Problème de Mathématiques

Référence pp1209 — Version du 15 octobre 2025

Soit E, un espace vectoriel sur le corps \mathbb{K} , de dimension finie, au moins égale à 2. Pour tout $x \in E$, on pose

$$\omega(\mathbf{x}) = \mathbf{0}_{\mathsf{E}}$$
 et $\mathbf{I}(\mathbf{x}) = \mathbf{x}$,

de telle sorte que ω est l'endomorphisme nul et I, l'identité de E. Si A est une partie de E et si $u \in L(E)$, on note $u_*(A)$, l'image de A par u. On rappelle que la partie A est **stable par** u lorsque $u_*(A) \subset A$.

Partie A.

- 1. Soit A, un sous-espace de E. Démontrer que l'ensemble des endomorphismes par lesquels A est stable est un sous-espace vectoriel de L(E).
- **2.** On suppose que $A \neq \{0_E\}$ et que $A \neq E$. Démontrer qu'il existe un endomorphisme de E par lesquel A n'est pas stable.
- 3. Soient u et v, deux endomorphismes de E qui commutent et A, une partie de E qui est stable par u. Démontrer que $v_*(A)$ est stable par u.

Partie B.

On fait les deux hypothèses suivantes.

- (H_1) Il existe une partie S de L(E), non vide, telle que les seuls sous-espaces vectoriels de E qui sont stables par tous les éléments de S sont $\{0_E\}$ et E.
- (H₂) Il existe un endomorphisme f de E qui commute à tous les éléments de S.
- **4.** Démontrer que : ou bien $f = \omega$, ou bien $f \in GL(E)$.
- \square On pourra considérer $f_*(E)$.
- **5.** Démontrer que tout endomorphisme $\varphi \in \mathbb{K}[f]$ commute à tous les éléments de S.
- **6.** Démontrer que le polynôme minimal de f est irréductible.
- En notant P, le polynôme minimal de f, on supposera l'existence d'une factorisation $P = P_1 P_2$ avec deg $P_1 < deg P$ et deg $P_2 < P$ pour arriver à une contradiction.

Partie C.

7. Déduire de ce qui précède que les endomorphismes de E qui commutent à tous les éléments de L(E) sont les homothéties de E.

Solution \Re **Centre de** L(E)

Partie A.

1. Notons V, l'ensemble des endomorphismes $u \in L(E)$ tels que $u_*(A) \subset A$.

L'ensemble V est, par définition, contenu dans l'espace vectoriel L(E).

Comme A est un sous-espace de E, le vecteur nul $\mathfrak{0}_E$ appartient à A, donc A est stable par l'application nulle ω :

$$\forall x \in A, \quad \omega(x) = 0_E \in A.$$

Enfin, si A est stable par u et par ν , alors, quel que soit le scalaire λ ,

$$\forall x \in A, \quad (\lambda \cdot u + v)(x) = \lambda \cdot \underbrace{u(x)}_{\in A} + \underbrace{v(x)}_{\in A} \in A$$

puisque A est stable par combinaison linéaire. Ainsi, V est stable par combinaison linéaire.

Ĉela prouve que V est un sous-espace de L(E).

2. Comme $A \neq \{0_E\}$, il existe un vecteur \mathbf{x}_1 non nul dans A. Comme $A \neq E$, il existe un vecteur \mathbf{y}_1 de E qui n'appartient pas à A. D'après le théorème de la base incomplète, il existe une base de E de la forme $(\mathbf{x}_1, \dots, \mathbf{x}_n)$ et, d'après le théorème de caractérisation des applications linéaires, il existe un, et un seul, endomorphisme u de E tel que

$$\forall 1 \leq k \leq n, \quad \mathfrak{u}(x_k) = y_1.$$

En particulier, $x_1 \in A$ et $u(x_1) = y_1 \notin A$, donc A n'est pas stable par u.

Réciproquement, il est clair que $\{0_E\}$ et E sont stables par tout endomorphisme de E. Donc les seuls sous-espaces vectoriels de E qui sont stables par tous les endomorphismes de E sont $\{0_E\}$ et E.

3. Soit $y \in v_*(A)$: il existe $x \in A$ tel que y = v(x) et

$$\mathfrak{u}(\mathfrak{y}) = (\mathfrak{u} \circ \mathfrak{v})(\mathfrak{x}) = \mathfrak{v}(\mathfrak{u}(\mathfrak{x}))$$

puisque $\mathfrak u$ et $\mathfrak v$ commutent. Mais $\mathfrak u(\mathfrak x)\in A$ (puisque A est stable par $\mathfrak u$), donc $\mathfrak u(\mathfrak y)\in \mathfrak v_*(A)$. Ainsi, $\mathfrak v_*(A)$ est stable par $\mathfrak u$.

Partie B.

4. Pour tout $u \in S$, l'espace E est stable par u, donc le sous-espace $f_*(E)$ est stable par u d'après [3.] D'après l'hypothèse (H_1) , le sous-espace $f_*(E)$ est donc égal à $\{0_E\}$ ou à E.

Si $f_*(E) = \{0_E\}$, il est clair que $f = \omega$.

Si $f_*(E) = E$, alors f est surjective. Comme f est un endomorphisme de E, espace vectoriel de dimension finie, alors f est inversible (théorème du rang).

5. Soit $u \in S$. D'après l'hypothèse (H_2) , les endomorphismes u et f commutent. On en déduit par récurrence que

$$\forall k \in \mathbb{N}, \quad f^k \circ u = u \circ f^k.$$

Par combinaison linéaire et par linéarité de u, on en déduit que

$$\forall P \in \mathbb{K}[X], P(f) \circ \mathfrak{u} = \mathfrak{u} \circ P(f).$$

Autrement dit,

$$\forall \varphi \in \mathbb{K}[f], \quad \varphi \circ \mathfrak{u} = \mathfrak{u} \circ \varphi.$$

6. Comme f est un endomorphisme de E, espace vectoriel de dimension *finie*, le polynôme minimal de f existe bien.

On considère une factorisation $P = P_1P_2$ du polynôme minimal de f. On peut en déduire que

$$P(f) = \omega = P_1(f) \circ P_2(f) \tag{\ddagger}$$

(morphisme d'algèbres de $\mathbb{K}[X]$ dans L(E)).

D'après [5.], l'endomorphisme $P_1(f)$ vérifie l'hypothèse (H_2) . On peut donc appliquer [4.] à $P_1(f)$. Premier cas.— Si $P_1(f)=\omega$, alors P_1 est un polynôme annulateur de f et donc un multiple du polynôme minimal P. Mais, par construction, P_1 est un diviseur de P, donc P et P_1 sont associés et par conséquent, P_2 est un polynôme constant (non nul).

DEUXIÈME CAS.— Si $P_1(f)$ est inversible, alors $P_2(f) = \omega$ (en appliquant l'inverse de $P_1(f)$ à l'égalité (\ddagger)). Le raisonnement qui précède montre cette fois que P_2 est associé à P et que P_1 est un polynôme constant (non nul).

CONCLUSION.— Les seules factorisations possibles du polynôme P sont les produits d'un polynôme associé à P et d'un polynôme inversible (dans $\mathbb{K}[X]$), donc le polynôme P est irréductible.

Sujet pp1209 ______ 3

Partie C.

7. Il est clair que les homothéties commutent à tous les endomorphismes de E.

RÉCIPROQUE.— D'après [2.], avec S = L(E), l'hypothèse (H_1) est vérifiée. Si $f \in L(E)$ commute à tous les endomorphismes de E, alors l'hypothèse (H_2) est également vérifiée et d'après [6.], le polynôme minimal de f est irréductible.

Dans $\mathbb{C}[X]$, les polynômes irréductibles sont les polynômes de degré 1. Comme le degré du polynôme minimal de f est égal à 1, alors f est une homothétie.

 $\label{localization} \mbox{Conclusion.} \mbox{$-$ Si E est un espace vectoriel complexe de dimension finie, les endomorphismes de E qui commutent à tous les éléments de $L(E)$ sont les homothéties.}$