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Pour 0 < x ⩽ 1, on pose
f(x) = x ℓn x et g(x) = xx.

1. Démontrer qu’il existe deux réels a et b tels qu’en posant f(0) = a et g(0) = b, on définisse des
prolongements de f et g continus sur le segment [0, 1].
2. On note alors

I =

∫1
0

g(t) dt

et, pour tout n ∈ N,

un =
1

n!

∫1
0

fn(t) dt

ainsi que

Sn =

n∑
k=0

uk.

2. a. Étudier les variations de f et g sur [0, 1].
2. b. Justifier rapidement l’existence de I et des un.
2. c. Démontrer que la suite (un)n∈N converge et préciser sa limite.
2. d. Calculer u0 et u1.
2. e. Par intégration par parties successives, démontrer que

∀ n ∈ N, un =
(−1)n

(n+ 1)n+1
.

2. f. Démontrer que la série
∑

un converge.
2. g. Écrire en langage Python une fonction somme(n) d’argument n ∈ N et qui retourne la valeur de
Sn.
3. a. À l’aide de l’inégalité de Taylor-Lagrange, démontrer que, pour tout n ∈ N,

∀ −1

e
⩽ x ⩽ 0,

∣∣∣∣ex −

n∑
k=0

xk

k!

∣∣∣∣ ⩽ 1

en+1(n+ 1)!
.

3. b. En déduire que

∀ n ∈ N, |I− Sn| ⩽
1

en+1(n+ 1)!
.

3. c. Conclure.
4. Écrire une fonction estimation(eps) ayant pour argument ε > 0 et qui retourne une valeur ap-
prochée de l’intégrale I à ε près.
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Solution ❀ Somme d'une série

1. Il est clair que f et g sont continues sur ]0, 1]. On sait que x ℓn x tend vers 0 lorsque x tend vers 0.
En posant f(0) = 0, on prolonge f en une fonction continue sur [0, 1].
Par définition, g(x) = exp[f(x)] pour 0 < x ⩽ 1. En posant g(0) = 1 = exp(0), on a donc g = exp ◦f

sur [0, 1], donc on prolonge g en une fonction continue sur [0, 1].
2. a. La fonction f est dérivable sur ]0, 1] et, pour 0 < x ⩽ 1, on a

f ′(x) = 1+ ℓn x = ℓn(ex).

Comme f est continue sur [0, 1], elle est décroissante sur [0, 1/e] et croissante sur [1/e, 1]. Comme f(0) =
0 = f(1), la fonction f est négative sur [0, 1]. Enfin, elle atteint son minimum en x = 1/e et ce minimum
est égal à f(1/e) = −1/e.

❧ Comme g = exp ◦f et que exp est croissante, on déduit des variations de f que g est décroissante
sur [0, 1/e] et croissante sur [1/e, 1] et

∀ x ∈ [0, 1], e−1/e = g(1/e) ⩽ g(x) ⩽ g(0) = g(1) = 1.

2. b. Les fonctions g et fn sont continues sur le segment [0, 1], donc les intégrales I et un sont bien
définies.
2. c. D’après l’étude des variations de f,

∀ n ∈ N, ∀ t ∈ [0, 1],
∣∣fn(t)∣∣ ⩽ e−n.

D’après l’inégalité de la moyenne, pour tout n ∈ N,

|un| ⩽
1

n!

∫1
0

∣∣fn(t)∣∣ dt ⩽
e−n

n!
⩽

1

n!

donc la suite (un)n∈N converge vers 0.
2. d. Il est clair que u0 = 1.

Comme f est continue sur [0, 1],

u1 = lim
ε→0

∫1
ε

t ℓn t dt.

En intégrant par parties avant de faire tendre ε vers 0, on trouve que

u1 = −

∫1
0

t

2
dt =

−1

4

(puisque t2 ℓn t tend vers 0 lorsque t tend vers 0).
2. e. Question difficile : il faut expliciter l’hypothèse de récurrence (puisque l’indication intégration
par parties successives suggère une démonstration par récurrence) et mettre ses idées dans l’ordre pour
produire une copie lisible et convaincante.

❧ L’égalité attendue est vraie pour n = 0 et n = 1 d’après la question précédente.
❧ Pour tout n ∈ N, on démontre par récurrence (sur k) que, pour tout k ∈ N,∫1

0

tn+1(ℓn t)k+1 dt =
−(k+ 1)

n+ 2

∫1
0

tn+1(ℓn t)k dt.

(L’hérédité se démontre en intégrant par parties sur le segment [ε, 1] et en faisant ensuite tendre ε vers
0 : c’est assez long, il faut être soigneux dans le passage à la limite.)

❧ Cette propriété établie (ou seulement admise si on ne veut pas y passer trop de temps), on en
déduit par une nouvelle démonstration par récurrence que∫1

0

[f(t)]n dt =
(−1)nn!

(n+ 1)n

∫1
0

tn dt =
(−1)nn!

(n+ 1)n+1

et donc que

∀ n ∈ N, un =
(−1)n

(n+ 1)n+1
.

2. f. Pour tout n ⩾ 1,

|un| ⩽
1

2n+1
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et comme le second membre est le terme général d’une série (géométrique) convergente, la série
∑

un

est absolument convergente. Comme la convergence absolue implique la convergence, la série
∑

un

est bien convergente.
2. g. Une fois encore, on évite de recourir aux fonctions python disponibles pour mener les calculs à
l’aide des opérations élémentaires... (En l’occurrence, ce n’est pas vraiment raisonnable.)

def S(n):

somme, sgn = 1, -1.0

for k in range(2, n+3):

prod = sgn

for i in range(k):

prod /= k

somme += prod

sgn = -sgn

return somme

3. a. On applique l’inégalité de Taylor-Lagrange à la fonction φ = exp (what else?) à l’ordre n. Il est
clair que, pour tout x < 0,

sup
y∈[x,0]

∣∣φ(n+1)(y)
∣∣ = sup

y∈[x,0]

ey = e0 = 1

et par conséquent, ∣∣∣∣ex −

n∑
k=0

xk

k!

∣∣∣∣ = ∣∣∣∣φ(x) −

n∑
k=0

φ(k)(0)

k!
· xk

∣∣∣∣
⩽

|x|n+1

(n+ 1)!
× 1 ⩽

e−(n+1)

(n+ 1)!

pour tout −1/e ⩽ x ⩽ 0.
3. b. D’après l’étude des variations de f,

∀ t ∈ [0, 1],
−1

e
⩽ f(t) ⩽ 0.

On peut donc appliquer l’encadrement précédent avec x = f(t) pour tout t ∈ [0, 1].
Par linéarité de l’intégrale,

I− Sn =

∫1
0

ef(t) −

n∑
k=0

[f(t)]k

k!
dt.

Une fois encore par inégalité de la moyenne, on en déduit que

|I− Sn| ⩽
∫1
0

e−(n+1)

(n+ 1)!
dt =

e−(n+1)

(n+ 1)!
.

3. c. Comme le majorant tend vers 0, on en déduit que la somme de la série
∑

un est égale à l’inté-
grale I.
REMARQUE.— C’est utile, car on ne sait pas calculer cette intégrale autrement...
4. Dans un premier temps, on détermine un entier n tel que

e−(n+1)

(n+ 1)!
⩽ ε.

On calcule ensuite Sn.

def erreur(eps):

e = 2.7818281828

err, n = 1/e, 0

while err>eps:

n += 1

err /= e*(n+1)

return n
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def estimation(eps):

n = erreur(eps)

return S(n)

REMARQUE.— Les applications numériques montrent qu’on ne gagnerait rien à utiliser le critère spécial
des séries alternées pour majorer le reste de la série

∑
un (elle converge beaucoup trop vite pour

exploiter la différence d’ordre de grandeur des deux majorants du reste).


