
Lycée Pierre CORNEILLE MP/MPI ✽

Problème de Mathématiques
Référence pp2127 — Version du 31 décembre 2025

Une puce se déplace sur N. Initialement, elle est posée sur 0. Par la suite, elle se déplace selon la règle
suivante : si elle se trouve sur le point d’abscisse (k− 1) ∈ N, alors

— elle saute vers le point d’abscisse k avec la probabilité k
k+1

;
— ou elle saute vers 0 avec la probabilité 1

k+1
.

Le mouvement aléatoire de cette puce est modélisé par une suite de variables aléatoires (An)n∈N
à valeurs dansN définies sur un espace probabilisé (Ω,A,P).

On note U, l’instant aléatoire (supérieur à 1) auquel la puce revient pour la première fois en 0. Si
la puce ne revient jamais en 0, alors on convient que U = 0.
1. Démontrer que U est une variable aléatoire discrète à valeurs dansN.

On suppose que la suite (An)n∈N est une chaîne de Markov homogène au sens où il existe une
application

f : N× [0, 1] → N

et une suite de variables aléatoires indépendantes (Xn)n∈N définies sur (Ω,A,P) qui suivent toutes la
loi uniforme sur [0, 1] :

∀ 0 ⩽ a < b ⩽ 1, P(a ⩽ X ⩽ b) = b− a

telles que
∀ n ∈ N, An+1 = f(An, Xn).

Dans ces conditions, on peut démontrer que

∀ k ∈ N∗, P(U = k) =
1

k(k+ 1)
.

2. Donner une expression pour f qui soit cohérente avec la description du mouvement de la puce.
3. Calculer P(U = 0) et P(U > n) pour tout n ∈ N.
4. On cherche à simuler informatiquement ce processus aléatoire.

import numpy as np
import random as rd

4. a. Expliquer le comportement de la fonction suivant.

def suivant(An):
p = 1/(An + 2)
if (rd.random()<p):
return 0

else:
return An + 1

4. b. Expliquer le comportement de la fonction trajectoire.

def trajectoire(lgr):
T = [0] # départ de l ' o r i g i n e

for i in range(lgr):
Ai = T[i]
T.append(suivant(Ai))

return T

4. c. Expliquer le comportement de la fonction echantillon_T.

def echantillon_T(N, lgr):
ech = [trajectoire(lgr) for k in range(N)]
return ech

4. d. Expliquer le comportement de la fonction echantillon_U.

Sujet pp2127 2

def U_tronquee(T):
lgr, U = len(T), 1
while (U<lgr) and (T[U]>0):
U += 1

return U

def echantillon_U(N, lgr):
ech_T = echantillon_T(N, lgr)
ech_U = [U_tronquee(T) for T in ech_T]
return ech_U

4. e. Expliquer le comportement des fonctions suivantes.

def sans_retour(T):
return T[-1]==(len(T)-1)

def estimation_sans_retour(N, lgr):
ech_T = echantillon_T(N, lgr)
nb_echecs = 0
for T in ech_T:
nb_echecs += sans_retour(T)

return nb_echecs/N

def erreur_estimation_sans_retour(N, lgr):
pr_th = 1/(lgr+1)
pr_emp = estimation_sans_retour(N, lgr)
return 100*abs(pr_th-pr_emp)/pr_th

5. Proposer un code python pour vérifier que la simulation de U fournie par echantillon_U est
conforme à la loi de U indiquée plus haut.

Sujet pp2127 3

Solution ❀ Chaîne de Markov

1. Par construction, U est une application de Ω dansN.
Par convention,

U(ω) = 0 ⇐⇒ ∀ n ⩾ 1, An(ω) ̸= 0

donc
[U = 0] =

⋂
n∈N∗

[An = 0]c ∈ A.

(Comme An est une variable aléatoire, alors [An = 0] ∈ A et, comme toutes les tribus, A est stable par
passage au complémentaire et par intersection dénombrable.)

Pour tout entier n ⩾ 1,

[U = n] = [A1 ̸= 0, . . . , An−1 ̸= 0] ∩ [An = 0] ∈ A

(puisque A est stable par intersection finie).
On a démontré que

∀ n ∈ N, [U = n] ∈ A

donc U : Ω → N est bien une variable aléatoire discrète sur (Ω,A).
2. Pour k ∈ N et u ∈ [0, 1], on pose p = 1

k+2
et

f(k, u) =

∣∣∣∣ 0 si 0 ⩽ u < p,
k+ 1 si p ⩽ u ⩽ 1.

❧ On rappelle que les variables aléatoires X1, . . ., Xn, Xn+1 sont indépendantes.
Par hypothèse,

An = f(An−1, Xn−1)

= f
(
f(An−2, Xn−2), Xn−1

)
= f

(
f
(
f(An−3, Xn−3), Xn−2

)
, Xn−1

)
= · · ·

= g(X1, . . . , Xn−1)

et d’après le lemme des coalitions, les variables aléatoires An et Xn sont indépendantes.
❧ Par conséquent, en supposant que P(An = k− 1) > 0,

P(An+1 = k | An = k− 1) =
P
(
[f(An, Xn) = k] ∩ [An = k− 1]

)
P(An = k− 1)

=
P
(
[f(k− 1, Xn) = k] ∩ [An = k− 1]

)
P(An = k− 1)

= P
(
f(k− 1, Xn) = k

)
. (indépendance de An et de Xn)

Or, par construction de f,

∀ k ⩾ 1,
[
f(k− 1, Xn) = k

]
=

[1

k+ 1
⩽ Xn ⩽ 1

]
et, par hypothèse sur Xn,

P

(1

k+ 1
⩽ Xn ⩽ 1

)
= 1−

1

k+ 1
=

k

k+ 1
.

❧ De même,

P(An+1 = 0 | An = k− 1) =
P
(
[f(An, Xn) = 0] ∩ [An = k− 1]

)
P(An = k− 1)

=
P
(
[f(k− 1, Xn) = 0] ∩ [An = k− 1]

)
P(An = k− 1)

= P
(
f(k− 1, Xn) = 0

)
. (indépendance de An et de Xn)

Or, par construction de f,

∀ k ⩾ 1,
[
f(k− 1, Xn) = 0

]
=

[
0 ⩽ Xn <

1

k+ 1

]

Sujet pp2127 4

et, par hypothèse sur Xn,

P

(
0 ⩽ Xn <

1

k+ 1

)
=

1

k+ 1
.

❧ On a donc bien

P(An+1 = k | An = k− 1) =
k

k+ 1
et P(An+1 = 0 | An = k− 1) =

1

k+ 1
,

conformément à l’énoncé.
3. Comme U est une variable aléatoire à valeurs dansN,

[U = 0] = [U ⩾ 1]c =
⊔
k⩾1

[U = k]

et par σ-additivité de P,

P(U = 0) = 1−

+∞∑
k=1

P(U = k) = 1−

+∞∑
k=1

(1
k
−

1

k+ 1

)
= 0

(par télescopage archi-classique).
❧ De manière analogue,

[U > n] =
⊔
k>n

[U = k]

et donc, toujours par σ-additivité et télescopage,

P(U > n) =

+∞∑
k=n+1

1

k(k+ 1)
=

1

n+ 1
.

REMARQUE.— On retrouve ainsi que P(U > 0) = 1 et donc que P(U = 0) = 0.
4. a. L’argument An représente la position occupée à l’instant n. Soit (k − 1) ∈ N, la valeur de cet
entier. On pose alors p = 1

(k−1)+2
= 1

k+1
.

L’exécution de random() revient à simuler une variable aléatoire X suivant la loi uniforme sur
[0, 1] :

— Si X(ω) < p, ce qui a lieu avec probabilité P(0 ⩽ X < p) = p, alors la fonction renvoie
0 = f

(
k− 1, X(ω)

)
;

— Sinon, on a p ⩽ X(ω) ⩽ 1, ce qui a lieu avec probabilité P(p ⩽ X ⩽ 1) = 1− p, alors la fonction
renvoie (k− 1) + 1 = k = f

(
k− 1, X(ω)

)
.

En admettant que le générateur aléatoire fonctionne correctement, les appels successifs à la fonc-
tion random() simulent fidèlement un échantillon (Xn)n⩾0 de variables aléatoires indépendantes et de
loi uniforme sur [0, 1].

Dans ces conditions, les appels successifs à la fonction suivant(Ai) simulent fidèlement un échan-
tillon (An)n⩾0 de la chaîne de Markov étudiée.
4. b. On effectue ici lgr appels successifs à la fonction suivant. La liste renvoyée sera donc

T = (T0 = 0, T1, . . . , Tlgr).

Au début de la i-ième itération, la liste T ne contient que (T0, . . . , Ti) et on considère que Ti est la valeur
de Ai. On simule alors Ai+1 en exécutant suivant(Ai) qui devient alors Ti=1.

On peut donc considérer que la fonction trajectoire renvoie une liste(
0,A1(ω), A2(ω), . . . , Algr(ω)

)
∈ Nlgr+1

qui représente le début d’une trajectoire de la marche aléatoire (An)n∈N.
4. c. La fonction echantillon_T(N, lgr) calcule une liste de N trajectoires de la marche aléatoire
(An)n∈N (plus précisément : N début de trajectoires, entre l’instant initial 0 et l’instant lgr inclus).
4. d. La fonction echantillon_U calcule une liste ech_T de N débuts de trajectoires.

Sur chacune de ces trajectoires, elle appelle la fonction U_tronquee.
Cette fonction U_tronquee parcourt un début de trajectoire, en commençant à l’instant 1 (c’est-à-

dire en ignorant la position initiale, qui est toujours égale à 0). Tant que la trajectoire ne revient pas à
l’origine (soit : tant que TU > 0), on continue.

Deux cas se présentent :

Sujet pp2127 5

— Si la trajectoire repasse par l’origine, c’est la valeur du premier instant pour lequel on revient à
l’origine qui est renvoyée, c’est-à-dire la valeur de U ;

— Si la trajectoire ne repasse pas par l’origine, c’est la longueur de la trajectoire qui est renvoyée.
(NB : Dans cette fonction, la variable lgr est la longueur de la liste T contrairement à la fonction
trajectoire où la longueur de la liste renvoyée était égale à lgr+1.)

L’échantillon renvoyé par cette fonction est donc presque un échantillon de valeurs de la variable
aléatoire U : c’est un échantillon de la variable aléatoire min{U,n} calculé sur des trajectoires T =
(T0, . . . , Tn−1).
4. e. La fonction sans_retour renvoie un booléen. Ce booléen prend la valeur True si, et seulement
si, le dernier élément de la liste T (c’est-à-dire la position finale de la trajectoire) est égal à n− 1.

On distingue deux cas pour une trajectoire T = (T0, . . . , Tn−1) :
— Si on n’est pas encore revenu à l’origine, la valeur finale est égale à (n−1) (où n est la longueur

de la liste T) ;
— Si on est déjà revenu à l’origine, on est reparti de 0 à un instant postérieur à i = 0, donc la

valeur finale est strictement inférieure à (n− 1).
Par conséquent, le booléen renvoyé par sans_retour est égal à True si, et seulement si, au cours du

début de trajectoire T la marche aléatoire n’est pas encore repassée par l’origine, c’est-à-dire si U ⩾ n
(en notant n la longueur de la liste T).

❧ La fonction estimation_sans_retour calcule un nombre N de trajectoires et pour chacune de ces
trajectoires elle vérifie si un retour à l’origine a eu lieu. Elle compte le nombre de trajectoires pour
lesquelles il n’y a pas eu de retour à l’origine (avec la convention True vaut 1 et False vaut 0) avant de
renvoyer la proportion de ces trajectoires (en divisant par le nombre total N de trajectoires étudiées).

❧ On a ainsi estimé la fréquence de réalisation de l’événement [U ⩾ n] = [U > lgr] (la longueur n
des listes est ici égale à lgr + 1).

L’étude théorique nous dit que la probabilité de cet événement est égale à 1/n.
La simulation nous donne une fréquence empirique (calculée sur les résultats constatés).
On renvoie alors l’erreur relative entre la probabilité (théorique) et la fréquence (empirique) expri-

mée en pourcentage.
❧ Concrètement, pour N = 104 et lgr = 10, l’erreur relative est de l’ordre de 1 à 2%. Elle est un peu

plus petite pour N = 105 (sans être significativement plus petite).
5. On tronque la variable U pour la traiter informatiquement (bien obligé !).

La loi de U est représentée par un tableau qui contient les probabilités théoriques.

def loi_retour(lgr):
d = np.zeros(lgr)
for k in range(1, lgr):
d[k] = 1/(k*(k+1))

return d

❧ On simule ensuite un échantillon de N valeurs de la variable U tronquée et on compte la fréquence
de chacune des valeurs observées (méthode du tri postal).

def estimation_loi_retour(N, lgr):
ech_U = echantillon_U(N, lgr)
dist_U = np.zeros(lgr)
for U in ech_U:
if (U<lgr):
dist_U[U] += 1

return dist_U/N

❧ Pour comparer le tableau théorique (les probabilités) et le tableau empirique (les fréquences),

loi_th = loi_retour(10)
freq_emp = estimation_loi_retour(10000, 10)

on peut par exemple calculer l’écart absolu moyen.

np.abs(loi_th-freq_emp).max()

Le plus important est de trouver une valeur de référence qui puisse donner un sens au résultat ! On
peut par exemple rapporter cet écart à la probabilité P(U ⩽ n).

loi_th.sum()

Sujet pp2127 6

Valeurs observées

N 103 104 105

écart 2.10−2 5.10−3 10−3

NB : ces valeurs sont soumises à des fluctuations d’échantillonnage, il ne faut pas s’étonner de
trouver des valeurs différentes (mais l’ordre de grandeur de ces valeurs devrait peu varier).

