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Un pion se déplace aléatoirement sur trois points distincts A, B et C.
Initialement, on suppose que ce pion se trouve sur le point A.
Entre l’instant n et l’instant (n + 1), on suppose que le pion a une chance sur deux de rester sur

place. Dans le cas contraire, il se déplace de manière équiprobable vers l’un des deux autres points.

Partie A. Modélisation

Pour représenter mathématiquement la marche aléatoire décrite ci-dessus, on considère trois suites
(An)n∈N, (Bn)n∈N et (Cn)n∈N d’événements définies sur un même espace probabilisé (Ω,A,P).

∀ n ∈ N, An ∈ A, Bn ∈ A, Cn ∈ A

On suppose que, pour tout n ∈ N, le triplet (An, Bn, Cn) est un système complet d’événements :

An ⊔ Bn ⊔ Cn = Ω.

Pour tout n ∈ N, on note alors

Vn =

pn

qn

rn


où pn = P(An), qn = P(Bn), rn = P(Cn).
1. Quelles valeurs attribuer à p0, q0 et r0 ?
2. On pose

M =
1

4

2 1 1
1 2 1
1 1 2

 .

Comment justifier la relation suivante?

∀ n ∈ N, Vn+1 = MVn

On distinguera clairement les calculs qui découlent de la théorie mathématique des choix effectués pour modéliser
la marche aléatoire.
3. On admet que, pour tout n ∈ N,

Mn =
1

3

1 1 1
1 1 1
1 1 1

+
1

3 · 4n

 2 −1 −1
−1 2 −1
−1 −1 2

 .

3. a. Calculer pn, qn et rn.
3. b. En déduire les limites des suites (pn)n∈N, (qn)n∈N et (rn)n∈N.

Partie B. Nombre moyen de passages en A

4. Soit n ∈ N∗.
4. a. Démontrer que 1An

est une variable aléatoire discrète sur (Ω,A,P).
4. b. Quelle est sa loi ? Quelle est son espérance?
5. Calculer E(1A1

+ · · ·+ 1An
) et interpréter le résultat.

6. Pour 5/2 uniquement. En calculant

Cov(1An
+ 1Bn

,1Cn
),

démontrer que les variables aléatoires 1An
, 1Bn

et 1Cn
ne sont pas indépendantes.
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Partie C. Premier passage en B

On définit une application
T : Ω → N

de la manière suivante.
— Si le pion ne passe jamais par le point B, alors T = 0.
— Si le pion passe au moins une fois par le point B, alors T est l’instant auquel le pion passe pour

la première fois au point B.
7. a. Démontrer que

[T = 0] =
⋂
n∈N

Bc
n.

7. b. Démontrer que

[T = n] =

( ⋂
1⩽k<n

Bc
k

)
∩ Bn.

7. c. En déduire que T est une variable aléatoire discrète sur (Ω,A,P).
8. Pour calculer la loi de la variable aléatoire T , on fait l’hypothèse de Markov :

∀ n ∈ N∗, P
(
Bn+1

∣∣∣ n⋂
k=1

Bc
k

)
= P(Bn+1 | Bc

n).

8. a. Exprimer Bc
n en fonction de An et Cn. Calculer P(Bn+1 | Bc

n).
8. b. En déduire la valeur de P(T = k) pour k ∈ N∗.
8. c. Que vaut P(T = 0)?
9. Démontrer que la variable aléatoire T est une variable aléatoire d’espérance finie et calculer cette
espérance.
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Solution ❀ Marche aléatoire

Partie A. Modélisation

1. Il paraît naturel d’interpréter les événements An, Bn et Cn de la manière suivante : l’événement
An (resp. Bn, resp. Cn) est réalisé si, et seulement si, le pion occupe la position A (resp. la position B,
resp. la position C) à l’instant n.

D’après l’énoncé, le pion occupe toujours la position A à l’instant 0. Autrement dit,

A0 = Ω, B0 = C0 = ∅.

Par conséquent, p0 = 1 et q0 = r0 = 0.
2. Supposons que P(An) ̸= 0. D’après l’énoncé,

P(An+1 | An) = 1/2

(sachant que le pion occupe la position A à l’instant n, il reste en A à l’instant (n+ 1)) et

P(Bn+1 | An) = P(Cn+1 | An) = 1/4

(sachant que le pion occupe la position A à l’instant n, il se déplace et occupe l’une des deux autres po-
sitions à l’instant suivant avec équiprobabilité). On peut alors déduire de la définition des probabilités
conditionnelles que P(An+1An) = 1/2P(An),

P(Bn+1An) = 1/4P(An),
P(Cn+1An) = 1/4P(An).

(1)

On notera que ces trois relations sont évidemment vraies si P(An) = 0.
De manière analogue, on obtient aussi les relations suivantes.P(An+1Bn) = 1/4P(Bn)

P(Bn+1Bn) = 1/2P(Bn)
P(Cn+1Bn) = 1/4P(Bn)

(2)

P(An+1Cn) = 1/4P(Cn)
P(Bn+1Cn) = 1/4P(Cn)
P(Cn+1Cn) = 1/2P(Cn)

(3)

On aura noté que dans tous ces événements, l’opérateur ∩ est sous-entendu. C’est clairement pour me
simplifier la tâche, mais qu’on ne vienne pas m’en faire le reproche : c’est Kolmogorov qui a commencé
(précisément pour ce genre de calculs).

On sait, par construction même, que (An, Bn, Cn) est un système complet d’événements. Par
conséquent,

P(An+1) = P(An+1An) + P(An+1Bn) + P(An+1Cn)

= 1/2P(An) + 1/4P(Bn) + 1/4P(Cn).

On reconnaît ici la première ligne de l’égalité matricielle Vn+1 = MVn.
Des relations analogues pour P(Bn+1) et P(Cn+1), on tire de même les deuxième et troisième

lignes de Vn+1MVn.
On a ainsi rattaché la relation de récurrence

∀ n ∈ N, Vn+1 = MVn

à la marche aléatoire du pion entre les trois positions.
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Il serait plus agréable de modéliser cette marche aléatoire par une suite (Xn)n∈N de variables aléatoires
discrètes définies sur un même espace probabilisé, avec la donnée initiale

P(X0 = 0) = 1, P(X0 = 1) = P(X0 = 2) = 0

et la relation de récurrence

P(Xn+1 = j | Xn = i) =

∣∣∣∣ 1/2 pour i = j,
1/4 pour i ̸= j.

De ce point de vue, on voit mieux que notre modélisation est incomplète. La relation de récurrence

∀ n ∈ N, Vn+1 = MVn

permet de déduire la loi de Xn+1 en fonction de la loi de Xn et donc, de proche en proche, de calculer la loi
marginale de chacune des variables Xn. Mais on ne peut pas en déduire la suite des lois conjointes des
vecteurs

(X0, X1, . . . , Xn)

(c’est la suite de ces lois qu’on appelle la loi du processus aléatoire).
Pour calculer ces loi conjointes, il faut appliquer la formule des probabilités composées et c’est à ce moment-
là que l’hypothèse de Markov prend tout son sens : l’hypothèse de Markov est une hypothèse simplifica-
trice qui permet de calculer toutes les lois conjointes à partir des relations dont nous disposons déjà.

3. a. D’après la relation de récurrence, il est clair que

∀ n ∈ N, Vn = MnV0

donc Vn est la première colonne de la matrice Mn. Par conséquent,

pn =
1

3
+

2

3 · 4n
, qn = rn =

1

3
−

1

3 · 4n

pour tout n ∈ N.
3. b. On en déduit immédiatement que

lim
n→+∞pn = lim

n→+∞qn = lim
n→+∞ rn = 1/3.

Autrement dit, la variable aléatoire Xn tend asymptotiquement vers la loi uniforme sur {0, 1, 2} :
lorsque n devient grand, le pion a environ une chance sur trois de se trouver en un quelconque des
trois points A, B et C.

Partie B. Nombre moyen de passages en A

4. a. Par définition, 1An
est une application de Ω dans E = {0; 1}. Il est clair que

[1An
= 1] = An et que [1An

= 0] = Ac
n.

Or An ∈ A par hypothèse et Ac
n ∈ A (car une tribu est stable par passage au complémentaire), donc

∀ x ∈ E, [1An
= x] ∈ A

ce qui prouve que 1An
est bien une variable aléatoire discrète de (Ω,A) dans E = {0; 1}.

4. b. En tant que variable aléatoire à valeurs dans {0; 1}, la variable aléatoire 1An
suit une loi de

Bernoulli. Son paramètre est égal à

P(1An
= 1) = P(An) = pn.

Donc la variable aléatoire 1An
suit la loi de Bernoulli B(pn) et on sait que son espérance est égale à

pn.
5. Comme U1 = 1A1

, . . ., Un = 1An
sont des variables aléatoires d’espérance finie, la somme U1 +

· · ·+Un est une variable aléatoire d’espérance finie et, par linéarité de l’espérance,

E(U1 + · · ·+Un) =

n∑
k=1

E(Uk) =

n∑
k=1

pk.

❧ Une somme de variables aléatoires de Bernoulli est égale au nombre de ces variables aléatoires qui
prennent la valeur 1 (puisqu’une variable aléatoire de Bernoulli est égale à 0 ou à 1). Par conséquent,
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la somme U1 + · · ·+Un est égale au nombre (aléatoire) d’événements réalisés parmi A1, . . ., An, c’est-
à-dire au nombre (aléatoire) de fois que le pion passe par la position A après son départ.

L’espérance de la somme U1+ · · ·+Un peut alors être comprise comme le nombre moyen de passages
par la position A (il est utile de lire les titres).
6. Comme (An, Bn, Cn) est un système complet d’événements,

pn + qn + rn = P(An) + P(Bn) + P(Cn) = 1.

Par linéarité de l’intégrale, on en déduit que

E(1An
+ 1Bn

) = pn + qn = 1− rn

et donc que
E(1An

+ 1Bn
)E(1Cn

) = (1− rn)rn > 0.

Cependant,
— ou bien ω ∈ Cn et alors ω /∈ An et ω /∈ Bn, donc

[1An
(ω) + 1Bn

(ω)][1Cn
(ω)] = [0+ 0]× 1 = 0

— ou bien ω /∈ Cn et dans ce cas

[1An
(ω) + 1Bn

(ω)][1Cn
(ω)] = [. . . ]× 0 = 0

donc la variable aléatoire (1An
+ 1Bn

)1Cn
est identiquement nulle et donc d’espérance nulle.

D’après la Formule de Koenig-Huyghens,

Cov(1An
+ 1Bn

,1Cn
) = E[(1An

+ 1Bn
)1Cn

] − E(1An
+ 1Bn

)E(1Cn
) = 0− (1− rn)rn < 0

donc les variables aléatoires (1An
+ 1Bn

) et 1Cn
sont corrélées.

D’après le Théorème des coalitions, si les variables aléatoires 1An
, 1Bn

et 1Cn
étaient indépen-

dantes, les variables aléatoires (1An
+ 1Bn

) et 1Cn
seraient aussi indépendantes et donc décorrélées.

Par conséquent, les variables aléatoires 1An
, 1Bn

et 1Cn
ne sont pas indépendantes.

Il ne suffit pas de remarquer que ces trois variables aléatoires sont liées par une relation affine :

P(1An
+ 1Bn

+ 1Cn
= 1) = 1

pour conclure qu’elles ne sont pas indépendantes, mais cela met sur la voie...

Partie C. Premier passage en B

7. a. Pour tout ω ∈ Ω,

T(ω) = 0 ⇐⇒ ∀ n ∈ N, ω /∈ Bn⇐⇒ ∀ n ∈ N, ω ∈ Bc
n⇐⇒ ω ∈

⋂
n∈N

Bc
n

et par conséquent
[T = 0] =

⋂
n∈N

Bc
n.

Tous les Bn appartiennent à la tribu A par définition. Une tribu est stable par passage au complémentaire
et par intersection dénombrable, donc [T = 0] ∈ A.

7. b. Rappelons (cf. [1.]) pour commencer que B0 = ∅ et donc que Bc
0 = Ω. Par définition de T(ω),

pour tout entier n ⩾ 1,

T(ω) = n ⇐⇒ ω /∈ B0, . . . ,ω /∈ Bn−1,ω ∈ Bn⇐⇒ ω ∈ Bc
1, . . . ,ω ∈ Bc

n−1,ω ∈ Bn

⇐⇒ ω ∈
( ⋂

1⩽k<n

Bc
k

)
∩ Bn
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et donc

[T = n] =

( ⋂
1⩽k<n

Bc
k

)
∩ Bn.

Une tribu étant stable par passage au complémentaire et par intersection finie, on en déduit que [T = n] ∈ A
pour tout n ∈ N∗.

7. c. Par construction, T est une application de Ω dans N. D’après les deux questions précédentes,

∀ n ∈ N, [T = n] ∈ A

donc T : (Ω,A) → (N,P(N)) est bien une variable aléatoire discrète.
8. a. Comme (An, Bn, Cn) est un système complet d’événements,

Bn ⊔ (An ⊔ Cn) = Ω

donc Bc
n = An ⊔ Cn et par conséquent

P(Bc
n) = P(An) + P(Cn).

On en déduit que
Bn+1 ∩ Bc

n = (Bn+1 ∩An) ⊔ (Bn+1 ∩ Cn)

et donc que, par additivité de la mesure P :

P(Bn+1B
c
n) = P(Bn+1An) + P(Bn+1Cn) = 1/4P(An) + 1/4P(Cn) (par [2.])

= 1/4P(B
c
n).

On en déduit enfin que

P(Bn+1 | Bc
n) =

P(Bn+1B
c
n)

P(Bc
n)

=
1

4
.

8. b. On reprend l’expression de [T = k] établie au [7.b.] et on applique la formule des probabilités
composées.

P(T = k) = P(Bn | Bc
n−1 · · ·Bc

1)× P(Bc
n−1 | Bc

n−2 · · ·Bc
1)× · · ·

× P(Bc
3 | Bc

2B
c
1)× P(Bc

2 | Bc
1)× P(Bc

1).

Rappel : cette formule est la règle de calcul à appliquer pour calculer la probabilité d’une intersection
d’événements.

L’hypothèse de Markov nous permet de simplifier cette expression, car, pour tout n ⩾ 1,

P
(
Bc
n+1

∣∣∣ n⋂
k=1

Bc
k

)
= 1− P

(
Bn+1

∣∣∣ n⋂
k=1

Bc
k

)
= 1− P(Bn+1 | Bc

n) (Markov)
= 3/4. (par [8.a.])

On en déduit que :

P(T = k) =
1

4
·
(3
4

)n−2

· P(Bc
1).

Or P(Bc
1) = 1− q1 = 1− 1/4 = 3/4, donc

∀ k ∈ N∗, P(T = k) =
1

4
·
(3
4

)k−1

.

8. c. Comme la famille ([T = k])k∈N est, par construction, un système complet d’événements et que
la mesure de probabilité P est σ-additive,

P(T = 0) = 1−

+∞∑
k=1

P(T = k) = 1−

+∞∑
k=1

1

4
·
(3
4

)k−1

= 0.
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Variante. On peut aussi remarquer que [T = 0] est l’intersection d’une suite décroissante d’événements :

[T = 0] =

+∞⋂
n=1

Bc
1B

c
2 · · ·Bc

n.

Par continuité décroissante de P,

P(T = 0) = lim
n→+∞P(Bc

1B
c
2 · · ·Bc

n)

et d’après les calculs menés au [8.b.], cette limite est nulle.

9. La variable aléatoire T a même loi qu’une variable aléatoire qui suit la loi géométrique de para-
mètre 1/4 (seule nuance : une variable aléatoire géométrique n’est jamais nulle alors que T prend la
valeur 0 avec probabilité nulle). Donc T est une variable aléatoire d’espérance finie et E(T) = 4.


