Problème de Mathématiques

Référence pp1516 — Version du 15 octobre 2025

Pour tout $n \in \mathbb{N}$ et tout $x \in [-1, 1]$, on pose

$$T_n(x) = \cos(n \operatorname{Arccos} x).$$

1. Démontrer que

$$\forall n \in \mathbb{N}, \forall t \in \mathbb{R}, T_n(\cos t) = \cos nt.$$

- **2.** Expliciter T_0 , T_1 et T_2 .
- 3. Démontrer que

$$\forall n \in \mathbb{N}, \forall x \in [-1, 1], T_{n+2}(x) - 2xT_{n+1}(x) + T_n(x) = 0.$$

4. En déduire que les T_n sont des applications polynomiales à coefficients entiers. Préciser leur parité, leur degré et leur coefficient dominant.

Le polynôme T_n est appelé n-ième **polynôme de Tchebychev** (de première espèce).

- 5. Déduire de [1.] que \hat{T}_n est solution d'une équation différentielle linéaire homogène du second ordre.
- **6.** Pour toute fonction f continue de [-1, 1] dans \mathbb{R} , on pose

$$\|f\|_{\infty} = \sup_{x \in [-1,1]} |f(x)|.$$

- **6. a.** Calculer $\|T_n\|_{\infty}$.
- **6.b.** Démontrer par récurrence que

$$\forall n \in \mathbb{N}, \forall u \in \mathbb{R}, |\sin nu| \leq n |\sin u|.$$

- **6. c.** En déduire que $\|T'_n\|_{\infty} = n^2$.
- 7. Soit x > 1.
- 7. a. Démontrer que

$$\forall r > 0, \quad T_n\left(\frac{r+r^{-1}}{2}\right) = \frac{r^n + r^{-n}}{2}.$$

 \square On pourra poser $r = e^t$.

7.b. Démontrer qu'il existe r > 0 tel que

$$x = \frac{r + r^{-1}}{2}.$$

7. c. En déduire que

$$1\leqslant T_n(x)\leqslant \left(x+\sqrt{x^2-1}\right)^n.$$

8. On note $(L_j)_{0\leqslant j\leqslant n}$, la famille des polynômes interpolateurs de Lagrange associés à la subdivision $(a_j)_{0\leqslant j\leqslant n}$ de [-1,1] définie par

$$\forall \ 0 \leqslant j \leqslant n, \quad a_j = \cos\left(1 - \frac{j}{n}\right)\pi.$$

- **8. a.** Résoudre l'équation $|T_n(x)| = 1$ sur \mathbb{R} .
- **8.b.** Calculer $T'_n(a_j)$ pour $0 \le j \le n$.
- 8. c. Démontrer que

$$T_n = \sum_{j=0}^n (-1)^{n-j} L_j.$$

8. d. En déduire que

$$\forall \, x \geqslant 1, \quad T_n(x) = \sum_{i=0}^n \big| L_j(x) \big|.$$

8. e. Démontrer que

$$\forall x \geqslant 1, \quad |P(x)| \leqslant ||P||_{\infty} (x + \sqrt{x^2 - 1})^n$$

pour tout polynôme $P \in \mathbb{C}_n[X]$.

Solution * Polynômes de Tchebychev

1. Par définition d'Arccos,

$$\forall t \in [0, \pi], \quad \operatorname{Arccos}(\cos t) = t$$

done

$$\forall t \in [0, \pi], \quad T_n(\cos t) = \cos[n \operatorname{Arccos}(\cos t)] = \cos(nt).$$

Les deux membres de cette égalité sont des fonctions paires et 2π -périodiques de t : comme elles coïncident sur $[0,\pi]$, elles coïncident en fait sur \mathbb{R} .

2. Il est clair que $T_0 = 1$ et $T_1 = X$. Pour $x \in [-1, 1]$,

$$T_2(x) = \cos(2 \operatorname{Arccos} x) = 2 \cos^2(\operatorname{Arccos} x) - 1 = 2x^2 - 1$$

donc $T_2 = 2X^2 - 1$.

3. Soit $x \in [-1, 1]$. Il existe $t \in \mathbb{R}$ tel que $x = \cos t$ (le réel $t = \operatorname{Arccos} x$ convient) et

$$\begin{aligned} 2xT_{n+1}(x) &= 2\cos t\cos(n+1)t \\ &= \cos[(n+1)t+t] + \cos[(n+1)t-t] \\ &= T_{n+2}(x) + T_n(x) \end{aligned}$$

pour tout $n \in \mathbb{N}$.

4. Par [2.], il est clair que T_0 et T_1 sont des polynômes à coefficients entiers, que deg $T_0 = 0$ et deg $T_1 = 1$, que le coefficient dominant de T_0 est égal à 2^0 et celui de T_1 est égal à 2^1 .

Il existe donc un rang $n \in \mathbb{N}$ tel que T_n et T_{n+1} soient des polynômes à coefficients entiers, que deg $T_n = n$ et deg $T_{n+1} = n+1$, que le coefficient dominant de T_n est égal à 2^n et celui de T_{n+1} est égal à 2^{n+1} .

Par [3.],

$$T_{n+2} = \underbrace{2XT_{n+1}}_{\text{degré } n + 2} - \underbrace{T_n}_{\text{degré } n},$$

ce qui prouve que T_{n+2} est à coefficients entiers, que son degré est égal à (n+2) et que son coefficient dominant est égal à $2 \cdot 2^{n+1} = 2^{n+2}$. L'hypothèse de récurrence est ainsi vérifiée au rang (n+1) et donc pour tout $n \in \mathbb{N}$.

Il est clair que T_0 est un polynôme pair et que T_1 est impair. Il existe donc un rang $p \in \mathbb{N}$ tel que T_{2p} soit pair et que T_{2p+1} soit impair. Par [3.],

$$T_{2p+2} = 2XT_{2p+1} - T_{2p}$$

est donc pair (le produit de deux polynômes impairs est pair) et

$$T_{2p+3} = 2XT_{2p+2} - T_{2p+1}$$

est donc impair (le produit d'un polynôme pair et d'un polynôme impair est impair). L'hypothèse de récurrence est donc vérifiée au rang (p+1) et donc pour tout $p \in \mathbb{N}$.

5. Soit $n \in \mathbb{N}$. Les fonctions T_n sont polynomiales donc \mathscr{C}^{∞} sur \mathbb{R} . Dérivons la relation [1.]:

$$\forall t \in \mathbb{R}, -\sin tT'_n(\cos t) = -n\sin nt$$

et dérivons à nouveau :

$$\sin^2 t T_n''(\cos t) - \cos t T_n'(\cos t) = -n^2 \cos nt$$

c'est-à-dire, d'après [1.],

$$(1-\cos^2 t)T_n''(\cos t) - \cos tT_n'(\cos t) + n^2T_n(\cos t) = 0.$$

On en déduit que

$$\forall x \in [-1, 1], (1 - x^2) T_n''(x) - x T_n'(x) + n^2 T_n(x) = 0.$$

Comme il s'agit d'une identité polynomiale, le fait qu'elle soit vérifiée sur un ensemble infini (le segment [-1, 1]) suffit pour qu'elle soit vraie partout :

$$\forall x \in \mathbb{R}, \quad (1-x^2)T_n''(x) - xT_n'(x) + n^2T_n(x) = 0.$$

Sujet pp1516

6. a. Par définition, il est clair que $|T_n(x)| \le 1$ pour tout $x \in [-1, 1]$ et par [1.], il existe des réels de [-1, 1] (qui seront précisés au [8.a.]) tels que $|T_n(x)| = 1$. Par conséquent,

$$\forall n \in \mathbb{N}, \quad ||T_n||_{\infty} = 1.$$

6. b. L'encadrement est évident pour n=0 et pour n=1. En supposant qu'il soit vérifié pour un entier $n\in\mathbb{N}$, on en déduit que

$$\begin{aligned} |\mathrm{sin}(n+1)u| &= |\mathrm{sin}\,nu\cos u + \mathrm{sin}\,u\cos nu| \\ &\leqslant |\mathrm{sin}\,nu||\cos u| + |\mathrm{sin}\,u||\cos nu| \\ &\leqslant n|\mathrm{sin}\,u| + |\mathrm{sin}\,u| = (n+1)|\mathrm{sin}\,u|. \end{aligned}$$

6. c. On dérive l'égalité [1.] : pour tout $0 < t < \pi$,

$$T_n'(\cos t) = \frac{-n\sin nt}{\sin t}$$

et d'après la majoration précédente,

$$\forall \ x \in [-1,1], \quad \left|T_n'(x)\right| \leqslant n^2$$

donc $\|T'_n\|_{\infty} \leqslant n^2$.

En outre, la fonction (polynomiale) T'_n est continue en t=1 et T=-1 donc, par composition de limites,

$$T'_n(1) = \lim_{t \to 0} T'_n(\cos t) = -n^2$$

et

$$T'_n(-1) = \lim_{t \to \pi} T'_n(\cos t) = (-1)^n n^2$$

puisque, lorsque h tend vers 0,

$$\frac{-n \sin n(\pi + h)}{\sin(\pi + h)} = \frac{(-1)^{n+1} n \sin nh}{-\sin h} \sim (-1)^n n^2.$$

On en déduit que

$$\forall n \in \mathbb{N}, \quad \|T'_n\|_{\infty} = n^2.$$

7.a. D'une part, $T_0(\operatorname{ch} t) = 1 = \operatorname{ch} 0t$ et $T_1(\operatorname{ch} t) = \operatorname{ch} 1t$ pour tout $t \in \mathbb{R}$. D'autre part,

$$2 \operatorname{ch} t \operatorname{ch}(n+1) t = \operatorname{ch}(n+2) t + \operatorname{ch} n t$$

pour tout $t \in \mathbb{R}$ et tout $n \in \mathbb{N}$ puisque

$$\forall a, b \in \mathbb{R}, ch(a \pm b) = ch a ch b \pm sh a sh b.$$

On déduit alors de [3.] que

$$\forall n \in \mathbb{N}, \forall t \in \mathbb{R}, T_n(\operatorname{ch} t) = \operatorname{ch} nt.$$

Soit r>0. Il existe donc $t=\ell n\,r\in\mathbb{R}$ tel que $r=e^t$ et

$$\frac{r + r^{-1}}{2} = \operatorname{ch} t$$

et par conséquent,

$$T_n\Big(\frac{r+r^{-1}}{2}\Big)=ch\,nt=\frac{r^n+r^{-n}}{2}.$$

7.b. Pour r > 0, les équations

$$x = \frac{r + r^{-1}}{2}$$
 et $r^2 - 2xr + 1 = 0$

ont mêmes solutions:

$$r = x \pm \sqrt{x^2 - 1} > 0$$

et le produit de ces solutions est égal à 1 (relations entre coefficients et racines d'une équation polynomiale) : elles sont donc inverses l'une de l'autre.

Sujet pp1516 ______ 4

En particulier, r = 1 si, et seulement si, x = 1.

7. c. Par [7.a.] et [7.b.], comme x > 1, il existe r > 0 tel que

$$T_n(x) = \frac{r^n + r^{-n}}{2}.$$

On en déduit que

$$T_n(x) > 1 \iff r^{2n} - 2r^n + 1 > 0$$

 $\iff (r^n - 1)^2 > 0$

et par conséquent que $T_n(x) > 1$ pour tout x > 1.

On conserve les mêmes notations. D'après la remarque finale de [7.b.],

$$\frac{r^{n} + r^{-n}}{2} = \frac{(x + \sqrt{x^{2} - 1})^{n} + (x - \sqrt{x^{2} - 1})^{n}}{2}$$
$$\leq (x + \sqrt{x^{2} - 1})^{n}$$

donc $T_n(x) \le (x + \sqrt{x^2 - 1})^n$ pour tout x > 1.

8. Comme cos est strictement décroissante sur $[0, \pi]$, les a_i sont deux à deux distincts et

$$-1=\alpha_0<\alpha_1<\dots<\alpha_n=1.$$

Les polynômes $(L_j)_{0 \le j \le n}$ sont donc bien définis.

8. a. D'après [7.c.], on sait que $|T_n(x)| = 1$ n'a pas de solution sur]1, $+\infty$ [. Cette équation n'a pas non plus de solution sur] $-\infty$, -1[(par parité/imparité de T_n). On se restreint donc au segment [-1, 1].

Soit $x \in [-1, 1]$. Par définition de T_n ,

$$T_n(x) = 1 \iff \cos(n \operatorname{Arccos} x) = 1$$

et comme $0 \le \operatorname{Arccos} x \le \pi$, on en déduit que

$$T_n(x) = 1 \iff \exists \ 0 \leqslant 2k \leqslant n, \quad \operatorname{Arccos} x = \frac{2k\pi}{n}.$$

De même, $T_n(x) = -1 \iff \cos(n \operatorname{Arccos} x) = -1 \operatorname{donc} T_n(x) = -1 \operatorname{si}$, et seulement si, il existe un entier k tel que $0 \leqslant 2k + 1 \leqslant n$ et $\operatorname{Arccos} x = \frac{(2k+1)\pi}{n}$.

Finalement,

$$|T_n(x)| = 1 \iff \exists \ 0 \leqslant p \leqslant n, \quad x = \cos \frac{p\pi}{n}.$$

Les solutions de $|T_n(x)| = 1$ sont donc les $a_0, ..., a_n$ et, comme on l'a vu,

- $\sin n j$ est pair, alors $T_n(a_j) = 1$;
- si n j est impair, alors $T_n(a_j) = -1$

donc

$$\forall \ 0\leqslant j\leqslant n, \quad T_n(\alpha_j)=(-1)^{n-j}.$$

8.b. On a vu au [6.c.] que

$$T_n'(\mathfrak{a}_0) = (-1)^n \mathfrak{n}^2 \quad \text{et que} \quad T_n'(\mathfrak{a}_n) = -\mathfrak{n}^2.$$

Pour $1 \le j < n$, on reprend [1.] avec $0 < t = (1 - i/_n)\pi < \pi$:

$$\underbrace{-\sin t}_{>0} T'_n(\cos t) = -n \underbrace{\sin nt}_{=0}$$

donc

$$\forall 1 \leq i < n, T'_n(\alpha_i) = 0.$$

8. c. Comme deg $T_n=n$ par [4.], le polynôme T_n est une combinaison linéaire des polynômes interpolateurs $L_0,...,L_n$:

$$T_n = \sum_{j=0}^n \alpha_j L_j$$

Sujet pp1516 ______ 5

où les coefficients α_i sont des valeurs particulières de T_n :

$$\forall 0 \leq j \leq n$$
, $T_n(a_j) = \alpha_j = (-1)^{n-j}$

comme on l'a vu au [8.a.]

8. d. On sait que

$$L_j(x) = \prod_{\substack{0 \leqslant i \leqslant n \\ i \neq i}} \frac{x - a_i}{a_j - a_i}.$$

Pour $x\geqslant 1$, on a $x\geqslant 1\geqslant \alpha_i$, donc tous les numérateurs sont positifs. Comme la famille $(\alpha_i)_{0\leqslant i\leqslant n}$ est décroissante, on en déduit que le facteur $(\alpha_j-\alpha_i)$ est négatif si, et seulement si, j< i: il y a donc autant de facteurs négatifs au dénominateur qu'il y a d'entiers i tels que $j< i\leqslant n$, donc

$$\forall x \ge 1, \quad |L_i(x)| = (-1)^{n-j} L_i(x).$$

On déduit de la décomposition précédente que

$$\forall\, x\geqslant 1,\quad T_n(x)=\sum_{j=0}^n \big|L_j(x)\big|.$$

8. e. Comme deg $P \leqslant n$, le polynôme P est une combinaison linéaire des polynômes interpolateurs L_0, \ldots, L_n :

$$P = \sum_{j=0}^{n} \beta_{j} L_{j}$$

et les coefficients β_i sont des valeurs particulières de T_n :

$$P = \sum_{j=0}^{n} P(a_j) L_j.$$

Comme les a_i appartiennent tous au segment [-1, 1], on en déduit que

$$\begin{aligned} \left| P(x) \right| & \leq \sum_{j=0}^{n} \left| P(\alpha_{j}) \right| \left| L_{j}(x) \right| \\ & \leq \sum_{j=0}^{n} \left\| P \right\|_{\infty} \sum_{j=0}^{n} \left| L_{j}(x) \right|. \end{aligned}$$

D'après la question précédente et [7.c.],

$$\left|P(x)\right|\leqslant \left\|P\right\|_{\infty}\mathsf{T}_{n}(x)\leqslant \left\|P\right\|_{\infty}(x+\sqrt{x^{2}-1})^{n}$$

pour tout $x \ge 1$.