Problème de Mathématiques

Référence pp2002 — Version du 15 octobre 2025

1. Soient E, un espace vectoriel réel de dimension $n \in \mathbb{N}^*$ et f, un endomorphisme de E tel que

$$Ker f = Im f.$$

- **1.a.** Démontrer que n est pair et exprimer le rang de f en fonction de n.
- 1.b. Démontrer que

$$\forall x \in E$$
, $(f \circ f)(x) = 0$.

2. Soit $f \in L(E)$ tel que $f \circ f = 0$. On suppose que

$$\dim E = 2 \operatorname{rg} f$$
.

Démontrer que Ker f = Im f.

Partie A.

Soit f, un endomorphisme de rang p tel que

$$Ker f = Im f$$
.

- **3.** Exprimer la dimension n de E en fonction de p.
- 4. Soit F, un sous-espace supplémentaire de Ker f dans E. On note

$$\mathscr{B}_1 = (e_1, \dots, e_p)$$
 et $\mathscr{B}_2 = (e'_1, \dots, e'_p)$

des bases de F et Ker f respectivement.

4. a. Que dire de la famille

$$\mathscr{B} = (e_1, \ldots, e_p, e'_1, \ldots, e'_p)$$
 ?

4.b. Démontrer que la famille

$$(f(e_1),\ldots,f(e_p))$$

est une base de Im f.

- **4. c.** Pour tout entier $1 \le i \le p$, on pose $e_{p+i} = f(e_i)$. Calculer $f(e_{p+i})$.
- **4. d.** Démontrer que la famille

$$\mathcal{B}_0 = (e_1, \dots, e_p, e_{p+1}, \dots, e_{2p})$$

est une base de E. Écrire la matrice de f relative à cette base.

Partie B.

On considère ici $E=\mathbb{R}^4$ et l'endomorphisme f représenté dans la base canonique de E par la matrice suivante.

$$A = \begin{pmatrix} 0 & -1 & -1 & 0 \\ -1 & 0 & 0 & -1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

- 5. Déterminer une base de Ker f, une base de Im f et en déduire, sans calcul supplémentaire, la matrice A^2 .
- **6.** Démontrer qu'il existe une base $\mathscr C$ de E dans laquelle la matrice de f est triangulaire.
- 7. Calculer la matrice de passage de la base canonique à une telle base \mathscr{C} .

Sujet pp2002 _______ 2

Solution * Noyau et image d'un endomorphisme

1. a. Comme f est un endomorphisme de E, espace vectoriel de dimension finie, on peut appliquer le théorème du rang :

$$\dim E = \dim \operatorname{Im} f + \dim \operatorname{Ker} f = 2 \operatorname{rg} f$$
,

ce qui prouve bien que la dimension n de E est paire.

1. b. Pour tout $x \in E$, le vecteur f(x) appartient à Im f. Comme Im f = Ker f, le vecteur f(x) appartient à Ker f, donc

$$(f \circ f)(x) = f(f(x)) = 0_{E}.$$

2. Soit $y \in \text{Im } f$: il existe donc $x \in E$ tel que y = f(x). Par conséquent,

$$f(y) = (f \circ f)(x) = 0_E$$

ce qui prouve que $y \in \text{Ker } f$. Ainsi $\text{Im } f \subset \text{Ker } f$.

On applique à nouveau le théorème du rang :

$$2 \operatorname{rg} f = \dim E = \operatorname{rg} f + \dim \operatorname{Ker} f$$

donc $\dim \operatorname{Im} f = \dim \operatorname{Ker} f$. Par inclusion et égalité des dimensions, les deux sous-espaces vectoriels sont égaux : $\operatorname{Im} f = \operatorname{Ker} f$.

Partie A.

- 3. D'après 1.a., n = 2p.
- **4. a.** Comme \mathcal{B}_1 est une base de F, que \mathcal{B}_2 est une base de Ker f et que $E = F \oplus Ker f$, alors la famille \mathcal{B} , obtenue en rassemblant les vecteurs de \mathcal{B}_1 et de \mathcal{B}_2 , est une base de E.
- **4.b.** L'image par f de la base \mathcal{B} est (toujours!) une famille génératrice de Im f. Comme les vecteurs e'_k appartiennent à Ker f, on en déduit que

$$(f(e'_1),\ldots,f(e'_p))=(\mathfrak{0}_E,\ldots,\mathfrak{0}_E)$$

et par conséquent

$$Im f = Vect(f(e), e \in \mathscr{B}) = Vect(f(e_k), 1 \leqslant k \leqslant p).$$

La famille $(f(e_k))_{1 \le k \le p}$ est donc une famille génératrice de Im f.

ullet Vérifions maintenant que cette famille est libre : considérons des scalaires $(\mathfrak{a}_k)_{1\leqslant k\leqslant p}$ tels que

$$\sum_{k=1}^{p} a_k f(e_k) = 0_E.$$

Par linéarité de f, cela signifie que le vecteur

$$\sum_{k=1}^{p} a_k e_k$$

appartient à Ker f. Or ce vecteur appartient, par définition de \mathcal{B}_1 , au sous-espace F. Par construction, Ker f et F sont en somme directe, donc

$$\sum_{k=1}^{p} a_k e_k = 0_{\mathsf{E}}$$

et comme la famille $(e_k)_{1\leqslant k\leqslant p}$ est libre, on en déduit que les scalaires \mathfrak{a}_k sont tous nuls : cqfd.

- La famille $(f(e_k))_{1 \le k \le p}$, libre et génératrice, est donc bien une base de Im f.
- **4. c.** Pour $1 \leqslant i \leqslant p$,

$$f(e_{p+1}) = (f \circ f)(e_i) = 0_F$$

puisque f o f est l'endomorphisme nul.

4. d. D'après **4.b.**, la famille $\mathscr{B}_2 = (e_{p+1}, \dots, e_{2p})$ est une base de Im f = Ker f. D'après 4.a., la famille $\mathscr{B}_0 = \mathscr{B}$ est une base de E. Par définition des e_{p+k} et d'après **4.c.**,

Partie B.

5. On rappelle que l'image d'une matrice est engendrée par les colonnes de la matrice.

On remarque que les colonnes C_1 et C_2 ne sont pas proportionnelles, donc le rang de A est au moins égal à 2.

D'autre part, $C_1 - C_4 = 0$ et $C_2 - C_3 = 0$, donc les vecteurs (1,0,0,-1) et (0,1,-1,0) (qui ne sont pas proportionnels) appartiennent au noyau de f, donc la dimension du noyau de f est au moins égale à 2.

D'après le théorème du rang, $4 = \dim \operatorname{Ker} f + \operatorname{rg} f$, donc

$$\dim \operatorname{Ker} f = \operatorname{rg} f = 2$$

et par conséquent

- le couple (C_1, C_2) est une base de Im f;
- le couple $(-C_2, -C_1)$ est une base de Ker f.

En particulier, Ker f = Im f. D'après **1.b.**, l'application f^2 est l'endomorphisme nul et donc $A^2 = 0$.

6. On a démontré que Ker f = Im f. D'après **4.**, il existe une base de E dans laquelle la matrice de f est égale à

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix}$$

et donc triangulaire (inférieure).

7. On a vu plus haut, au **4.d.**, qu'il suffit de choisir $\mathscr{C} = \mathscr{B}_0$.

La matrice

$$P = \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

est inversible (triangulaire avec des coefficients diagonaux tous distincts de 0), ce qui prouve que ses colonnes forment une base de \mathbb{R}^4 . D'après 5., les deux dernières colonnes forment une base de Ker f. Les deux premières colonnes forment donc une base d'un supplémentaire de Ker f dans \mathbb{R}^4 .

Les troisième et quatrième colonnes étant les images respectives des première et deuxième colonne, on en déduit que la matrice P est bien la matrice de passage de la base canonique à une base du type de la base \mathcal{B}_0 définie au **4.d.** et répond donc à la question posée.