
Lycée Pierre CORNEILLE MP/MPI ✽

Problème de Mathématiques
Référence pp2104 — Version du 31 décembre 2025

Partie A. Étude d'un endomorphisme

On note B = (e1, e2, e3), la base canonique de R3 et on considère l’endomorphisme f de R3 tel
que

f(e1) =
1

3
· (e2 + e3), f(e2) = f(e3) =

2

3
· e1.

1. Citer précisément le théorème qui affirme que f est bien défini.
2. Écrire la matrice M qui représente f dans la base B.
3. Déterminer une base de Ker f, une base de Ker(3f − 2 I), une base de Ker(f + I) et une base de
Ker(3f+ 2 I).
4. On pose

P =

2 −2 0
1 1 1
1 1 −1

 et Q =

 1 1 1
−1 1 1
0 2 −2

 .

4. a. Justifier, avec le moins de calculs possibles, que la matrice P est inversible.
4. b. Déterminer, sans autres calculs, la matrice diagonale D telle que

M = PDP−1.

4. c. Vérifier que P−1 = 1
4
·Q.

4. d. Démontrer par récurrence que

∀ k ∈ N, Mk = PDkP−1.

4. e. En déduire la première colonne de la matrice Mk pour tout k ∈ N.

Partie B. Étude d'un processus aléatoire

Une urne contient trois boules numérotées de 1 à 3. On procède à des tirages successifs d’une boule
avec remise.

On admet qu’il existe une suite (Xk)k⩾1 de variables aléatoires définies sur un espace probabilisé
(Ω,A,P) qui modélisent ces tirages de la manière suivante.

— La valeur de la variable aléatoire X1 est le numéro de la première boule tirée.
— Si Xk a pris la valeur 1, alors la valeur de Xk+1 est le numéro de la boule tirée lors du (k + 1)-

ième tirage.
— Si Xk a pris une valeur j ̸= 1, alors la valeur de Xk+1 est égale à j si la boule tirée lors du

(k + 1)-ième tirage est la boule qui porte le numéro j et la valeur de Xk+1 est égale à 1 dans le
cas contraire.

5. Quelle est la loi de X1 ?
6. Démontrer que (

[Xk = 1], [Xk = 2], [Xk = 3]
)

est un système complet d’événements.
7. On pose

Uk =

P(Xk = 1)
P(Xk = 2)
P(Xk = 3)

 .

7. a. En s’inspirant de la description du processus aléatoire, déterminer les probabilités condition-
nelles

P(Xk+1 = i | Xk = j)

en fonction des entiers 1 ⩽ i, j ⩽ 3.
7. b. En déduire une matrice A ∈ M3(R) telle que

∀ k ∈ N, Uk+1 = AUk.
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On écrira cette matrice sous la forme M+ rI3 pour un réel r bien choisi.
8. a. En déduire que

∀ k ∈ N∗, P(Xk = 1) =
1

2
·
(
1+ (−1/3)

k
)
,

P(Xk = 2) = P(Xk = 3) =
1

4
·
(
1− (−1/3)

k
)
.

8. b. Calculer la limite lorsque k tend vers +∞ de la probabilité P(Xk = i) en fonction de 1 ⩽ i ⩽ 3.
9. Les variables aléatoires X1, . . ., Xn sont-elles indépendantes?

Partie C. Simulation informatique

Extrait de la documentation du module numpy.random

random_integers(low, high=None, size=None)
Return random integers between low and high, inclusive.
Return random integers from the discrete uniform distribution in the closed interval [low, high]. If high is
None (the default), then results are from [1, low].
Parameters

— low : int
Lowest (signed) integer to be drawn from the distribution (unless high=None, in which case this para-
meter is the highest such integer).

— high : int, optional
If provided, the largest (signed) integer to be drawn from the distribution (see above for behavior if
high=None).

— size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., (m,n, k), then m×n×k samples are drawn. Default is None,
in which case a single value is returned.

Returns
— out : int or ndarray of ints

size-shaped array of random integers from the appropriate distribution, or a single such random int if
size not provided.

10. Écrire un code qui simule N tirages successifs dans l’urne.
11. On suppose que les résultats de N tirages successifs sont rassemblés dans un tableau numpy T.
Écrire une fonction processus telle que l’exécution de processus(T) retourne les valeurs X1, . . ., XN

associées à ces tirages sous forme d’une liste.



Sujet pp2104 3

Solution ❀ Chaîne de Markov

Partie A. Étude d'un endomorphisme

1. Comme B = (e1, e2, e3) est une base de R3, quelle que soit la famille (ε1, ε2, ε3) de R3, il existe
un, et un seul, endomorphisme f deR3 tel que

∀ 1 ⩽ k ⩽ 3, f(ek) = εk.

2. Les colonnes de M décrivent les vecteurs f(e1), f(e2) et f(e3) dans la base B.

M =
1

3

0 2 2
1 0 0
1 0 0


3. Les deux premières colonnes de M ne sont pas proportionnelles, donc le rang de f est au moins
égal à 2. Les deux dernières colonnes de M sont proportionnelles, donc le rang de f est au plus égal à 2.

Le rang de f est donc égal à 2, son noyau est une droite vectorielle (Théorème du rang) et comme
les deux dernières colonnes de M sont égales,

Ker f = R · (e2 − e3) = R · (0, 1,−1).

❧ D’après [2.],

3M− 2I3 =

−2 2 2
1 −2 0
1 0 −2

 .

On remarque cette fois que les colonnes de la matrice vérifient

2C1 + C2 + C3 = 0

et un raisonnement analogue au précédent nous donne

Ker(3f− 2 I) = R · (2, 1, 1).

❧ De même,

M+ I3 =
1

3

3 2 2
1 3 0
1 0 3

 .

L’opération
C1 ← 3C1 − C2 − C3

nous donne la matrice
1

3

5 2 2
0 3 0
0 0 3

 ,

qui est clairement inversible. Donc la matrice M + I3 est inversible et le noyau de (f + I) est réduit au
vecteur nul.

❧ De même,

3M+ 2I3 =

2 2 2
1 2 0
1 0 2

 .

Les colonnes de cette matrice vérifient

2C1 − C2 − C3 = 0

donc Ker(3f+ 2 I) = R · (2,−1,−1).
4. a. L’opération C2 ← C2 + C1 transforme P en2 0 0

1 2 1
1 2 −1

 .

Les deux dernières colonnes ne sont pas proportionnelles (le rang est au moins égal à 2) et la première
colonne n’est pas une combinaison linéaire des deux autres (le rang est strictement supérieur à 2), donc
la matrice P est inversible.
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Variante. Les colonnes de P représentent des vecteurs propres de f pour des valeurs propres deux à deux
distinctes (0, 2/3 et −2/3), donc elles forment une famille libre et comme P est une matrice carrée, elle est
bien inversible.

4. b. D’après l’énoncé, la matrice D vérifie

D = P−1MP.

On reconnaît ici la formule de changement de base : comme P est inversible, il existe une base C =
(ε1, ε2, ε3) telle que P soit la matrice de passage de B à C et la matrice D représente alors l’endomor-
phisme f dans la base C .

D’après la matrice P,

ε1 = (2, 1, 1), ε2 = (−2, 1, 1), ε3 = (0, 1,−1).

D’après [3.], on a

f(ε1) = 2/3 · ε1 = 2/3 · ε1 + 0 · ε2 + 0 · ε3
f(ε2) = −2/3 · ε2 = 0 · ε1 − 2/3 · ε2 + 0 · ε3
f(ε3) = 0 = 0 · ε1 + 0 · ε2 + 0 · ε3

et par conséquent

D =

2/3 0 0
0 −2/3 0
0 0 0

 .

4. c. Il suffit de calculer le produit PQ et de constater qu’il est égal à I3.
REMARQUE.— Il est important de vraiment calculer ce produit — un professeur distrait ou taquin pour-
rait avoir plus ou moins volontairement introduit une erreur de signe dans les coefficients de Q...
4. d. Pour k = 0, la propriété est évidente :

M0 = I3 et PD0P−1 = PP−1 = I3.

On suppose [HR] qu’il existe un rang k ∈ N tel que

Mk = PDkP−1.

D’après [HR] et [4.b.]

Mk+1 = MkM = (PDkP−1)(PDP−1)

= PDkI3DP−1

= PDk+1P−1.

On a ainsi démontré par récurrence que

∀ k ∈ N, Mk = PDkP−1.

4. e. Comme D est diagonale,

∀ k ∈ N, Dk =
(2
3

)k

Diag(1, (−1)k, 0).

On en déduit que

PDk =
(2
3

)k

2 2.(−1)k+1 0

1 (−1)k 0

1 (−1)k 0

 .

La première colonne de Mk est obtenue en multipliant Mk par E1 (le premier vecteur de la base cano-
nique), donc en multipliant PDk par la première colonne de P−1 :

MkE1 = (PDkP−1)E1 = (PDk)(P−1E1).

On trouve

(PDk)
(1
4
QE1

)
=

1

4

(2
3

)k

2[1+ (−1)k]
1− (−1)k

1− (−1)k

 .
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Il est sage (même si ce n’est pas demandé) de présenter le résultat en discutant sur la parité de k.
Si k est pair, alors la première colonne de Mk est égale à

(2
3

)k

1
0
0


et si k est impair, alors la première colonne de Mk est égale à

(2
3

)k

 0
1/2
1/2

 .

Partie B. Étude d'un processus aléatoire

5. La loi de X1 est une loi de probabilité sur {1, 2, 3} (= l’ensemble des valeurs possibles). L’énoncé ne
fournissant aucune information qui s’y oppose, il est raisonnable de supposer que la loi de X1 est la
loi uniforme sur {1, 2, 3}, c’est-à-dire

P(X1 = 1) = P(X1 = 2) = P(X1 = 3) =
1

3
.

6. Comme Xk est une variable aléatoire sur (Ω,A,P) à valeurs dans {1, 2, 3}, alors(
[Xk = 1], [Xk = 2], [Xk = 3]

)
est un système complet d’événements (famille d’événements deux à deux disjoints dont l’union est
égale à l’univers Ω).
7. a. Pour que les probabilités conditionnelles

P(Xk+1 = i | Xk = j)

aient un sens, nous allons supposer que

P(Xk = 1) > 0, P(Xk = 2) > 0 et P(Xk = 3) > 0.

❧ D’après l’énoncé, si Xk a pris la valeur 1, alors Xk+1 prend la valeur de la boule tirée ensuite.
Sans précision supplémentaire, on peut supposer que les trois valeurs possibles pour Xk+1 sont alors
équiprobables et on convient donc de

P(Xk+1 = 1 | Xk = 1) = P(Xk+1 = 2 | Xk = 1) = P(Xk+1 = 3 | Xk = 1) =
1

3
.

❧ Si Xk a pris une valeur j ̸= 1, il y a une chance sur trois pour que la boule numérotée j apparaisse au
tirage suivant et deux chances sur trois pour que ce soit une autre boule (toujours selon notre hypothèse
d’équiprobabilité).

Donc on convient de ce qui suit : pour j = 2,

P(Xk+1 = 1 | Xk = 2) = 2/3 (autre boule)
P(Xk+1 = 2 | Xk = 2) = 1/3 (boule 2)
P(Xk+1 = 3 | Xk = 2) = 0

et pour j = 3,

P(Xk+1 = 1 | Xk = 3) = 2/3 (autre boule)
P(Xk+1 = 2 | Xk = 3) = 0

P(Xk+1 = 3 | Xk = 3) = 1/3. (boule 3)

7. b. Comme on connaît un système complet d’événements, pour tout 1 ⩽ i ⩽ 3,

P(Xk+1 = i) =

3∑
j=1

P([Xk+1 = i] ∩ [Xk = j])
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et on retrouve ainsi la Formule des probabilités totales :

P(Xk+1 = i) =

3∑
j=1

P(Xk+1 = i | Xk = j)P(Xk = j).

(Si P(Xk = j) = 0, alors P([Xk+1 = i] ∩ [Xk = j]) = 0 et le fait que la probabilité conditionnelle
P(Xk+1 = i | Xk = j) ne soit pas définie est alors sans importance.)

On cherche ici une matrice A = (ai,j) telle que

∀ 1 ⩽ i ⩽ 3, P(Xk+1 = i) =

3∑
j=1

ai,j P(Xk = j).

D’après la Formule des probabilités totales et [7.a.], la matrice

A =

1/3 2/3 2/3
1/3 1/3 0
1/3 0 1/3


convient. On remarque alors que

A =
1

3

1 2 2
1 1 0
1 0 1

 = M+
1

3
I3.

REMARQUE.— Il vaut mieux ne pas laisser croire que cette matrice est la seule possible : ce n’est pas
demandé par l’énoncé et ce n’est pas simple à établir...
8. a. D’après [7.b.], il est clair que

∀ k ⩾ 1, Uk = Ak−1U1

et d’après [5.],

U1 =
1

3
·

1
1
1

 = A

1
0
0

 .

Donc

∀ k ⩾ 1, Uk = Ak

1
0
0

 .

❧ On a remarqué plus haut que

A = M+
1

3
I3.

On déduit de [4.b.] que

P−1AP = P−1MP +
1

3
I3 =

1 0 0
0 −1/3 0
0 0 1/3


et donc que

Ak = P

1 0 0

0 (−1/3)k 0

0 0 (1/3)k

P−1.

Un calcul analogue à celui du [4.e.] nous donne alors

Ak

1
0
0

 =
1

4

2
[
1+ (−1/3)k

]
1− (−1/3)k

1− (−1/3)k


cqfd.
8. b. On en déduit immédiatement que

lim
k→+∞P(Xk = 1) = 1/2, lim

k→+∞P(Xk = 2) = 1/4, lim
k→+∞P(Xk = 3) = 1/4.
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9. Si les variables aléatoires X1, . . ., Xn étaient indépendantes, alors en particulier X1 et X2 seraient
indépendantes et dans ce cas,

P(X2 = 1 | X1 = 1) = P(X2 = 1).

Or P(X2 = 1 | X1 = 1) = 1/3 par [7.a.] et

P(X2 = 1) =
1

2
(1+ 1/9) = 5/9

par [8.a.]
Donc les variables aléatoires X1 et X2 ne sont pas indépendantes et, a fortiori, les variables aléa-

toires X1, . . ., Xn ne sont pas indépendantes.

Partie C. Simulation informatique

10. On importe la fonction random_integers du module numpy.random et on l’utilise en suivant les
indications de la documentation.

from numpy.random import random_integers as rd

def tirages(N):
T = rd(3, size=N)
return T

11.

def processus(T):
N = len(T)
X = []
X.append(T[0]) # Premiè re boule t i r ée

for k in range(N-1): # Tk+1 = (k+1)= i ème boule t i r ée

t = T[k+1]
if (X[k]==1): # s i Xk = 1
X.append(t) # a lo r s Xk+1 = Tk+1

else:
j = X[k] # s i Xk = j ̸= 1

if (t==j): # et s i Tk+1 = j ,
X.append(j) # a lo r s Xk+1 = j

else: # mais s i Tk+1 ̸= j ,
X.append(1) # a lo r s Xk+1 = 1

return X


