Lycée Pierre CORNEILLE MP/MPI

Probléme de Mathématiques
Référence pp2127 — Version du 31 décembre 2025

Une puce se déplace sur IN. Initialement, elle est posée sur 0. Par la suite, elle se déplace selon la régle
suivante : si elle se trouve sur le point d’abscisse (k — 1) € N, alors

— elle saute vers le point d’abscisse k avec la probabilité ﬁ ;

— ou elle saute vers 0 avec la probabilité k%r]

Le mouvement aléatoire de cette puce est modélisé par une suite de variables aléatoires (A)nen
a valeurs dans N définies sur un espace probabilisé (Q, A, P).

On note U, l'instant aléatoire (supérieur a 1) auquel la puce revient pour la premiere fois en 0. Si
la puce ne revient jamais en 0, alors on convient que U = 0.
1. Démontrer que U est une variable aléatoire discrete a valeurs dans IN.

On suppose que la suite (An)nen est une chaine de Markov homogene au sens oil il existe une
application

f:Nx[0,1] >N

et une suite de variables aléatoires indépendantes (X,)nen définies sur (Q, A, P) qui suivent toutes la
loi uniforme sur [0, 1] :
VO<a<bgl, Plag<X<b)=b-—-a

telles que
VT‘LEN, Anyt :f(An)Xn)-

Dans ces conditions, on peut démontrer que

1

N

Donner une expression pour f qui soit cohérente avec la description du mouvement de la puce.
Calculer P(U = 0) et P(UL > n) pour toutn € N.
4. On cherche a simuler informatiquement ce processus aléatoire.

w

import numpy as np
import random as rd

4.a. Expliquer le comportement de la fonction suivant.

def suivant(An):
p=1/(An + 2)
if (rd.random()<p):
return 0
else:
return An + 1

4.b. Expliquer le comportement de la fonction trajectoire.

def trajectoire(lgr):
T=1[014 départ de | origine
for i in range(lgr):
Al = T[i]
T.append(suivant(Ai))
return T

4.c. Expliquer le comportement de la fonction echantillon_T.

def echantillon_T(N, 1gr):
ech = [trajectoire(lgr) for k in range(N) 1
return ech

4.d. Expliquer le comportement de la fonction echantillon_u.

Sujet pp2127 2

def U_tronquee(T):
lgr, U = len(T), 1
while (U<lgr) and (T[U]>0):
U+=1
return U

def echantillon_U(N, 1gr):
ech_T = echantillon_T(N, 1gr)
ech_U = [U_tronquee(T) for T in ech_T]
return ech_U

4.e. Expliquer le comportement des fonctions suivantes.

def sans_retour(T):
return T[-1]==(len(T)-1)

def estimation_sans_retour(N, 1lgr):
ech_T = echantillon_T(N, 1gr)
nb_echecs = 0
for T in ech_T:
nb_echecs += sans_retour(T)
return nb_echecs/N

def erreur_estimation_sans_retour(N, 1lgr):
pr_-th = 1/(lgr+l)
pr_emp = estimation_sans_retour(N, 1lgr)
return 100xabs(pr_th-pr_emp)/pr_th

5. Proposer un code python pour vérifier que la simulation de U fournie par echantillon_U est
conforme a la loi de U indiquée plus haut.

Sujet pp2127 3

Solution % Chaine de Markov

1. Par construction, U est une application de Q) dans N.
Par convention,
Uw)=0 & VYn>1, An(w)#0

donc

nelN*

(Comme A, est une variable aléatoire, alors [A,, = 0] € A et, comme toutes les tribus, A est stable par
passage au complémentaire et par intersection dénombrable.)
Pour tout entiern > 1,

U=n]=[A1#0,...,An 1 #0N[A,=0c A

(puisque A est stable par intersection finie).
On a démontré que
YynelN, [U=n]led

donc U : Q — N est bien une variable aléatoire discrete sur (Q, A).
2. PourkeNetuel0,1],onposep = %ﬂ et

0 si0<u<p,

fllou) = k+1 sip<u<gl.

a On rappelle que les variables aléatoires Xy, ..., Xn, Xn41 sont indépendantes.
Par hypothese,

n=f(An_1,Xn1)

Zf(f(n—2yXn-2), Xn—1)

= f(f(f(An—3,Xn-3), Xn—2),Xn-1) =
=g(Xy,..)

et d’apres le lemme des coalitions, les variables aléatoires A, et X;, sont indépendantes.
a Par conséquent, en supposant que P(A, =k —1) >0,

P(An+1 :k|An:k—]) _ P([f(An)Xn) :k]m[An:k_”)

P(A.—k—1)
CP([f(k—1,X0) =K N [Ay = k—1))
PAL—k—_1)
=P(f(k—1,Xn) =k). (indépendance de A, et de X;,)

Or, par construction de f,

Vk>1, [f(k—1,xn)=k]=[k+1 <Xn < 1
et, par hypotheése sur X,,,
1 1 k
— < < =] = —
P(k+1\X“\1) k+1 k+1

. De méme,

P ([f(An, Xn) =01 N [An =k —1])

PAnt1 =0]An=k—1) =

P(A,—k—1)
P(If(k—1,Xn) =01 N [Ay = k—1])
PA,=k—_1)
=P(f(k—1,Xn) =0). (indépendance de A, et de Xy,)

Or, par construction de f,

VRET, [fk=1,X0) =0] = [0 < Xn < =

Sujet pp2127 4

et, par hypothese sur X,

: On a donc bien

PAnii =k[An=k—-T)=—— et PlAn :O|An:k_1):m)

conformément a I’énoncé.
3. Comme U est une variable aléatoire a valeurs dans N,

U=0=[U>1°=|]|U=XK

k>1
et par o-additivité de P,
+00 “+o0 1 1
HU=N=1—Z:HU=M=1—ZXE—QIQ=0
k=1 k=1

(par télescopage archi-classique).
@ De maniere analogue,

U>n]=| |U=K

k>n

et donc, toujours par o-additivité et télescopage,

1
P(U>mn) Z kk+1 Thtl
P——

REMARQUE.— On retrouve ainsi que P(U > 0) =1 et donc que P(U = 0) = 0.
4.a. L’argument An représente la posmon occupée a l'instant n. Soit (k — 1) € N, la valeur de cet
entier. On pose alors p = k%m T +1

L'exécution de random() revient & simuler une variable aléatoire X suivant la loi uniforme sur
[0,1]:

— Si X(w) < p, ce qui a lieu avec probabilité P(0 < X < p) = p, alors la fonction renvoie

0="f(k—1,X(w));

— Sinon, ona p < X(w) < 1, ce qui a lieu avec probabilité P(p < X < 1) =1 —p, alors la fonction

renvoie (k—1)+1 =k = f(k—1,X(w)).

En admettant que le générateur aléatoire fonctionne correctement, les appels successifs a la fonc-
tion random() simulent fidelement un échantillon (X,)n>o de variables aléatoires indépendantes et de
loi uniforme sur [0, 1].

Dans ces conditions, les appels successifs a la fonction suivant (Ai) simulent fidelement un échan-
tillon (An)n>o de la chaine de Markov étudiée.

4.b. On effectue ici 1gr appels successifs a la fonction suivant. La liste renvoyée sera donc

T= (TO :OaTh'--aTlgr)-

Au début de la i-ieme itération, la liste T ne contient que (To, ..., T;) et on considere que T; est la valeur
de A;. On simule alors A;11 en exécutant suivant (Ai) qui devient alors Ti—.
On peut donc considérer que la fonction trajectoire renvoie une liste

(O»Al (w),Az(w),.. -)Algr(wn € Nigt!

qui représente le début d'une trajectoire de la marche aléatoire (A)nen-

4.c. La fonction echantillon_T(N, 1lgr) calcule une liste de N trajectoires de la marche aléatoire
(An)nen (plus précisément : N début de trajectoires, entre I'instant initial O et I'instant 1gr inclus).
4.d. La fonction echantillon_U calcule une liste ech_T de N débuts de trajectoires.

Sur chacune de ces trajectoires, elle appelle la fonction U_tronquee.

Cette fonction U_tronquee parcourt un début de trajectoire, en commengant a I'instant 1 (c’est-a-
dire en ignorant la position initiale, qui est toujours égale a 0). Tant que la trajectoire ne revient pas a
I'origine (soit : tant que Ty > 0), on continue.

Deux cas se présentent :

Sujet pp2127 5

— Si la trajectoire repasse par 1’origine, c’est la valeur du premier instant pour lequel on revient a
I'origine qui est renvoyée, c’est-a-dire la valeur de U;

— Si la trajectoire ne repasse pas par l'origine, c’est la longueur de la trajectoire qui est renvoyée.
(NB : Dans cette fonction, la variable 1gr est la longueur de la liste T contrairement a la fonction
trajectoire oti la longueur de la liste renvoyée était égale a 1gr+1.)

L’échantillon renvoyé par cette fonction est donc presque un échantillon de valeurs de la variable
aléatoire U : c’est un échantillon de la variable aléatoire min{ll,n} calculé sur des trajectoires T =
(TO> LS} Tn—])

4.e. La fonction sans_retour renvoie un booléen. Ce booléen prend la valeur True si, et seulement
si, le dernier élément de la liste T (c’est-a-dire la position finale de la trajectoire) est égalan — 1.

On distingue deux cas pour une trajectoire T = (To, ..., Tn—1) :
— Si onn’est pas encore revenu a 1’origine, la valeur finale est égale a (n—1) (ot n est la longueur
delaliste T);

— Si on est déja revenu a l'origine, on est reparti de 0 a un instant postérieur a i = 0, donc la
valeur finale est strictement inférieure a (n — 1).

Par conséquent, le booléen renvoyé par sans_retour est égal a True si, et seulement si, au cours du
début de trajectoire T la marche aléatoire n’est pas encore repassée par l'origine, c’est-a-dire si Ll > n
(en notant n la longueur de la liste T).

@ La fonction estimation_sans_retour calcule un nombre N de trajectoires et pour chacune de ces
trajectoires elle vérifie si un retour a l'origine a eu lieu. Elle compte le nombre de trajectoires pour
lesquelles il n'y a pas eu de retour a I'origine (avec la convention True vaut 1 et False vaut 0) avant de
renvoyer la proportion de ces trajectoires (en divisant par le nombre total N de trajectoires étudiées).

@ On a ainsi estimé la fréquence de réalisation de I'événement [U > n] = [U > Igr] (la longueur n
des listes est ici égale a lgr + 1).

L'étude théorique nous dit que la probabilité de cet événement est égale a 1/,.

La simulation nous donne une fréquence empirique (calculée sur les résultats constatés).

On renvoie alors I’erreur relative entre la probabilité (théorique) et la fréquence (empirique) expri-
mée en pourcentage.

@ Concretement, pour N = 10% et Igr = 10, I'erreur relative est de 'ordre de 1 & 2%. Elle est un peu
plus petite pour N = 10° (sans étre significativement plus petite).

5. On tronque la variable U pour la traiter informatiquement (bien obligé!).
La loi de U est représentée par un tableau qui contient les probabilités théoriques.

def loi_retour(lgr):
d = np.zeros(1lgr)
for k in range(1l, 1gr):
d[k] = 1/(kx(k+1))
return d

@ On simule ensuite un échantillon de N valeurs de la variable U tronquée et on compte la fréquence
de chacune des valeurs observées (méthode du tri postal).

def estimation_loi_retour(N, 1lgr):
ech_U = echantillon_U(N, 1lgr)
dist_U = np.zeros(lgr)
for U in ech_U:
if (U<lgr):
dist_ U[U] +=1
return dist_U/N

@ Pour comparer le tableau théorique (les probabilités) et le tableau empirique (les fréquences),

loi_th = loi_retour(10)
freq_emp = estimation_loi_retour (10000, 10)

on peut par exemple calculer ’écart absolu moyen.

np.abs(loi_th-freq_emp).max()

Le plus important est de trouver une valeur de référence qui puisse donner un sens au résultat! On
peut par exemple rapporter cet écart a la probabilité P(LL < n).

loi_th.sum()

Sujet pp2127 6

Valeurs observées

N 103 104 10°
écart 2.107% 51073 103

NB : ces valeurs sont soumises a des fluctuations d’échantillonnage, il ne faut pas s’étonner de
trouver des valeurs différentes (mais ’ordre de grandeur de ces valeurs devrait peu varier).

