(-1)^k x^k}{(k+1)!} \cdot (-1)^{n-k} x^{n-k} = \left(\sum_{k=0}^{n} \frac{(-1)^n}{(k+1)!}\right) x^n$$

est absolument convergente et sa somme est égale à f(x).

En choisissant

$$\forall n \in \mathbb{N}, \quad a_n = (-1)^n \sum_{k=0}^n \frac{1}{(k+1)!},$$

on a donc

$$\forall 0 < |x| < 1, \quad f(x) = \sum_{n=0}^{+\infty} a_n x^n.$$

Il reste à remarquer que $\alpha_0=1=f(0)$, ce qui prouve que l'égalité est encore vraie pour x=0. On a donc :

$$\forall x \in]-1,1[, f(x) = \sum_{n=0}^{+\infty} \left[(-1)^n \sum_{k=0}^n \frac{1}{(k+1)!} \right] x^n.$$

4.c. D'après la question précédente, $|a_n|$ converge vers

$$\sum_{k=0}^{+\infty} \frac{1}{(k+1)!} = \sum_{n=1}^{+\infty} \frac{1^n}{n!} = e-1 > 0.$$

4. d. On sait depuis **[4.b.]** que la série $\sum a_n x^n$ converge pour tout réel x tel que |x| < 1. Réciproquement, si $|x| \geqslant 1$, alors

$$|a_n x^n| \geqslant \frac{e-1}{2} \cdot 1^n$$

pour tout entier n assez grand, donc la série $\sum a_n x^n$ est grossièrement divergente.

Par conséquent, la série $\sum a_n x^n$ est convergente si, et seulement si, |x| < 1.