Problème de Mathématiques

Référence pp1410 — Version du 15 octobre 2025

Partie A. Premier exemple

1. Pour tout $x \in [0, 1]$ et tout $n \in \mathbb{N}^*$, on pose

$$f_n(x) = (-1)^n \frac{x^2 + n}{n^2}.$$

- **1.a.** Démontrer que la série $\sum f_n(x)$ converge pour tout $x \in [0, 1]$.
- **1.b.** Pour quelles valeurs de $x \in [0, 1]$ la série $\sum f_n(x)$ est-elle absolument convergente?
- **1. c.** Expliciter une suite $(r_n)_{n \in \mathbb{N}^*}$ de limite nulle telle que

$$\forall n \in \mathbb{N}^*, \ \forall x \in [0,1], \quad \left| \sum_{k=n}^{+\infty} f_k(x) \right| \leqslant r_n.$$

Partie B. Deuxième exemple

Dans cette partie, on considère les fonctions f_n définies sur [0, 1] par

$$\forall n \in \mathbb{N}^*, \forall x \in [0,1], \quad f_n(x) = \alpha_n x^n (1-x)$$

où $(\alpha_n)_{n\in\mathbb{N}}$ est une suite décroissante de réels positifs.

2. Démontrer que, pour tout $x \in [0, 1]$, la série $\sum f_n(x)$ est convergente et que la somme de cette série est une fonction bornée de x:

$$\exists M \in \mathbb{R}, \ \forall x \in [0,1], \quad \left| \sum_{n=1}^{+\infty} f_n(x) \right| \leq M.$$

3. a. Calculer la valeur de

$$s_n = \sup_{x \in [0,1]} |f_n(x)|$$

pour tout entier $n \ge 1$.

- **3.b.** Démontrer que la série $\sum s_n$ converge si, et seulement si, la série $\sum \alpha_n/n$ converge.
- 4. Dans cette question, on étudie le comportement du reste :

$$r_n(x) = \sum_{k=n}^{+\infty} f_k(x)$$

en fonction de $x \in [0, 1]$.

4. a. Pour tout $n \in \mathbb{N}$, justifier l'existence de

$$\rho_n = \sup_{x \in [0,1]} |r_n(x)|$$

et démontrer que

$$\lim_{k\to+\infty}\alpha_k\leqslant\rho_n\leqslant\alpha_n.$$

- $\textbf{4.b.} \quad \text{En d\'eduire que la suite } (\rho_n)_{n \in \mathbb{N}} \text{ tend vers 0 si, et seulement si, la suite } (\alpha_n)_{n \geqslant 1} \text{ tend vers 0.}$
- **5. a.** On suppose que la série $\sum \alpha_n/n$ converge. Démontrer que la suite $(\alpha_n)_{n\geqslant 1}$ tend vers 0. On rappelle que la suite $(\alpha_n)_{n\geqslant 1}$ est décroissante.
- **5.b.** Donner un exemple de suite $(\alpha_n)_{n\geqslant 1}$ de limite nulle telle que la série $\sum \alpha_n/n$ diverge.

Sujet pp1410

Solution * Deux séries de fonctions

Partie A. Premier exemple

1. a. Pour tout $x \in [0, 1]$, la suite de terme général

$$|f_n(x)| = \frac{x^2 + n}{n^2} = \frac{x^2}{n^2} + \frac{1}{n}$$

est décroissante et tend vers 0. D'après le critère spécial des séries alternées, la série $\sum f_n(x)$ converge pour tout $x \in [0, 1]$.

1.b. Pour tout $x \in [0, 1]$, lorsque n tend vers $+\infty$,

$$|f_n(x)| \sim \frac{1}{n}.$$

Comme la série harmonique $\sum 1/n$ est une série divergente de terme général positif, on en déduit que la série (de terme général positif) $\sum |f_n(x)|$ est divergente.

Par conséquent, la série $\sum f_n(x)$ n'est absolument convergente pour *aucune* valeur de $x \in [0, 1]$.

1.c. Puisque les hypothèses du critère spécial des séries alternées sont vérifiées d'après **1.a.**, le reste de $\sum f_n(x)$ est majoré en valeur absolue par le premier terme négligé. Ainsi

$$\forall n \geqslant 1, \quad \left| \sum_{k=n}^{+\infty} f_k(x) \right| \leqslant \left| f_n(x) \right| = \frac{x^2 + n}{n^2} \leqslant \frac{n+1}{n^2}.$$

Le majorant ainsi obtenu est indépendant de $x \in [0, 1]$: on peut donc passer au sup pour obtenir

$$\forall n \geqslant 1, \ \forall x \in [0,1], \quad \left| \sum_{k=n}^{+\infty} f_k(x) \right| \leqslant \frac{n+1}{n^2}$$

et il est clair que la suite de terme général $r_n = (n+1)/n^2$ tend vers 0.

Partie B. Deuxième exemple

2. Comme $(\alpha_n)_{n\in\mathbb{N}}$ est une suite décroissante de réels positifs, c'est une suite bornée qui tend vers une limite $\ell\in\mathbb{R}_+$:

$$\forall \ 1 \leqslant n \leqslant k, \quad 0 \leqslant \ell \leqslant \alpha_k \leqslant \alpha_n \leqslant \alpha_1 \tag{1}$$

donc

$$\forall n \geqslant 1, \quad 0 \leqslant f_n(x) \leqslant \alpha_1 (1 - x) x^n. \tag{2}$$

Pour tout $x \in [0,1[$, la série géométrique $\sum x^n$ est absolument convergente, donc la série $\sum f_n(x)$ est absolument convergente.

Par ailleurs, pour x=1, le terme général $f_n(x)$ est identiquement nul, donc $\sum f_n(1)$ est (absolument) convergente et sa somme est nulle.

On peut donc sommer les encadrements (2) et passer à la limite pour obtenir

$$\forall x \in [0,1[\,,\quad 0 \leqslant \sum_{n=1}^{+\infty} f_n(x) \leqslant \alpha_1(1-x)\frac{x}{1-x} \leqslant \alpha_1,$$

en remarquant que cet encadrement, de façon évidente, est encore vrai pour x = 1.

3. a. La fonction f_n est clairement positive et dérivable sur [0, 1]. Comme

$$f_n'(x)=\alpha_n\big[n-(n+1)x\big]x^{n-1},$$

il est clair que f_n atteint son maximum pour x = n/(n+1) et que

$$s_n = f_n\left(\frac{n}{n+1}\right) = \frac{\alpha_n}{n+1}\left(1 + \frac{1}{n}\right)^{-n}.$$

3.b. D'après l'expression de s_n , lorsque n tend vers $+\infty$,

$$s_n \sim \frac{1}{e} \frac{\alpha_n}{n}$$
.

Sujet pp1410 _____

D'après le théorème de comparaison pour les séries de termes généraux positifs, la série $\sum s_n$ converge si, et seulement si, la série de terme général α_n/n_e converge, donc la série $\sum s_n$ converge si, et seulement si, la série $\sum \alpha_n/n_e$ converge.

4. a. Précisons les encadrements (2) en tenant compte des encadrements (1) :

$$\forall k \geqslant n, \ \forall x \in [0,1], \quad \ell x^k (1-x) \leqslant f_k(x) \leqslant \alpha_n x^k (1-x).$$

En sommant à partir de k = n, on en déduit que

$$\forall n \in \mathbb{N}, \ \forall x \in [0,1[, \quad 0 \leqslant \ell x^n \leqslant r_n(x) \leqslant \alpha_n x^n. \tag{3}$$

Par conséquent, pour tout $n \in \mathbb{N}$, la fonction $|r_n|$ est bornée sur [0,1[. Comme elle est nulle en x=1, on en déduit qu'elle admet une borne supérieure ρ_n sur [0,1] et l'encadrement précédent prouve que

$$\forall n \geqslant 1, \quad 0 \leqslant \rho_n \leqslant \alpha_n. \tag{4}$$

Comme la borne supérieure est un majorant, on déduit de (3) que

$$\forall x \in [0,1[, \ell x^n \leq \rho_n].$$

Ayant trouvé un majorant indépendant de $x \in [0, 1[$, on peut passer au sup pour obtenir :

$$\forall n \in \mathbb{N}, \quad 0 \leqslant \ell \leqslant \rho_n. \tag{5}$$

4.b. Si la suite $(\alpha_n)_{n\geqslant 1}$ tend vers 0, alors $(\rho_n)_{n\in\mathbb{N}}$ tend vers 0 par l'encadrement (4).

Réciproquement, si $(\rho_n)_{n\in\mathbb{N}}$ tend vers 0, alors $\ell=0$ par (5), ce qui signifie que la suite $(\alpha_n)_{n\geqslant 1}$ tend vers 0.

5. a. Notons toujours ℓ , la limite de la suite $(\alpha_n)_{n\geqslant 1}$. Si $\ell\neq 0$, alors $\ell>0$ (puisque la suite α est positive) et par conséquent, lorsque n tend vers $+\infty$,

$$\frac{\alpha_n}{n} \sim \frac{\ell}{n}$$
.

Comme $\ell > 0$, la série de terme général *positif* $\sum \ell/n$ est divergente et, par comparaison, la série de terme général *positif* $\sum \alpha_n/n$ est aussi divergente.

Par contraposée, si la série $\sum \alpha_n/n$ est convergente, alors la suite $(\alpha_n)_{n\geqslant 1}$ tend vers 0.

5.b. Prenons α_1 quelconque et posons

$$\forall n \geqslant 2, \quad \alpha_n = \frac{1}{\ell n n}.$$

Il est clair que la suite $(\alpha_n)_{n\geqslant 1}$ tend vers 0. Cependant, la série $\sum \alpha_n/n$ est divergente puisque, par comparaison avec une intégrale,

$$\sum_{k=1}^{n} \frac{\alpha_k}{k} \sim \ln \ln n$$

lorsque n tend vers $+\infty$ (série de Bertrand, qui n'est pas au programme — la comparaison avec les intégrales doit donc être détaillée).