Lycée Pierre CORNEILLE MP/MPI

Probléme de Mathématiques
Référence pp1810 — Version du 15 octobre 2025

On compare ici deux algorithmes de calcul du pged de deux entiers naturels.
1. On rappelle que le pged de deux entiers naturels a et b est I'unique d € N qui divise a la fois a et b
et tel que tout entier 6 qui divise a la fois a et b divise également d.

Etant donnés deux entiers naturels a et b (non nuls), on pose

O={keN*":kla et k|b}

ainsi que
M = max Q.

1.a. Démontrer que l'entier M est bien défini.
1.b. Démontrer que M est le pged de a et b.
1.c. Pour calculer M, on peut passer en revue tous les entiers compris entre 1 et a et retourner le
dernier de ces entiers qui divise a la fois a et b.

Ecrire en langage Python une fonction ged(a, b) qui retourne le pged de a et b calculé selon la
méthode qui vient d’étre décrite.

2. La fonction Python euclide(a,b) retourne le pged de a et b calculé au moyen de l'algorithme
d’Euclide.

def euclide(a, b):
u, v=a, b

while v!=0:
u, v =v, uhv
return u

2.a. Fcrire en langage Python une fonction récursive euclide_rec(a,b) qui retourne le pged des en-
tiers a et b calculé au moyen de l'algorithme d’Euclide.

2.b. En utilisant la fonction euclide, écrire en langage Python une fonction gcd_trois(a,b,c) qui
retourne le pged des entiers a, b et c.

3. Lasuite de Fibonacci (Fn)nen est définie par

Fo=0, Fi=1 et VneN, F,i2=F1+Fn.

On admet que (F)nen est une suite strictement croissante d’entiers naturels et que, lorsque n tend vers
400,

Fn 7
ott @ = (1++/5)/2.
3.a. Quel est le reste de la division euclidienne de F 4, par Fn17?
3.b. En déduire le nombre u, de divisions euclidiennes effectuées en calculant le pged de Fn; et
F..11 avec la fonction euclide.
3.c. Onnote vy, le nombre de divisions euclidiennes effectuées pour calculer le pged de Fr 15 et Fryg
avec la fonction gcd. Comparer les ordres de grandeur de u,, et de v, lorsque n tend vers +oo.
4. Ecrire en langage Python une fonction fibo(n) dont I'argument n est un entier naturel et qui re-
tourne le nombre de Fibonacci F,,.

Sujet pp1810 2

Solution % Nombres de Fibonacci

1.a. Le nombre d’entiers k € N* qui divisent a la fois a et b est inférieur au nombre d’entiers 1 <
k < a. Par conséquent, Q) est une partie finie de IN.

D’autre part, 1 divise a et b, donc 1 € Q. En tant que partie finie et non vide de N, Q admet un
plus grand élément.

1.b. Soit d, le pged de aetb.

Comme M € Q, I'entier M est un diviseur commun a a et b, donc M divise d : il existe q € IN* tel
que d =q x M etcomme q > 1,alors M < d.

Réciproquement, en tant que diviseur commun a a et b, le pged d appartient a Q et comme M est
le plus grand élément de (), on a donc d < M.

Finalement, on a bien M = d.

1.c. Tout diviseur commun a a et b est inférieur a a et a b. Pour limiter les calculs, on pose m =
min{a, b} et on parcourt la liste des entiers 2 < k < m (la boucle for doit s’achever avec k = m) : on
sait que 1 est un diviseur commun a a et b.

Pour chaque entier k, on calcule les restes de la division euclidienne de a par k et de la division
euclidienne de b par k : s’ils sont tous les deux nuls, c’est que k est un diviseur commun de a et b et
dans ce cas, on affecte la valeur de k a la variable d.

On retourne la valeur finale de d, qui est le dernier (et donc le plus grand) diviseur commun
trouvé.

def gcd(a, b):
m = min(a, b)
d=1
for k in range(2, m+1):
if (a%k==0) and (b%k==0):
d =k
return d

2.a. L’algorithme d’Euclide repose sur la relation
Vb >0, pged(a, b) = pged(b, T)
ol 1 est le reste de la division euclidienne de a par b et sur le cas particulier :
VaeN, pged(a,0) = a.

La version récursive de l'algorithme s’en déduit immédiatement.

def euclide_rec(a, b):
if (b==0):
d =a
else:
d = euclide_rec(b, alb)
return d

2.b. Il suffit de savoir que
pged(a, b, c) = pged(a, pged(b, c))

(associativité du pged).

def gcd_trois(a, b, c):
return euclide(a, euclide(b, c))

3.a. D’apres la relation de récurrence :
Fri2=Foi1+Fn=1XFop1 +Fy

et comme la suite de Fibonacci est positive et strictement croissante, on en déduit que 0 < F,, < [Frq1l.
La relation ci-dessus est donc bien la division euclidienne de F,, 1, par F,1 : le quotient est égal a 1 et
le reste a F,.

3.b. Dans la fonction euclide,

Sujet pp1810 3

— Le couple (u,v) estinitialement égal a (Fr42, Fnt1);
— D’apres la question précédente, a chaque étape, le couple (Fx41, Fx) est remplacé par le couple

(Fiy Fie1);
— On sort de la boucle lorsque v devient nul et dans ce cas, le couple (u,v) a pour valeur
(F1)FO) = (1)0)

On passe de Fr,11 a Fo = Fiy1)—(ny1) en effectuant (n + 1) itérations et une division euclidienne
a chaque itération, donc on effectue u,, =n + 1 divisions euclidiennes en tout.

REMARQUE.— On a démontré au passage que Fn; et F,, 7 étaient premiers entre eux.
3.c. On parcourt la liste des entiers compris entre 1 et

Frni1 =min{Fn 1, Fng2)

et pour chacun de ces entiers, on effectue deux divisions euclidiennes. On effectue en tout v, = 2F,, 1
divisions euclidiennes.
@ Lorsque n tend vers +oo,
2™

Up~n et vy~ W
donc un, = o(vy) (puisque |[@| > 1). La fonction euclide est donc sensiblement plus efficace que la
fonction gcd.
4. Onretourne a part la valeur Fy. Pour calculer F,, avec n > 1, on effectue une boucle.

Initialisation
(w,v) = (Fo,F1) =(0,1)
Itération (1 <k <n)
Entrée de boucle
(u,v) = (Fx_1,Fy)
Sortie de boucle
(w,v) = (Fx, Fey1) = (Fiy Fe + Fre1)

Terminaison

(u,v) = (Fro1,Fn)

— L’entrée de la premiére itération (k = 1) coincide avec l'initialisation.

— La sortie de la k-iéme itération coincide avec I’entrée de la (k + 1)-iéme itération.
— La terminaison coincide avec la sorte de la derniére itération (k = n — 1).

En retournant la valeur finale de v, la fonction fibo donne bien la valeur de F,,.

On insiste sur un détail essentiel : I'instruction

for k in range(1, n):

traduit exactement I’encadrement 1 < k < n qui figure sur le tableau.

def fibo(n):

if (n==0):
return O

else:
u, v =0, 1
for k in range(l, n):

u, v =v, utv

return v

@ On calcule F,, en effectuant (n — 1) itérations de la boucle et chaque itération calcule une somme.
Le nombre de sommes effectuées est donc équivalent a n : la complexité de la fonction fibo est donc
linéaire.

REMARQUE.— On peut faire mieux! En exploitant la relation de récurrence linéaire et 1’algorithme
d’exponentiation rapide, on peut écrire une fonction de complexité logarithmique.

