Fonctions définies par une intégrale

I

Intégrale fonction des bornes

1. Soit f, une fonction intégrable sur l'intervalle ouvert I. Pour tout $x_0 \in I$, on considère la fonction F_{x_0} définie par

$$\forall x \in I, \quad F_{x_0}(x) = \int_{x_0}^x f(t) dt.$$

1.1 Si f est bornée sur I, alors F_{x_0} est lipschitzienne sur I.

1.2 La fonction F_{x_0} est continue sur I.

1.3 La fonction F_{x_0} est dérivable à gauche et à droite en tout point $x \in I$ et

$$(F_{x_0})'_g(x) = f(x^-), \quad (F_{x_0})'_d(x) = f(x^+).$$

1.4 → Théorème fondamental

Soient f, une fonction continue sur I et $x_0 \in I$. La fonction

$$F_{x_0} = \left[x \mapsto \int_{x_0}^x f(t) \, \mathrm{d}t \right]$$

est de classe \mathcal{C}^1 sur I et est une primitive de f.

1.5 Soient $f \in \mathscr{C}^0(I)$; φ et ψ , de classe \mathscr{C}^1 de J dans I. La fonction

$$G = \left[u \mapsto \int_{\varphi(u)}^{\psi(u)} f(t) \, \mathrm{d}t \right]$$

est de classe \mathscr{C}^1 sur J et

$$\forall u \in J$$
, $G'(u) = f(\psi(u))\psi'(u) - f(\varphi(u))\varphi'(u)$.

2. \rightarrow Soit f, une fonction continue sur $[a, +\infty[$. Si l'intégrale

$$\int_{a}^{+\infty} f(t) \, \mathrm{d}t$$

est convergente, alors la fonction G définie par

$$\forall x \geqslant a, \quad G(x) = \int_{x}^{+\infty} f(t) dt$$

est de classe \mathscr{C}^1 sur $[a, +\infty[$ et G' = -f.

Entraînement

3. Questions pour réfléchir

1. Étudier le signe et les variations de

$$G(x) = \int_{x}^{x^2} \ln t \, \mathrm{d}t.$$

Calculer un équivalent de G(x) au voisinage de 0 et au voisinage de $+\infty$

2. Suite de [1] - Si F_{x_0} est dérivable sur I, sa dérivée est-elle égale à f?

3. Si une fonction F est dérivable mais pas de classe \mathscr{C}^1 , sa dérivée peut-elle être continue par morceaux?

4. Pour tout entier $n \ge 2$,

$$e^{1/x} \int_0^x e^{-1/t} dt = \sum_{x \to 0}^n \sum_{k=2}^n (-1)^k (k-1)! x^k + o(x^n).$$

5. Pour tout x > 0, on pose

$$G(x) = \int_{x}^{+\infty} \frac{\sin(t - x)}{t} dt.$$

1. La fonction G est de classe \mathscr{C}^2 sur $]0, +\infty[$ et

$$\forall x > 0, \qquad G''(x) + G(x) = \frac{1}{x}.$$

De plus, G(x) tend vers 0 lorsque x tend vers $+\infty$.

2.

$$\int_{x}^{+\infty} \frac{\cos t}{t} dt \sim -\ln x, \qquad \lim_{x \to 0} G(x) = \int_{0}^{+\infty} \frac{\sin t}{t} dt.$$

II

Intégrales fonctions d'un paramètre

6. Étant donnée une fonction f des variables $x \in \Omega$ et $t \in I$ telle que, pour tout $x \in \Omega$, la fonction $[t \mapsto f(x,t)]$ soit intégrable sur I, on étudie les propriétés de la fonction

$$F = \left[x \mapsto \int_{I} f(x, t) \, \mathrm{d}t \right]$$

et en particulier sa régularité (continuité, dérivabilité).

7. L'intervalle d'intégration *I* est fixe. L'expression

$$F(x) = \int_{a}^{x} f(x, t) \, \mathrm{d}t$$

n'est pas une intégrale seulement fonction de la borne supérieure, ni une intégrale seulement fonction d'un paramètre. Dans ce cas, on doit en général considérer [73] que

$$F(x) = \Phi(x, x)$$
 où $\Phi(x, y) = \int_a^y f(x, t) dt$

mais il arrive qu'on s'en sorte avec un peu d'astuce [57].

II.1 Propriétés ponctuelles

8. La parité, la monotonie, la convexité et la continuité de F peuvent parfois se déduire très simplement de f.

8.1 Si, pour tout $t \in I$, la fonction $[x \mapsto f(x,t)]$ est croissante (resp. décroissante), alors la fonction F est croissante (resp. décroissante).

8.2 Si, pour tout $t \in I$, la fonction $[x \mapsto f(x,t)]$ est convexe (resp. concave), alors la fonction F est convexe (resp. concave).

8.3 S'il existe une fonction g, intégrable sur I, et une constante K telles que

$$\forall (x, y, t) \in \Omega \times \Omega \times I, \quad |f(x, t) - f(y, t)| \leq Kg(t)|x - y|,$$

alors F est lipschitzienne sur Ω .

9. Exemples

9.1 La fonction *F* définie par

$$F(x) = \int_0^1 \frac{\mathrm{d}t}{1 + xt^2}$$

est décroissante, convexe et positive sur $]-1, +\infty[$.

9.2 La fonction *F* définie par

$$F(x) = \int_{1}^{+\infty} \frac{\mathrm{d}t}{1 + t^{x}}$$

est décroissante, convexe et positive sur]1, $+\infty$ [. 9.3 La fonction F définie par

$$F(x) = \int_0^{+\infty} \frac{e^{-t}}{x+t} \, \mathrm{d}t$$

est décroissante, convexe et positive sur $]0, +\infty[$.

9.4 La fonction *F* définie par

$$F(x) = \int_0^{+\infty} \frac{e^{-xt}}{1+t^2} \, \mathrm{d}t$$

est décroissante, convexe et bornée sur $[0, +\infty[$. Pour tout a>0, la fonction F est lipschitzienne sur $[a, +\infty[$.

9.5 La fonction *F* définie par

$$F(x) = \int_0^{+\infty} \frac{\operatorname{Arctan}(xt)}{t(1+t^2)} dt$$

est impaire et lipschitzienne sur \mathbb{R} .

II.2 Rappels sur la continuité

10. \(\sigma\) Une fonction est **continue sur un intervalle** (resp. **sur un ouvert)** lorsqu'elle est continue en chaque point de cet intervalle (resp. de cet ouvert).

Caractérisations séquentielles

- **11.** On considère une fonction φ définie sur Ω , à valeurs dans un espace E.
- **11.1** $\xrightarrow{\bullet}$ La fonction φ est continue en $x_0 \in \Omega$ si, et seulement si, pour toute suite $(u_n)_{n \in \mathbb{N}}$ d'éléments de Ω qui converge vers x_0 , la suite $(\varphi(u_n))_{n \in \mathbb{N}}$ converge.
- 11.2 Par définition, une fonction ne peut être continue qu'en un point x_0 de son ensemble de définition.
- En revanche, on peut étudier l'existence d'une limite pour φ au voisinage d'un point x_0 qui n'appartient pas à son ensemble de définition Ω .
- **11.3** \rightarrow La fonction φ tend vers une limite ℓ (appartenant à E ou infinie) au voisinage de x_0 si, et seulement si, pour toute suite $(u_n)_{n\in\mathbb{N}}$ d'éléments de Ω qui tend vers x_0 , la suite $(\varphi(u_n))_{n\in\mathbb{N}}$ tend vers ℓ .

Du local au global

12. Topologie locale de \mathbb{R}^d

Tout espace vectoriel E de dimension finie sur $\mathbb R$ ou $\mathbb C$ est *localement compact*: tout ouvert de E est ainsi une union de parties compactes.

12.1 \rightarrow Soit Ω , un intervalle de \mathbb{R} . Pour tout $x_0 \in \Omega$, il existe un segment [A, B] tel que

$$x_0 \in [A, B] \subset \Omega$$
.

12.2 → Soit Ω , un ouvert de \mathbb{R}^d . Pour tout $x_0 \in I$, il existe une boule fermée B_r de rayon r > 0 telle que

$$x_0 \in B_r \subset \Omega$$
.

13. Méthodes

La définition [10] permet de parvenir à une conclusion globale par une démonstration locale.

- 13.1 Une fonction définie sur une partie Ω d'un espace vectoriel E de dimension finie est continue sur Ω si, et seulement si, pour tout $x_0 \in \Omega$, elle est continue sur un voisinage \mathcal{V}_{x_0} (relatif à Ω) de x_0 .
- 13.2 Une fonction définie sur un intervalle $\Omega \subset \mathbb{R}$ est continue si, et seulement si, elle est continue sur tout segment $[A, B] \subset \Omega$.

13.3 Une fonction définie sur un ouvert $\Omega \subset \mathbb{R}^d$ est continue si, et seulement si, elle est continue sur toute boule fermée contenue dans Ω , c'est-à-dire si elle est continue sur toute partie compacte $K \subset \Omega$.

14. Exemples de mise en œuvre

- 14.1 Une fonction est continue sur $[0, +\infty[$ si, et seulement si, pour tout B > 0, elle est continue sur le segment [0, B].
- 14.2 Une fonction est continue sur $]0, +\infty[$ si, et seulement si, quels que soient 0 < A < B, elle est continue sur [A, B].
- **14.3** Une fonction est continue sur $]0, +\infty[$ si, et seulement si, quel que soit A > 0, elle est continue sur $[A, +\infty[$.
- **14.4** Une fonction est continue sur \mathbb{R} si, et seulement si, quel que soit A > 0, elle est continue sur [-A, A].
- 14.5 Une fonction est continue sur un ouvert $\Omega \subset \mathbb{R}^2$ si, et seulement si, elle est continue sur tout pavé $[\alpha, \beta] \times [\gamma, \delta]$ contenu
- **15.** Comme les fonctions dérivables sur un intervalle de \mathbb{R} et les fonctions de classe \mathscr{C}^k sur un ouvert de \mathbb{R}^d sont définies de manière analogue aux fonctions continues, on peut utiliser des méthodes analogues pour prouver qu'une fonction est dérivable sur un intervalle donné ou de classe \mathscr{C}^k sur un ouvert donné.

II.3 Continuité

16. Comme le théorème de convergence dominée [**8.116.1**], le théorème [**17**] donne une condition suffisante pour passer à la limite sous le signe \int : sa conclusion peut être écrite sous la forme suivante.

$$\forall x_0 \in \Omega, \quad \int_I \left[\lim_{x \to x_0} f(x, t) \right] dt = \lim_{x \to x_0} \left[\int_I f(x, t) dt \right]$$

17. \Rightarrow Soient Ω , une partie d'un espace vectoriel de dimension finie et I, un intervalle de \mathbb{R} . On considère une fonction f définie pour $(x,t) \in \Omega \times I$ telle que

17.1 Hypothèse de continuité

Pour tout $t \in I$, *la fonction* $[x \mapsto f(x,t)]$ *est continue sur* Ω ;

17.2 Hypothèse d'intégrabilité

Pour tout $x \in \Omega$ *, la fonction* $[t \mapsto f(x,t)]$ *est intégrable sur I ;*

17.3 Hypothèse de domination

Il existe une fonction g, intégrable sur I, telle que

$$\forall t \in I, \forall x \in \Omega, |f(x,t)| \leq g(t).$$

17.4 Conclusion

Alors la fonction définie sur Ω par

$$F = \left[x \mapsto \int_{I} f(x, t) \, \mathrm{d}t \right]$$

est continue.

18. En pratique

Pour vérifier l'hypothèse de domination [17.3], on cherche un majorant de |f(x,t)| qui soit à la fois intégrable sur I (en tant que fonction de t) et indépendant de $x \in \Omega$.

18.1 Il arrive assez souvent que cette hypothèse de domination ne soit pas vérifiée pour $x \in \Omega$.

Il faut dans ce cas savoir raisonner localement pour conclure globalement [13.1] : pour démontrer que la fonction F est continue sur Ω , il suffit de pouvoir, pour chaque point $x_0 \in \Omega$, appliquer le Théorème de continuité [17] sur un voisinage $\mathcal{V}_{x_0} \subset \Omega$ de x_0 . La fonction dominatrice g de [17.3] peut dépendre du point x_0 choisi (alors qu'elle doit être indépendante de $x \in \mathcal{V}_{x_0}$).

18.2 Il suffit en fait d'appliquer le théorème sur une famille bien choisie [14] de parties $(\mathcal{V}_i)_{i\in I}$ de Ω telles que

$$\Omega = \bigcup_{i \in I} \mathcal{V}_i.$$

18.3 Si cette hypothèse de domination est vérifiée sur tout compact V contenu dans Ω , alors la fonction F est continue sur Ω .

18.4 Si l'intervalle d'intégration I est borné, il suffit que f soit bornée sur $\Omega \times I$:

$$\exists M \in \mathbb{R}_+, \forall t \in I, \forall x \in \Omega, |f(x,t)| \leq M$$

pour vérifier l'hypothèse de domination [17.3].

Si l'intervalle d'intégration I est un segment, il suffit que f soit continue sur $\Omega \times I$ pour que les trois hypothèses du théorème [17] soient vérifiées pour tout compact $\mathcal{V} \subset \Omega$ et cela prouve que F est continue sur Ω .

Limite finie aux bornes de l'intervalle

Une variante du théorème [17] permet d'étudier une intégrale aux extrémités de son intervalle de définition.

19.1 \rightarrow Soient $\Omega =]\alpha, \beta[$ et I, deux intervalles de \mathbb{R} . On considère une fonction f définie pour tout $(x,t) \in \Omega \times I$. On suppose que :

- 1. Pour tout $x \in \Omega$, la fonction $[t \mapsto f(x,t)]$ est intégrable sur I;
- 2. Pour tout $t \in I$, l'expression f(x,t) tend vers $\varphi(t)$ lorsque xOtend vers a;
- 3. La fonction $[t \mapsto \varphi(t)]$ est intégrable sur I;
- 4. Il existe $\alpha_0 \in \Omega$ et une fonction g intégrable sur I telle que

$$\forall t \in I, \forall x \in]\alpha, \alpha_0], \quad |f(x,t)| \leq g(t).$$

Alors

$$\lim_{x \to \alpha} \int_I f(x,t) \, \mathrm{d}t = \int_I \varphi(t) \, \mathrm{d}t.$$

- 19.2 Pour étudier la limite de F au voisinage de α , on peut se contenter de vérifier l'hypothèse de domination sur un voisinage à droite V_{α} de α .
- De manière analogue, pour étudier la limite au voisinage de β , il suffit de vérifier l'hypothèse de domination sur un voisinage à gauche $V_{\beta} = [\beta_0, \beta]$ de β .
- Ce théorème donne une condition suffisante pour qu'une intégrale fonction d'un paramètre ait une limite *finie*. On ne peut donc pas l'appliquer dans le cas d'une limite infinie.

Exemples

20.1 Suite de [9.4] – La fonction F est continue sur $[0, +\infty]$ et tend vers 0 au voisinage de $+\infty$.

Suite de [9.1] – La fonction F est continue sur $]-1, +\infty[$ et 20.2 tend vers 0 au voisinage de $+\infty$.

Suite de [9.2] – La fonction F est continue sur $]1, +\infty[$ et 20.3 tend vers 0 au voisinage de $+\infty$.

Suite de [9.3] – La fonction *F* est continue sur $]0, +\infty[$ et tend vers 0 au voisinage de $+\infty$.

Entraînement

21. Questions pour réfléchir

- Suite de [6] -1.
- Condition suffisante pour que F soit bornée sur Ω ?
- 1. b Si la fonction f est bornée sur $\Omega \times I$, la fonction F est-elle bornée sur Ω ?
- 2. Suite de [9.4] La fonction F tend vers 0 au voisinage de $+\infty$ et vers $\pi/2$ au voisinage de 0.
- Suite de [9.1] La fonction F tend vers 0 au voisinage de
- $+\infty$ et vers $+\infty$ au voisinage de -1. \rightarrow [1.14] 4. Suite de [9.2] La fonction F tend vers 0 au voisinage de $+\infty$ et vers $+\infty$ au voisinage de 1
- Suite de [9.3] La fonction F tend vers 0 au voisinage de $+\infty$ et vers $+\infty$ au voisinage de 0.
- Suite de [11.1] Que dire de la limite de $(\varphi(u_n))_{n\in\mathbb{N}}$? Suite de [11.3] Que conclure si φ admet une limite en un point $x_0 \in \Omega$? Cette limite peut-elle être infinie?
- Suite de [11.3] On suppose que, pour toute suite $(u_n)_{n\in\mathbb{N}}$ d'éléments de Ω qui tend vers x_0 , la suite $(\varphi(u_n))_{n\in\mathbb{N}}$ converge. Dans ce cas, la limite de $(\varphi(u_n))_{n\in\mathbb{N}}$ ne dépend pas de la suite $(u_n)_{n\in\mathbb{N}}$ et la fonction φ admet une limite au voisinage de x_0 .

 9. Déduire le théorème de continuité [17] du théorème de
- convergence dominée [8.116.1].
- On suppose que l'intervalle d'intégration I est un segment et que f est une fonction continue sur $\Omega imes I$. L'hypothèe de domination [17.3] est-elle vérifiée sur $\mathcal{V}_{x_0} = \Omega$?

22.1 D'après [19.1],

$$\lim_{x \to 0} \int_0^{+\infty} \frac{\sin t}{x+t} - \frac{\sin t}{t} \, \mathrm{d}t = 0.$$

Soient $g \in \mathcal{L}^1(\mathbb{R})$ et h, continue et bornée sur \mathbb{R} . La fonc-22.2 tion F définie par

$$\forall x \in \mathbb{R}, \quad F(x) = \int_{-\infty}^{+\infty} g(x-t)h(t) dt$$

est bornée et continue sur \mathbb{R} .

La fonction *F* définie par

$$\forall x \in [0,1], \quad F(x) = \int_0^{\pi} \frac{t \sin t}{1 - x \cos t} dt$$

est continue sur [0,1].

La fonction \vec{F} définie par

$$\forall x \in [0,1], \quad F(x) = \int_0^{\pi} \frac{xt \sin t}{x^2 - 2x \cos t + 1} dt$$

est continue sur [0,1]. **22.5** Soit g, intégrable sur I=]0,1[. La fonction F définie par

$$\forall x \in \mathbb{R}, \quad F(x) = \int_0^1 |g(t) - x| dt$$

est continue et convexe sur \mathbb{R} . Elle tend vers $+\infty$ en $\pm\infty$ et atteint un minimum sur \mathbb{R} .

Soit $0 < \alpha \le 1/2$. La fonction F_{α} définie par

$$F_{\alpha}(x) = \int_{1}^{+\infty} \frac{x \, \mathrm{d}t}{t^{\alpha}(1 + tx^{2})}$$

est continue sur $]0, +\infty[$ et, lorsque x tend vers $+\infty$,

$$F_{\alpha}(x) \sim \frac{1}{x} \int_{1}^{+\infty} \frac{\mathrm{d}t}{t^{1+\alpha}}.$$

Étudier la limite en 0 en distinguant le cas $\alpha = 1/2$.

Soit $g \in \mathcal{L}^1(\mathbb{R}_+^*)$. La fonction F définie par

$$F(z) = \int_0^{+\infty} \frac{g(t)}{z+t} \, \mathrm{d}t$$

est continue sur $\mathbb C$ privé de $\mathbb R_-$ et tend vers 0 au voisinage de l'infini. Étudier la limite de F lorsque $z \in \mathbb{R}_+^*$ tend vers 0.

La fonction F définie par

$$F(x) = \int_0^{\pi/2} \frac{\cos t}{t+x} \, \mathrm{d}t$$

est continue et décroissante sur $]0, +\infty[$. Elle tend vers 0 au voisinage de $+\infty$ et vers $+\infty$ au voisinage de 0 :

$$F(x) \underset{x \to +\infty}{=} \frac{1}{x} + \mathcal{O}\left(\frac{1}{x^2}\right)$$
 et $F(x) \underset{x \to 0}{=} -\ell n x + \mathcal{O}(1)$.

Pour tout x > 0, on pose 24.

$$f(x) = \int_0^{+\infty} \frac{t^3}{\sqrt{1+t^4}} e^{-xt} dt.$$

Comme

$$\forall x > 0, \quad f(x) = \frac{1}{x^2} \int_0^{+\infty} \frac{u^3 e^{-u}}{\sqrt{x^4 + u^4}} du,$$

alors $f(x) = \mathcal{O}(x^{-4})$ au voisinage de $+\infty$ et

$$f(x) \underset{x\to 0}{\sim} 1/x^2$$
.

Elle est donc intégrable sur $[1, +\infty[$, mais pas sur]0, 1].

III

Dérivation sous le signe

Fonctions de classe \mathscr{C}^1

25 Le théorème [26] donne une condition suffisante pour dériver sous le signe ∫, puisqu'on peut comprendre sa conclusion sous la forme suivante.

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{I} f(x,t) \, \mathrm{d}t = \int_{I} \frac{\partial f}{\partial x}(x,t) \, \mathrm{d}t$$

Il s'agit ici encore de passer à la limite sous le signe ∫, puisque l'égalité précédente peut être comprise sous la forme suivante.

$$\lim_{x \to x_0} \frac{F(x) - F(x_0)}{x - x_0} = \lim_{x \to x_0} \int_I \frac{f(x, t) - f(x_0, t)}{x - x_0} dt$$
$$= \int_I \lim_{x \to x_0} \frac{f(x, t) - f(x_0, t)}{x - x_0} dt$$

C'est pourquoi le théorème [26] est lui aussi une conséquence du théorème de convergence dominée [8.116.1].

26. \rightarrow Soient Ω et I, deux intervalles de \mathbb{R} et f, une fonction définie pour tout $(x,t) \in \Omega \times I$. On suppose que :

Hypothèse de régularité

Pour tout $t \in I$, la fonction $[x \mapsto f(x,t)]$ est de classe \mathscr{C}^1 sur Ω ;

Hypothèse d'intégrabilité

Pour tout $x \in \Omega$ *, les fonctions*

$$[t \mapsto f(x,t)]$$
 et $[t \mapsto \frac{\partial f}{\partial x}(x,t)]$

sont intégrables sur I;

Hypothèse de domination

Pour tout $x_0 \in \Omega$, il existe une fonction g, intégrable sur I, et un voisinage $\mathcal{V} \subset \Omega$ de x_0 tels que

$$\forall t \in I, \ \forall \ x \in \mathcal{V}, \quad \left| \frac{\partial f}{\partial x}(x,t) \right| \leqslant g(t).$$

26.4 Conclusion

Alors la fonction F définie sur Ω par

$$F(x) = \int_{T} f(x, t) \, \mathrm{d}t$$

est de classe \mathcal{C}^1 et

$$\forall x \in \Omega, \quad F'(x) = \int_{L} \frac{\partial f}{\partial x}(x,t) dt.$$

En pratique

Comme pour le théorème de continuité [17], il savoir choisir $\mathcal V$ de telle sorte que l'hypothèse de domination [26.3] soit vérifiée. Si l'intervalle d'intégration I est borné, il suffit de démontrer que

$$\exists M \in \mathbb{R}_+, \ \forall (x,t) \in \Omega \times I, \quad \left| \frac{\partial f}{\partial x}(x,t) \right| \leqslant M.$$

Lorsque I est un segment, il suffit que f soit de classe \mathscr{C}^1 sur un ouvert $O\subset\mathbb{R}^2$ contenant $\Omega\times I$ pour que toutes les hypothèses du théorème [26] soient vérifiées pour tout segment $\mathcal{V} \subset \Omega$, ce qui montre que F est de classe \mathscr{C}^1 sur Ω .

28.

Suite de [22.3] – La fonction F est de classe \mathscr{C}^1 sur [0,1]. 28.1

La fonction F définie par 28.2

$$F(x) = \int_{-\infty}^{+\infty} e^{-(t+ix)^2} dt$$

est de classe \mathscr{C}^1 sur \mathbb{R} et sa dérivée est nulle.

28.3 La fonction F définie par

$$F(x) = \int_0^{+\infty} e^{-x \operatorname{ch} t} \operatorname{ch} t \, \mathrm{d}t$$

est de classe \mathscr{C}^1 sur $]0, +\infty[$.

La fonction É définie par

$$F(x) = \int_0^{+\infty} e^{-t^2\sqrt{x}} \cos t \, dt$$

est de classe \mathscr{C}^1 sur $]0, +\infty[$. **28.**5 La fonction F définie par

$$F(x) = \int_0^{+\infty} \frac{\mathrm{d}t}{\sqrt{t}(\mathrm{sh}^2 t + \mathrm{sin}^2 x)}$$

est de classe \mathscr{C}^1 sur $]0, \pi[$.

III.2 Extension aux fonctions de classe \mathscr{C}^n

29. \rightarrow Soient Ω et I, deux intervalles de \mathbb{R} . On considère une fonction *f définie pour tout* $(x,t) \in \Omega \times I$. *On suppose que :*

Hypothèse de régularité

Pour tout $t \in I$, la fonction $[x \mapsto f(x,t)]$ est de classe \mathscr{C}^n sur Ω ;

Hypothèse d'intégrabilité

Pour tout $0 \le k \le n$, *pour tout* $x \in \Omega$, *la fonction*

$$\left[t \mapsto \frac{\partial^k f}{\partial x^k}(x,t)\right]$$

est intégrable sur I;

Hypothèse de domination

Pour tout $x_0 \in \Omega$, il existe un voisinage $V \subset \Omega$ de x_0 et, pour tout $1 \leq k \leq n$, il existe une fonction g_k , intégrable sur I, tels que

$$\forall t \in I, \ \forall \ x \in \mathcal{V}, \quad \left| \frac{\partial^k f}{\partial x^k}(x,t) \right| \leqslant g_k(t).$$

Conclusion

Alors la fonction F définie sur Ω par

$$F(x) = \int_{I} f(x, t) \, \mathrm{d}t$$

est de classe \mathscr{C}^n sur Ω et

$$\forall 1 \leqslant k \leqslant n, \ \forall \ x \in \Omega, \quad F^{(k)}(x) = \int_{L} \frac{\partial^{k} f}{\partial x^{k}}(x, t) \, dt.$$

Pour démontrer que F est de classe \mathscr{C}^{∞} , il suffit d'appliquer le Théorème [29] pour tout entier $n \ge 1$.

En pratique

Une fois de plus, il faut choisir le voisinage V en fonction de x_0 de telle sorte que l'hypothèse de domination [29.3] soit vérifiée.

Si l'intervalle d'intégration I est borné, il suffit que les fonctions g_k soient constantes pour que [29.3] soit vérifiée.

Si I est un segment et si f est de classe \mathscr{C}^n sur un ouvert $O \subset \mathbb{R}^2$ qui contient $\Omega \times I$, les hypothèses du théorème [29] sont vérifiées pour tout segment $\mathcal{V} = [A, B]$ contenu dans Ω et la fonction F est de classe \mathscr{C}^{∞} sur Ω .

Compte tenu de l'hypothèse de domination [29.3], il suffit que les fonctions

$$\left[t \mapsto \frac{\partial^k f}{\partial x^k}(x,t)\right]$$

soient continues sur I pour être intégrables sur I : l'hypothèse d'intégrabilité [29.2] est pour ainsi dire toujours vérifiée.

Exemples

 \rightarrow [59]

Suite de [9.4] – La fonction F est de classe \mathscr{C}^{∞} sur $]0, +\infty[$, mais n'est pas dérivable en 0.

Suite de [9.1] - La fonction F est indéfiniment dérivable sur $]-1,+\infty[$.

Suite de [9.3] – La fonction F est de classe \mathscr{C}^{∞} sur $]0, +\infty[$. 32.3 **32.4** Soient $g \in \mathcal{C}^k$ et $h \in \mathcal{C}^\ell$, deux fonctions périodiques de période T. Alors la fonction F définie par

$$\forall x \in \mathbb{R}, \quad F(x) = \frac{1}{T} \int_0^T g(x - t)h(t) dt$$

est périodique de période T et de classe $\mathcal{C}^{k+\ell}$.

Les fonctions *F* et *G* définies par

$$F(x) = \int_0^{+\infty} \frac{\sin^2(xt)}{t^2} e^{-t} dt, \quad G(x) = \int_0^{+\infty} \frac{(1 - \cos xt)}{t^2} e^{-t} dt$$

sont de classe \mathscr{C}^2 sur \mathbb{R} . On déduit de [8.67] que

$$\forall x \in \mathbb{R}, \quad G(x) = x \operatorname{Arctan} x - \frac{1}{2} \ln(1 + x^2).$$

32.6 La fonction F définie par

$$F(x) = \int_0^{\pi} e^{x \sin^2 \theta} d\theta$$

est de classe \mathscr{C}^{∞} sur \mathbb{R} .

Les *fonctions de Bessel J_n* définies par

$$J_n(x) = \frac{1}{\pi} \int_0^{\pi} \cos(nt - x \sin t) dt$$

sont de classe \mathscr{C}^{∞} sur \mathbb{R} .

La fonction Y₀ définie par

$$Y_0(x) = \int_0^{\pi} \sin(x \sin t) dt - 2 \int_0^{+\infty} e^{-x \sinh t} dt$$

est de classe \mathscr{C}^{∞} sur $]0,+\infty[$. 32.9 Suite de [22.7] – La fonction F est indéfiniment dérivable sur $]0, +\infty[$.

Entraînement

- Deduire le théorème [26] de dérivation sous le signe ∫ du théorème de convergence dominée [8.116.1] et du théorème de continuité [17]
 - Suite de [27.1] Comparer les assertions suivantes.

2.a

$$\exists M \in \mathbb{R}_+, \ \forall (x,t) \in \mathcal{V} \times I, \quad \left| \frac{\partial f}{\partial x}(x,t) \right| \leq M$$

2.b

$$\forall (x,t) \in \mathcal{V} \times I, \ \exists \ M \in \mathbb{R}_+, \quad \left| \frac{\partial f}{\partial x}(x,t) \right| \leqslant M$$

3. Sous les hypothèses du théorème [26], pour tout segment $[A,B]\subset \mathcal{V}$, il existe une fonction h, intégrable sur I, telle que

$$\forall t \in I, \forall x \in [A, B], |f(x,t)| \leq h(t).$$

- 4. Si on considère que la fonction F étudiée dans le théorème $[\mathbf{26}]$ est définie sur Ω et si les hypothèses du théorème sont satisfaites sur un segment \mathcal{V} , la fonction F est-elle de classe \mathscr{C}^1 sur ce
- 5. Si les deux premières hypothèses du théorème [29] sont satisfaites et s'il existe une fonction $\Phi \in \mathscr{L}^1(I)$ telle que

$$\forall (x,t) \in \Omega \times I, \quad \left| \frac{\partial^n f}{\partial x^n}(x,t) \right| \leqslant \Phi(t),$$

alors l'hypothèse de domination [29.3] est vérifiée sur tout segment $[A,B]\subset\Omega$ et la fonction F est de classe \mathscr{C}^n sur Ω .

Expliquer les remarques [27.2] et [31.2].

La fonction *F* définie par 34.

$$F(x) = \int_0^{+\infty} \frac{e^{-tx^2}}{1 + t^3} \, \mathrm{d}t$$

est de classe \mathscr{C}^1 sur \mathbb{R} . Tracer l'allure de son graphe à l'aide de [8.51.3] et de [8.100].

On étudie les fonctions F_1 et F_2 définies par

$$F_1(x) = \int_0^{+\infty} e^{-xt} \frac{\sin t}{t} dt \quad \text{et} \quad F_2(x) = \int_0^{+\infty} e^{-t} \frac{\sin xt}{t} dt.$$

$$\forall x > 0, \quad F_2(x) = F_1(1/x).$$

2. La fonction F_1 est de classe \mathscr{C}^1 sur $]0, +\infty[$, la fonction F_2 est de classe \mathscr{C}^1 sur \mathbb{R} et par [8.67]

$$\forall x > 0$$
, $F_1(x) = \frac{\pi}{2} - \operatorname{Arctan} x$, $\forall x \in \mathbb{R}$, $F_2(x) = \operatorname{Arctan} x$.

→[60]

Suite de [8.118.6] – La fonction F est de classe \mathscr{C}^1 sur l'intervalle $]-1,+\infty[$ et

$$\forall x > -1, \quad F(x) = \ln \frac{x+2}{x+1},$$

donc $F(x) \sim -\ell n(x+1)$ lorsque x tend vers -1.

IV

Applications

IV.1 Intégrale de Gauss

37.1 La fonction F définie par

$$F(x) = \int_0^1 e^{-x^2(1+t^2)} \frac{\mathrm{d}t}{1+t^2}$$

est de classe \mathscr{C}^1 sur \mathbb{R} . Elle est égale à $\pi/4$ en x=0 et tend vers 0 au voisinage de $+\infty$.

La fonction *G* définie par

$$G(x) = F(x) + \left[\int_0^x e^{-t^2} dt \right]^2$$

est constante sur \mathbb{R} .

37.3

$$\int_{-\infty}^{+\infty} e^{-t^2} \, \mathrm{d}t = \sqrt{\pi}$$

Densité de la loi normale Quels que soient $m \in \mathbb{R}$ et $\sigma > 0$,

$$\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{-(t-m)^2}{2\sigma^2}\right) dt = 1.$$

IV.2 La fonction Γ d'Euler

38. Δ La fonction Γ est définie par

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} \, \mathrm{d}t$$

pour tout $x \in \mathbb{R}_+^*$.

La fonction Γ est de classe \mathscr{C}^{∞} sur $]0, +\infty[$ et, quel que soit l'entier $n \in \mathbb{N}^*$,

$$\forall x \in]0, +\infty[, \Gamma^{(n)}(x) = \int_0^{+\infty} (\ln t)^n t^{x-1} e^{-t} dt.$$

Équation fonctionnelle et valeurs particulières 40.

40.1

$$\forall x > 0, \qquad x\Gamma(x) = \Gamma(x+1).$$

40.2

 \rightarrow [**8.64.**2]

$$\forall n \in \mathbb{N}^*, \quad \Gamma(n) = (n-1)!$$

40.3

$$\Gamma(1/2) = 2 \int_0^{+\infty} e^{-u^2} du = \sqrt{\pi}$$

- 41. Comportement asymptotique de la fonction Γ
- 41.1 Au voisinage de 0, on a $\Gamma(x) \sim 1/x$.
- 41.2 Comme

$$\forall x > 0, \quad \Gamma(x) \geqslant \int_1^2 t^{x-1} \frac{\mathrm{d}t}{e^2},$$

la fonction Γ tend vers $+\infty$ au voisinage de $+\infty$ et son graphe présente une branche parabolique d'axe vertical.

La fonction Γ n'est intégrable ni au voisinage de 0, ni au voisinage de $+\infty$.

La fonction $1/\Gamma$ est intégrable sur $]0, +\infty[$. 41.4

42. Étude globale

42.1 La fonction Γ est strictement convexe.

42.2 La fonction Γ admet un minimum global et ce minimum est atteint sur [1,2].

IV.3 Transformation de Laplace

La transformée de Laplace d'une fonction continue par morceaux f est définie par

$$L(f)(p) = \int_0^{+\infty} e^{-pt} f(t) dt.$$

La détermination de l'ensemble de définition de $\mathcal{L}(f)$ fait partie de l'étude de L(f).

- 44. On suppose que f est intégrable sur $]0, +\infty[$.
- 44.1 La fonction L(f) est continue et bornée sur \mathbb{R}_+ .
- Elle tend vers 0 au voisinage de $+\infty$. 44.2
- La fonction L(f) est de classe \mathscr{C}^{∞} sur \mathbb{R}_{+}^{*} . 44.3
- Si la fonction $[t \mapsto tf(t)]$ est intégrable sur $]0, +\infty[$, alors
- L(f) est de classe \mathscr{C}^1 sur \mathbb{R}_+ . **44.5** Si la fonction $[t\mapsto t^n f(t)]$ est intégrable sur $]0,+\infty[$, alors L(f) est de classe \mathscr{C}^n sur $[0,+\infty[$ et

$$L(f)(p) = \sum_{k=0}^{n} \frac{(-1)^{k} p^{k}}{k!} \int_{0}^{+\infty} t^{k} f(t) dt + o(p^{n})$$

pour p voisin de 0.

Théorème de la valeur initiale

On suppose que f est continue par morceaux et bornée sur \mathbb{R}_+ .

45.1 La fonction L(f) est continue sur $]0, +\infty[$.

Si f admet une limite (finie) non nulle $f(0^+)$ au voisinage 45.2

$$\lim_{n \to +\infty} \int_{0}^{+\infty} p e^{-pt} [f(t) - f(0^{+})] dt = 0$$

et, lorsque p tend vers $+\infty$,

$$L(f)(p) \sim \frac{f(0^+)}{p}.$$

Si f est positive mais pas intégrable sur $]0, +\infty[$, alors L(f) tend vers $+\infty$ au voisinage de 0.

Théorème de la valeur finale

Si f est continue par morceaux sur \mathbb{R}_+ et tend vers une limite finie ℓ au voisinage de $+\infty$, alors L(f)(p) est défini pour tout p > 0 et pL(f)(p) tend vers ℓ au voisinage de p = 0.

\mathbf{v}

Extension aux fonctions à valeurs vectorielles

Le théorème de convergence dominée s'étend sans difficulté aux fonctions à valeurs dans un espace vectoriel E de dimension finie.

Soit $(f_n)_{n\in\mathbb{N}}$, une suite de fonctions qui converge simplement sur I vers la fonction f. La convergence de la suite $(f_n)_{n\in\mathbb{N}}$ est dominée sur I si, et seulement si, pour tout $1 \leq k \leq d$, la convergence de la suite $(f_{k,n})_{n\in\mathbb{N}}$ des composantes est dominée

47.2 → Théorème de convergence dominée

Soit $(f_n)_{n\in\mathbb{N}}$, une suite de fonctions continues par morceaux de I dans un espace vectoriel de dimension finie E.

Si la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement sur I vers une fonction continue par morceaux f et s'il existe une fonction g intégrable sur I telle

$$\forall t \in I, \forall n \in \mathbb{N}, \quad ||f_n(t)||_E \leq g(t),$$

alors

$$\lim_{n\to+\infty} \int_{I} \|f(t) - f_n(t)\|_{E} dt = 0$$

et en particulier

$$\int_{I} f_n(t) dt \xrightarrow[n \to +\infty]{} \int_{I} f(t) dt.$$

On peut en déduire une condition suffisante pour qu'une intégrale varie continûment en fonction d'un paramètre.

48. → Théorème de continuité

Soient $\Omega \subset \mathbb{R}^d$ et I, un intervalle de \mathbb{R} . On considère une fonction f *définie pour* $(x,t) \in \Omega \times I$ *et on suppose que :*

Hypothèse de régularité

Pour tout $t \in I$, la fonction $[x \mapsto f(x,t)]$ est continue sur Ω ;

Hypothèse d'intégrabilité

Pour tout $x \in \Omega$ *, la fonction* $[t \mapsto f(x,t)]$ *est intégrable sur I ;*

Hypothèse de domination

Pour tout $x_0 \in \Omega$, il existe un voisinage $V \in \mathcal{V}_{\Omega}(x_0)$ et une fonction g intégrable sur I telle que

$$\forall t \in I, \forall x \in V, \quad ||f(x,t)||_F \leq g(t).$$

48.4 Alors la fonction F définie par

$$F(x) = \int_{I} f(x, t) \, \mathrm{d}t$$

est continue sur Ω .

Lorsque Ω est un intervalle de \mathbb{R} , on dispose d'une condition suffisante pour que cette intégrale soit une fonction de classe

50. → Théorème de dérivation sous ∫

Soient Ω et I, deux intervalles de \mathbb{R} et f, une fonction définie pour tout $(x,t) \in \Omega \times I$. On suppose que :

Hypothèse de régularité

Pour tout $t \in I$, la fonction $[x \mapsto f(x,t)]$ est de classe \mathscr{C}^1 sur Ω ; **50.2 Hypothèse d'intégrabilité**

Pour tout $x \in \Omega$ *, les fonctions*

$$[t \mapsto f(x,t)]$$
 et $[t \mapsto \frac{\partial f}{\partial x}(x,t)]$

sont intégrables sur I;

Hypothèse de domination

Pour tout $x_0 \in \Omega$, il existe un voisinage $V \in \mathscr{V}_{\Omega}(x_0)$ et une fonction g intégrable sur I tels que

$$\forall x \in V, \forall t \in I, \quad \left\| \frac{\partial f}{\partial x}(x,t) \right\|_{E} \leq g(t).$$

50.4 Alors la fonction F définie sur Ω par

$$F(x) = \int_{I} f(x, t) \, \mathrm{d}t$$

est de classe \mathscr{C}^1 sur Ω et

$$\forall x \in \mathcal{V}, \quad F'(x) = \int_{I} \frac{\partial f}{\partial x}(x,t) dt.$$

51. Bien entendu, ce résultat se généralise aux fonctions de classe \mathscr{C}^n pour tout entier $n \geqslant 2$ [29] et donc aux fonctions de classe \mathscr{C}^{∞} .

52. → Intégration terme à terme

Soit $\sum f_n$, une série de fonctions d'un intervalle I dans un espace vectoriel de dimension finie E qui converge simplement sur I.

On suppose que:

52.1 Hypothèse d'intégrabilité

Les fonctions f_n sont intégrables sur I;

52.2 Hypothèse de régularité

La somme S de la série $\sum f_n$ *est continue par morceaux sur I*;

52.3 Hypothèse de domination

La série de terme général positif

$$\sum \int_{I} \|f_n(t)\|_{E} dt$$

est convergente

52.4 Alors la somme $S:I\to E$ est intégrable sur I, la série $\sum \int_I f_n(t) \, dt$ est convergente et

$$\int_{I} S(t) dt = \sum_{n=0}^{+\infty} \int_{I} f_n(t) dt.$$

Questions, exercices & problèmes

Perfectionnement

53. Exemples et contre-exemples

1. Exemple de fonction f intégrable sur $I=[0,+\infty[$, non bornée sur I, pour laquelle la fonction

$$F_{x_0} = \left[x \mapsto \int_{x_0}^x f(t) \, \mathrm{d}t \right]$$

est lipschitzienne sur I.

2. Exemple de fonction dérivable *F* telle que

$$F(x) = \int_{I} f(x,t) dt$$
 sans que $F'(x) = \int_{I} \frac{\partial f}{\partial x}(x,t) dt$.

3. Suite de [69] – Exemple où g n'est pas de classe \mathscr{C}^2 .

54. Méthodes

- 1. Comment démontrer qu'une fonction est de classe \mathscr{C}^k sur un intervalle $I \subset \mathbb{R}$? sur un ouvert de \mathbb{R}^n ?
- 2. Comment démontrer qu'une fonction n'est pas continue en un point x_0 de son ensemble de définition?
- 3. Comment démontrer qu'une fonction n'admet pas de limite au voisinage d'un point x_0 ?
- 4. Comment démontrer qu'une fonction définie par une intégrale

$$F(x) = \int_{T} f(x,t) \, \mathrm{d}t$$

tend vers l'infini? Peut-on utiliser le théorème de convergence dominée à cet effet?

5. Soit f, une fonction continue sur $[0, +\infty[$ et dérivable sur $]0, +\infty[$. Si sa dérivée f' tend vers l'infini au voisinage de 0, alors f n'est pas dérivable en 0.

55. Questions pour réfléchir

- 1. Soit $f:]\hat{0}, +\infty[\to \mathbb{R}$. Il existe une suite $(u_n)_{n\in\mathbb{N}}$ de limite nulle telle que la suite $(\varphi(u_n))_{n\in\mathbb{N}}$ admette une limite (finie ou infinie).
- 2. Généraliser le théorème [26] de dérivation sous le signe \int aux fonctions f définies sur $\Omega \times I$, où Ω est un ouvert de \mathbb{R}^d .

3.

$$\forall n \in \mathbb{N}, \quad \Gamma\left(\frac{2n+1}{2}\right) = \frac{(2n)!}{4^n n!} \sqrt{n}.$$

4. Soit Ω , un ouvert de \mathbb{R}^m . Condition suffisante pour que la fonction

$$\left[u\mapsto \int_I f(u,t)\,\mathrm{d}t\right]$$

soit de classe \mathscr{C}^1 sur Ω .

Approfondissement

56. Suite de [9.5] –

1. La fonction F est de classe \mathscr{C}^1 sur \mathbb{R} .

2.

$$\forall x \geqslant 0, \quad F(x) = \frac{\pi}{2} \ \ell n(1+x).$$

3.

$$\int_0^{+\infty} \frac{\operatorname{Arctan}^2 t}{t^2} \, \mathrm{d}t = \pi \, \ell \mathrm{n} \, 2.$$

57. Soit f, une fonction de classe \mathcal{C}^1 de \mathbb{R}^2 dans \mathbb{R} . La fonction g définie par

$$g(x) = \int_0^x f(x,t) dt = x \int_0^1 f(x,ux) du$$

est de classe \mathscr{C}^1 sur \mathbb{R} et

$$\forall x \in \mathbb{R}, \quad g'(x) = f(x,x) + \int_0^x \frac{\partial f}{\partial x}(x,t) dt.$$

58. Fonction d'Euler et constante d'Euler

58.1

$$\forall n \in \mathbb{N}, \quad -\int_0^1 (n+1)y^n \, \ln(1-y) \, \mathrm{d}y = \sum_{k=1}^{n+1} \frac{1}{k}.$$

58.2 Suite de [**6.2**8] -

$$\lim_{n \to +\infty} \int_0^n \left(1 - \frac{x}{n}\right)^n \ln x \, \mathrm{d}x = -\gamma$$

58.3 *Suite de* [**8.127**] –

$$\Gamma'(1) = \int_0^{+\infty} e^{-x} \ln x \, \mathrm{d}x = -\gamma$$

59. Une transformée de Fourier remarquable

1. Suite de [8.68] – La transformée de Fourier

$$\int_{-\infty}^{+\infty} e^{ixt-t^2/2} dt$$

est une solution de l'équation différentielle y' + xy = 0.

2. La relation suivante se déduit du théorème [37.4] qu'elle permet de généraliser. \rightarrow [28.2]

$$\forall x \in \mathbb{R}, \quad \int_{-\infty}^{+\infty} e^{ixt-t^2/2} \, \mathrm{d}t = \sqrt{2\pi}e^{-x^2/2}.$$

3.a

$$\forall x \in \mathbb{R}, \quad \int_0^{+\infty} e^{-t^2/2} \cos xt \, dt = \sqrt{\frac{\pi}{2}} e^{-x^2/2}.$$

3.b La fonction *F* définie par

$$F(x) = \int_0^{+\infty} e^{-t^2/2} \sin xt \, \mathrm{d}t$$

est la solution de l'équation différentielle y' + xy = 1 qui s'annule

Intégrale de Dirichlet

La fonction F_1 définie par

$$F_1(x) = \int_0^{+\infty} \frac{e^{-tx}}{1 + t^2} \, \mathrm{d}t$$

est continue sur $[0, +\infty[$ et de classe \mathscr{C}^2 sur $]0, +\infty[$.

L'intégrale impropre

$$F_2(x) = \int_0^{+\infty} \frac{\sin t}{x+t} \, \mathrm{d}t$$

est convergente pour tout $x \in \mathbb{R}_+$ e

$$\forall x \ge 0, \quad F_2(x) = \int_0^{+\infty} \frac{1 - \cos t}{(t + x)^2} dt.$$

La fonction F_2 ainsi définie est continue sur \mathbb{R}_+ et de classe \mathscr{C}^2

Comme F_1 et F_2 sont deux solutions de l'équation diffé-

$$\forall x > 0, \quad y'' + y = \frac{1}{x}$$

qui tendent vers 0 au voisinage de $+\infty$, elles sont égales et

$$\int_0^{+\infty} \frac{\sin t}{t} \, \mathrm{d}t = \frac{\pi}{2}.$$

61. La fonction F définie par

$$F(x) = \int_0^{+\infty} \frac{\ln(1 + x^2 t^2)}{1 + t^2} dt$$

est continue sur \mathbb{R} et de classe \mathscr{C}^1 sur \mathbb{R}^* et

$$\forall x > 0, \quad F'(x) = \frac{\pi}{1+x}.$$

En déduire l'expression de F(x).

La fonction *F* définie par 62.

$$F(x) = \int_0^{+\infty} e^{(-1+ix)t^2} dt = \int_0^{+\infty} \frac{e^{(-1+ix)u}}{2\sqrt{u}} du$$

est de classe \mathscr{C}^1 sur \mathbb{R} et

$$\forall x \in \mathbb{R}, \quad 2(x+i)F'(x) + F(x) = 0.$$

On déduit donc de [40.3] que

$$\forall x \in \mathbb{R}, \quad F(x) = \frac{\sqrt{\pi}}{2\sqrt[4]{1+x^2}}e^{i(\operatorname{Arctan} x)/2}$$

63. La fonction F définie par

$$F(x,y) = \int_0^{+\infty} \frac{e^{-xt} - e^{-yt}}{t} dt$$

est de classe \mathscr{C}^1 sur l'ouvert $O=]0,+\infty[\times]0,+\infty[.$ On déduit de ses dérivées partielles que

$$\forall x > 0, \ \forall y > 0, \quad F(x,y) = \ln \frac{y}{x}.$$

Intégrales de Wallis généralisées La fonction *F* définie par 64.

$$F(x) = \int_0^{\pi/2} \sin^x t \, \mathrm{d}t$$

est positive, décroissante et de classe \mathscr{C}^1 sur $]-1,+\infty[$

$$\forall x > -1, \quad F(x+2) = \frac{x+1}{x+2}F(x).$$

Pour tout x > 0, on pose

$$\varphi(x) = xF(x)F(x-1).$$

3.a

$$\forall x > 0, \quad \varphi(x+1) = \varphi(x).$$

3.b

$$\forall n \in \mathbb{N}^*, \quad nF(n)F(n-1) = \frac{\pi}{2}.$$

3.c Lorsque x tend vers $+\infty$,

$$F(x) \sim \sqrt{\frac{\varphi(x)}{x}}.$$

65. La fonction F définie par

$$F(x) = \int_0^{+\infty} \frac{e^{-xt^2}}{1 + t^2} \, dt$$

est continue sur $[0, +\infty[$ et de classe \mathscr{C}^1 sur $]0, +\infty[$. Par [37.4],

$$\forall x > 0, \quad F(x) - F'(x) = \frac{1}{2} \sqrt{\frac{\pi}{x}}$$

et par [8.118.5]

$$\forall x > 0, \quad F(x) = e^x \frac{\sqrt{\pi}}{2} \int_{x}^{+\infty} \frac{e^{-t}}{\sqrt{t}} dt.$$

66.

La fonction *F* définie par

$$F(x) = \int_{0}^{1} \frac{\ln(1 + 2t\cos x + t^{2})}{t} dt$$

est de classe \mathscr{C}^1 sur $[0, \pi/2]$.

$$\forall \ 0 < x < \frac{\pi}{2}, \quad \int_0^1 \frac{\sin x \, dt}{(t + \cos x)^2 + \sin^2 x} = \frac{x}{2}.$$

3.a Pour tout $u \in [-1, 1[$,

$$\ln(1+u) = \int_0^u \frac{\mathrm{d}t}{1+t} = \sum_{n=0}^{+\infty} \frac{(-1)^n u^{n+1}}{n+1}.$$

Suite de [**6.37**] -

$$\forall \ 0 < x < \frac{\pi}{2}, \quad F(x) = \frac{\pi^2}{6} - \frac{x^2}{2}.$$

67.

La fonction F définie par

$$F(x) = \int_0^1 \frac{t^{x-1}}{1+t} \, \mathrm{d}t$$

est de classe \mathscr{C}^1 sur $]0, +\infty[$.

2.

$$\forall x > 0, \quad F(x+1) + F(x) = \frac{1}{x}.$$

3. *Suite de* [**8.122.**2] – Pour *x* voisin de 0,

$$F(x) = \frac{1}{x} - \ln 2 + \frac{\pi^2}{12}x + o(x).$$

68. Pour tout $n \in \mathbb{N}$, on pose

$$I_n(x) = \int_0^{+\infty} \frac{\mathrm{d}t}{(x^2 + t^2)^{n+1}}.$$

1.

$$\forall x > 0, \quad I_0(x) = \frac{\pi}{2x}.$$

2. Pour tout $n \in \mathbb{N}$, la fonction I_n est décroissante, de classe \mathscr{C}^1 sur $]0, +\infty[$ et

$$\forall x > 0, \quad I_{n+1}(x) = \frac{-1}{2(n+1)x} I'_n(x).$$

3. La relation précédente suggère de chercher une expression simple de la forme

$$I_n(x) = \frac{a_n}{2^{n+1} n! x^{2n+1}}.$$

Quelle relation de récurrence vérifie la suite $(a_n)_{n\in\mathbb{N}}$?

4

$$\forall n \in \mathbb{N}, \ \forall x > 0, \quad I_n(x) = \frac{\pi}{2^{2n+1}} \binom{2n}{n} \frac{1}{x^{2n+1}}.$$

ightarrow[**8.64.**3]

69. Factorisation d'une fonction

Soit $f: \mathbb{R} \to \mathbb{R}$, une fonction de classe \mathscr{C}^2 telle que f(0) = 0. On cherche une fonction $g: \mathbb{R} \to \mathbb{R}$ de classe \mathscr{C}^1 telle que

$$\forall x \in \mathbb{R}, \quad f(x) = xg(x).$$

- 1.a Pourquoi faut-il supposer que f(0) = 0?
- 1.b Discuter l'unicité de la fonction g.
- 2. La fonction $g: \mathbb{R} \to \mathbb{R}$ définie par

$$g(x) = \int_0^1 f'(xt) \, \mathrm{d}t$$

est de classe \mathscr{C}^1 sur \mathbb{R} .

3. Si f est de classe \mathscr{C}^{∞} , alors g est de classe \mathscr{C}^{∞} et

$$\forall n \geqslant 1, \forall x \in \mathbb{R}, \quad g^{(n)}(x) = \int_0^1 t^n f^{(n+1)}(tx) dt.$$

Pour aller plus loin

70. Intégrations successives

On suppose que f est continue sur $[a,b] \times [c,d]$.

70.1 La fonction h définie par

$$h(x) = \int_{c}^{d} f(x, y) \, \mathrm{d}y$$

est continue sur [a,b] et la fonction F_1 définie par

$$\forall u \in [a,b], \quad F_1(u) = \int_a^u h(x) \, \mathrm{d}x$$

est une primitive de h sur [a, b].

70.2 Pour $(u, y) \in [a, b] \times [c, d]$, on pose

$$k(u,y) = \int_a^u f(x,y) \, \mathrm{d}x.$$

- 1. La fonction $[y \mapsto k(u, y)]$ est continue sur [c, d].
- 2. La fonction $[u \mapsto k(u, y)]$ est de classe \mathscr{C}^1 sur [a, b] et

$$\forall (u,y) \in [a,b] \times [c,d], \quad \frac{\partial k}{\partial u}(u,y) = f(u,y).$$

3. La fonction F_2 définie par

$$\forall u \in [a,b], \quad F_2(u) = \int_c^d k(u,y) \, \mathrm{d}y$$

est de classe \mathcal{C}^1 sur [a, b] et

$$F_2'(u) = \int_c^d \frac{\partial k}{\partial u}(u, y) \, \mathrm{d}y = h(u).$$

70.3 Les deux fonctions F_1 et F_2 sont égales sur [a, b].

70.4 → Soit f, une fonction continue sur le pavé $[a,b] \times [c,d]$. Alors

$$\int_{a}^{b} \left(\int_{c}^{d} f(x, y) \, dy \right) dx = \int_{c}^{d} \left(\int_{a}^{b} f(x, y) \, dx \right) dy.$$

71. Soient U, un ouvert de \mathbb{R}^2 et $f: U \times [a,b] \to \mathbb{R}$, une fonction continue. La fonction $F: U \to \mathbb{R}$ définie par

$$F(x,y) = \int_{a}^{b} f(x,y,t) \, \mathrm{d}t$$

est continue sur *U*.

72. Soient I et J, deux intervalles ouverts de \mathbb{R} . On considère $U = I \times J \subset \mathbb{R}^2$, $\Omega = I \times I \times J$ et $f : U \to \mathbb{R}$, une fonction continue. Alors la fonction $F : \Omega \to \mathbb{R}$ définie par

$$F(x,y,z) = \int_{x}^{y} f(t,z) \, \mathrm{d}t$$

est continue.

73. Fonctions de plusieurs variables

Soient Ω et I, deux intervalles ouverts (non vides) de \mathbb{R} et f, une fonction de classe \mathscr{C}^1 sur l'ouvert $\Omega \times I \subset \mathbb{R}^2$.

1. La fonction définie par

$$\forall (x,y,z) \in \Omega \times I \times I, \quad F(x,y,z) = \int_{y}^{z} f(x,t) dt$$

est de classe \mathscr{C}^1 et

$$\frac{\partial F}{\partial x} = \int_{y}^{z} \frac{\partial f}{\partial x}(x,t) dt, \quad \frac{\partial F}{\partial y} = -f(x,y), \quad \frac{\partial F}{\partial z} = f(x,z).$$

2. Si φ et ψ sont deux fonctions de classe \mathscr{C}^1 de Ω dans I, alors la fonction définie par

$$\forall x \in \Omega, \quad G(x) = \int_{\varphi(x)}^{\psi(x)} f(x, t) dt$$

est de classe \mathscr{C}^1 et

$$G'(x) = \int_{\varphi(x)}^{\psi(x)} \frac{\partial f}{\partial x}(x,t) dt - f(x,\varphi(x))\varphi'(x) + f(x,\psi(x))\psi'(x).$$

74. Soit $f:\mathbb{R}^2 \to \mathbb{R}$, une application de classe \mathscr{C}^2 . L'application φ définie par

$$\forall (x,y,z) \in \mathbb{R}^3, \quad \varphi(x,y,z) = \int_0^{2\pi} f(x+z\cos\theta,y+z\sin\theta) d\theta$$

est de classe \mathscr{C}^2 sur \mathbb{R}^3 et

$$z\left(\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} - \frac{\partial^2 \varphi}{\partial z^2}\right) - \frac{\partial \varphi}{\partial z} = 0$$

75. Fonction *B* **d'Euler** [**38**]

Quels que soient les réels strictement positifs x et y, on pose

$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt.$$

1. La fonction *B* est définie sur l'ouvert

$$\Omega =]0, +\infty[\times]0, +\infty[$$

et symétrique :

$$\forall (x,y) \in \Omega, \quad B(x,y) = B(y,x).$$

- . La fonction B est de classe \mathscr{C}^{∞} sur Ω .
- 3. Pour tout entier $n \in \mathbb{N}^*$,

$$\forall x > 0$$
, $B(x,n) = \frac{\Gamma(x) n!}{\Gamma(x+n+1)}$.

4. Pour tout x > 0,

$$\Gamma(x) = \lim_{n \to +\infty} \int_0^n t^{x-1} \left(1 - \frac{t}{n}\right)^n dt$$
$$= \lim_{n \to +\infty} \frac{n! n^x}{x(x+1) \cdots (x+n)}.$$