
Lycée Pierre CORNEILLE MP/MPI ✽

Problème de Mathématiques
Référence pp1810 — Version du 15 octobre 2025

On compare ici deux algorithmes de calcul du pgcd de deux entiers naturels.
1. On rappelle que le pgcd de deux entiers naturels a et b est l’unique d ∈ N qui divise à la fois a et b
et tel que tout entier δ qui divise à la fois a et b divise également d.

Étant donnés deux entiers naturels a et b (non nuls), on pose

Ω =
{
k ∈ N∗ : k | a et k | b

}
ainsi que

M = maxΩ.

1. a. Démontrer que l’entier M est bien défini.
1. b. Démontrer que M est le pgcd de a et b.
1. c. Pour calculer M, on peut passer en revue tous les entiers compris entre 1 et a et retourner le
dernier de ces entiers qui divise à la fois a et b.

Écrire en langage Python une fonction gcd(a, b) qui retourne le pgcd de a et b calculé selon la
méthode qui vient d’être décrite.
2. La fonction Python euclide(a,b) retourne le pgcd de a et b calculé au moyen de l’algorithme
d’Euclide.

def euclide(a, b):

u, v = a, b

while v!=0:

u, v = v, u%v

return u

2. a. Écrire en langage Python une fonction récursive euclide_rec(a,b) qui retourne le pgcd des en-
tiers a et b calculé au moyen de l’algorithme d’Euclide.
2. b. En utilisant la fonction euclide, écrire en langage Python une fonction gcd_trois(a,b,c) qui
retourne le pgcd des entiers a, b et c.
3. La suite de Fibonacci (Fn)n∈N est définie par

F0 = 0, F1 = 1 et ∀ n ∈ N, Fn+2 = Fn+1 + Fn.

On admet que (Fn)n∈N est une suite strictement croissante d’entiers naturels et que, lorsque n tend vers
+∞,

Fn ∼
φn

√
5

où φ = (1+
√
5)/2.

3. a. Quel est le reste de la division euclidienne de Fn+2 par Fn+1 ?
3. b. En déduire le nombre un de divisions euclidiennes effectuées en calculant le pgcd de Fn+2 et
Fn+1 avec la fonction euclide.
3. c. On note vn, le nombre de divisions euclidiennes effectuées pour calculer le pgcd de Fn+2 et Fn+1

avec la fonction gcd. Comparer les ordres de grandeur de un et de vn lorsque n tend vers +∞.
4. Écrire en langage Python une fonction fibo(n) dont l’argument n est un entier naturel et qui re-
tourne le nombre de Fibonacci Fn.

Sujet pp1810 2

Solution ❀ Nombres de Fibonacci

1. a. Le nombre d’entiers k ∈ N∗ qui divisent à la fois a et b est inférieur au nombre d’entiers 1 ⩽
k ⩽ a. Par conséquent, Ω est une partie finie deN.

D’autre part, 1 divise a et b, donc 1 ∈ Ω. En tant que partie finie et non vide de N, Ω admet un
plus grand élément.
1. b. Soit d, le pgcd de a et b.

Comme M ∈ Ω, l’entier M est un diviseur commun à a et b, donc M divise d : il existe q ∈ N∗ tel
que d = q×M et comme q ⩾ 1, alors M ⩽ d.

Réciproquement, en tant que diviseur commun à a et b, le pgcd d appartient à Ω et comme M est
le plus grand élément de Ω, on a donc d ⩽ M.

Finalement, on a bien M = d.
1. c. Tout diviseur commun à a et b est inférieur à a et à b. Pour limiter les calculs, on pose m =
min{a, b} et on parcourt la liste des entiers 2 ⩽ k ⩽ m (la boucle for doit s’achever avec k = m) : on
sait que 1 est un diviseur commun à a et b.

Pour chaque entier k, on calcule les restes de la division euclidienne de a par k et de la division
euclidienne de b par k : s’ils sont tous les deux nuls, c’est que k est un diviseur commun de a et b et
dans ce cas, on affecte la valeur de k à la variable d.

On retourne la valeur finale de d, qui est le dernier (et donc le plus grand) diviseur commun
trouvé.

def gcd(a, b):

m = min(a, b)

d = 1

for k in range(2, m+1):

if (a%k==0) and (b%k==0):

d = k

return d

2. a. L’algorithme d’Euclide repose sur la relation

∀ b > 0, pgcd(a, b) = pgcd(b, r)

où r est le reste de la division euclidienne de a par b et sur le cas particulier :

∀ a ∈ N, pgcd(a, 0) = a.

La version récursive de l’algorithme s’en déduit immédiatement.

def euclide_rec(a, b):

if (b==0):

d = a

else:

d = euclide_rec(b, a%b)

return d

2. b. Il suffit de savoir que
pgcd(a, b, c) = pgcd(a,pgcd(b, c))

(associativité du pgcd).

def gcd_trois(a, b, c):

return euclide(a, euclide(b, c))

3. a. D’après la relation de récurrence :

Fn+2 = Fn+1 + Fn = 1× Fn+1 + Fn

et comme la suite de Fibonacci est positive et strictement croissante, on en déduit que 0 ⩽ Fn < |Fn+1|.
La relation ci-dessus est donc bien la division euclidienne de Fn+2 par Fn+1 : le quotient est égal à 1 et
le reste à Fn.
3. b. Dans la fonction euclide,

Sujet pp1810 3

— Le couple (u,v) est initialement égal à (Fn+2, Fn+1) ;
— D’après la question précédente, à chaque étape, le couple (Fk+1, Fk) est remplacé par le couple

(Fk, Fk−1) ;
— On sort de la boucle lorsque v devient nul et dans ce cas, le couple (u,v) a pour valeur

(F1, F0) = (1, 0).
On passe de Fn+1 à F0 = F(n+1)−(n+1) en effectuant (n + 1) itérations et une division euclidienne

à chaque itération, donc on effectue un = n+ 1 divisions euclidiennes en tout.
REMARQUE.— On a démontré au passage que Fn+2 et Fn+1 étaient premiers entre eux.
3. c. On parcourt la liste des entiers compris entre 1 et

Fn+1 = min{Fn+1, Fn+2}

et pour chacun de ces entiers, on effectue deux divisions euclidiennes. On effectue en tout vn = 2Fn+1

divisions euclidiennes.
❧ Lorsque n tend vers +∞,

un ∼ n et vn ∼
2φn

√
5

donc un = O(vn) (puisque |φ| > 1). La fonction euclide est donc sensiblement plus efficace que la
fonction gcd.
4. On retourne à part la valeur F0. Pour calculer Fn avec n ⩾ 1, on effectue une boucle.

Initialisation
(u, v) = (F0, F1) = (0, 1)

Itération (1 ⩽ k < n)
Entrée de boucle
(u, v) = (Fk−1, Fk)
Sortie de boucle
(u, v) = (Fk, Fk+1) = (Fk, Fk + Fk−1)

Terminaison
(u, v) = (Fn−1, Fn)

— L’entrée de la première itération (k = 1) coïncide avec l’initialisation.
— La sortie de la k-ième itération coïncide avec l’entrée de la (k+ 1)-ième itération.
— La terminaison coïncide avec la sorte de la dernière itération (k = n− 1).
En retournant la valeur finale de v, la fonction fibo donne bien la valeur de Fn.
On insiste sur un détail essentiel : l’instruction

for k in range(1, n):

traduit exactement l’encadrement 1 ⩽ k < n qui figure sur le tableau.

def fibo(n):

if (n==0):

return 0

else:

u, v = 0, 1

for k in range(1, n):

u, v = v, u+v

return v

❧ On calcule Fn en effectuant (n − 1) itérations de la boucle et chaque itération calcule une somme.
Le nombre de sommes effectuées est donc équivalent à n : la complexité de la fonction fibo est donc
linéaire.
REMARQUE.— On peut faire mieux ! En exploitant la relation de récurrence linéaire et l’algorithme
d’exponentiation rapide, on peut écrire une fonction de complexité logarithmique.

