Lycée Pierre CORNEILLE MP/MPI

Probléme de Mathématiques
Référence pp1902 — Version du 15 octobre 2025

Pour 0 < x < 1, on pose
f(x) =xInx et g(x)=x".

1. Démontrer qu'il existe deux réels a et b tels qu’en posant f(0) = a et g(0) = b, on définisse des
prolongements de f et g continus sur le segment [0, 1].
2. Onnote alors

et, pour toutn € N,
1 1
Up = —J () dt
n! 0

ainsi que
n
Sn = E Uk.
k=0

2.a. Ftudier les variations de f et g sur [0, 1].

2.b. Justifier rapidement 'existence de I et des u,,.

2.c. Démontrer que la suite (un )nen converge et préciser sa limite.
2.d. Calculer ugy et u;.

2.e. Parintégration par parties successives, démontrer que

(="

VnG]N, unzm.

2.f. Démontrer que la série ) u, converge.

2.g. Ecrire en langage Python une fonction somme (n) d’argument n € N et qui retourne la valeur de
Sn.

3.a. Alaide del'inégalité de Taylor-Lagrange, démontrer que, pour tout n € N,

noLk
X
eX—E o

k=0

v_—]gxgo,
e

< I .
entl(n+1)!

3.b. En déduire que

1
VTLEIN, |I—Sn|<m.
3.c. Conclure.
4. Ecrire une fonction estimation(eps) ayant pour argument ¢ > 0 et qui retourne une valeur ap-
prochée de l'intégrale I a € pres.
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Solution % Somme d’une série

1. Ilestclair que f et g sont continues sur |0, 1]. On sait que x {n x tend vers 0 lorsque x tend vers 0.
En posant f(0) = 0, on prolonge f en une fonction continue sur [0, 1].
Par définition, g(x) = exp[f(x)] pour 0 < x < 1. En posant g(0) = 1 = exp(0), on a donc g = exp of
sur [0, 1], donc on prolonge g en une fonction continue sur [0, 1].
2.a. La fonction f est dérivable sur ]0, 1] et, pour 0 < x < 1T,0ona

f'(x) =1+ tnx = In(ex).

Comme f est continue sur [0, 1], elle est décroissante sur [0, 1/.] et croissante sur [1/e, 1]. Comme f(0) =
0 = (1), la fonction f est négative sur [0, 1]. Enfin, elle atteint son minimum en x = /e et ce minimum
est égal a f(1/e) = —T/e.

@a Comme g = exp of et que exp est croissante, on déduit des variations de f que g est décroissante
sur [0, 1/.] et croissante sur [1/e, 1] et

Vx €01, e /¢ =g(1/) <g(x) <gl0)=g(1)=1.

2.b. Les fonctions g et f™ sont continues sur le segment [0, 1], donc les intégrales I et u,, sont bien
définies.
2.c. D’apresl'étude des variations de f,

VneN, Vtelo,1], [fM(t)]<e ™.

D’apres l'inégalité de la moyenne, pour tout n € IN,

1 (' n
un| < —J [ (1) dt < — <
n! 0
donc la suite (un Jnen converge vers 0.
2.d. Ilestclairqueup =1T.
Comme f est continue sur [0, 1],
1
u = limJ tintdt.

e—0 J,

En intégrant par parties avant de faire tendre ¢ vers 0, on trouve que

1
t —1
'LL] ——Joidt—T

(puisque t? {nt tend vers 0 lorsque t tend vers 0).
2.e. Question difficile : il faut expliciter I’hypothese de récurrence (puisque l'indication intégration
par parties successives suggere une démonstration par récurrence) et mettre ses idées dans I'ordre pour
produire une copie lisible et convaincante.

@ ['égalité attendue est vraie pour n = 0 et n = 1 d’aprés la question précédente.

@ Pour tout n € N, on démontre par récurrence (sur k) que, pour tout k € NN,

r ()< de = —0 1) f

" (nt)* dt.
0 Tl+2 (n )

0

(L'hérédité se démontre en intégrant par parties sur le segment [e, 1] et en faisant ensuite tendre ¢ vers
0: c’est assez long, il faut étre soigneux dans le passage a la limite.)

a Cette propriété établie (ou seulement admise si on ne veut pas y passer trop de temps), on en
déduit par une nouvelle démonstration par récurrence que

1 n ] N
J [f(t)]n dt = MJ thdt = M
n

et donc que

2.f. Pourtoutn >1,
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et comme le second membre est le terme général d'une série (géométrique) convergente, la série ) u,
est absolument convergente. Comme la convergence absolue implique la convergence, la série ) u,
est bien convergente.

2.g. Une fois encore, on évite de recourir aux fonctions python disponibles pour mener les calculs a
I'aide des opérations élémentaires... (En I'occurrence, ce n’est pas vraiment raisonnable.)

def S(n):
somme, sgn = 1, -1.0
for k in range(2, n+3):
prod = sgn
for i in range(k):
prod /= k
somme += prod
sgn = -sgn
return somme

3.a. On applique l'inégalité de Taylor-Lagrange a la fonction ¢ = exp (what else?) a 1’ordre n. Il est
clair que, pour tout x < 0,

sup @™ (y)| = sup eV =e’=1
yelx,0] y€lx,0]
et par conséquent,
n k n (k]
X X _ (p (O) k
=3 S| ot - 3 2
k=0 k=0
|X‘n+1 e—(n+1]
< <
(m+1) (m+T1)!

pour tout —1/e < x < 0.
3.b. D’apres1’étude des variations de f,

—1
Vtel0,1], - < f(t) <0.

On peut donc appliquer I'encadrement précédent avec x = f(t) pour tout t € [0, 1].
Par linéarité de l'intégrale,

1 n k
[f(t)]
1-S, :J e -3 dt.
0 L

Une fois encore par inégalité de la moyenne, on en déduit que
T e—(n+1) e—(n+1)

[—S.l < dt = .
| | L m+ 1) m+ N

3.c. Comme le majorant tend vers 0, on en déduit que la somme de la série ) u,, est égale a I'inté-
grale L.

REMARQUE.— C’est utile, car on ne sait pas calculer cette intégrale autrement...
4. Dans un premier temps, on détermine un entier n tel que

ef(n+1)

— <.
CES I

On calcule ensuite S,.

def erreur(eps):
e = 2.7818281828
err, n = 1/e, 0O
while err>eps:
n+=1
err /= ex(n+1)
return n
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def estimation(eps):
n = erreur(eps)
return S(n)

REMARQUE.— Les applications numériques montrent qu’on ne gagnerait rien a utiliser le critere spécial
des séries alternées pour majorer le reste de la série > u, (elle converge beaucoup trop vite pour
exploiter la différence d’ordre de grandeur des deux majorants du reste).



