Lycée Pierre CORNEILLE MP/MPI

Probléme de Mathématiques
Référence pp1915 — Version du 31 décembre 2025

Dans tout le sujet, N désigne un entier supérieur ou égal a 2 et toutes les variables aléatoires étudiées
sont définies sur un espace probabilisé (Q, A, P).

On notera E = [1, N], 'ensemble des entiers compris (au sens large) entre 1 et N.

Quels que soient les entiers k,n > 1, on note

On rappelle que
Yns1, Syn) = n(2n + 16)(n+ 1).
1. Soit k > 1, un entier. Démontrer que
1 1
nk+1 Sk(n) n—o4oo k41 ’

2. Soit X, une variable aléatoire discrete a valeurs dans E = [1, N]. Démontrer que

N
E(X)=) P(X>1)
i=1
On considere une famille (Xj,...,Xy) de variables aléatoires indépendantes et de méme loi, qui

suivent toutes la loi uniforme sur E :

On pose alors

VweQ, Uy(w)=min{X;(w),..., Xy (w)},
Vi(w) = max{X; (w), ..., Xx(w)}

3.a. Démontrer que
Vielk [Ux>ieAd etque [Vkx<ile A

3.b. En déduire que
VieE, [Ux=ile A etque [Vkx=il€ A

Que signifient ces propriétés?
4. Calculer la fonction génératrice de X;.
5. Exprimer E(X;), E(X%) et V(X;) en fonction de N.
6. On se propose dans cette question de simuler les variables aléatoires Vi pour N = 10et T < k <
Ko = 100.
On rappelle que des appels répétés a 1'instruction random. randint(1,10) simulent correctement
le comportement de variables aléatoires indépendantes qui suivent la loi uniforme sur E = 1, 10].
Ainsi, la fonction simul_X, dont le code figure ci-dessous, renvoie une liste de longueur Ky = 100
de réalisations des variables Xj, ..., X100.

def simul_X(N, K_0):
L =11l
for i in range(K 0):
L.append(random.randint(1,N))
return L
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Utiliser la fonction simul_X pour écrire une fonction real_V(N, K_0) qui retourne une liste de
longueur Ko de réalisations des variables Vi, ..., Vk,.
7. Soit k > 2, un entier.
7.a. Démontrer que, pour touti € [1,N],

N—i+4+1\k

(=)

7.b. On exécute la fonction real_V(10,100) plusieurs fois. a chaque fois, on constate que la liste

obtenue se termine par un grand nombre de 10. Justifier mathématiquement cette observation.

7.c.  Exprimer E(Uy) en fonction de N et de Si. En déduire un équivalent de E(Uly) lorsque N tend

vers +oo.

8. Soient Z et T, deux variables aléatoires discretes, définies sur (Q, A, P), a valeurs dans un ensemble

fini ou dénombrable V. On sait que : quelle que soit 'application @ : V — W (ot W est aussi un

ensemble fini ou dénombrable), les composées ®(Z) et (T) sont des variables aléatoires discretes.
On suppose que Z et T ont méme loi. Démontrer que les variables ®(Z) et ®(T) ont méme loi.

9. Pour tout entier T < i < n, on pose

Yi=N+1-Xj.

9.a. Démontrer que les Y; sont des variables aléatoires discretes. Calculer leur espérance et leur va-
riance.

9.b. Démontrer que le vecteur (Y7,...,Yn) est une famille de variables aléatoires indépendantes et
de méme loi. Préciser cette loi.

9.c. Endéduire E(Vy) et V(Vi) en fonction de E(Uy) et V(Uy).

10. On considere ici le couple (U;, V>).

10.a. Exprimer U, + V; et U,V; en fonction de X; et X;.

10.b. Endéduire V(U, + V) et E(U,V;) en fonction de N. Expliquer briévement comment on peut en
déduire que :

-1y
Cov(U,, V,) = T36N2
(Le calcul détaillé n’est pas demandé.)
10.c. Exprimer V(U,;) et V(V2) en fonction de N.
10.d. Le coefficient de corrélation est défini par
Cov(U,,V
p2(N) = M‘
V(Uz) V(V2)

Que dire de p2(N) lorsque N tend vers +o0?
11.a. On suppose que X est une variable aléatoire discrete, a valeurs dans E = [1, N]. Démontrer que

N
E(X?) =) (2i-1)P(X>1).

i=1

11.b. Exprimer E(Uﬁ) en fonction de N a l'aide des fonctions Sy et Sy 1.
11.c. En déduire I'expression de V().
11.d. Calculer un équivalent de V(Uy) lorsque N tend vers +oo.
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Solution % Probabilités

1. On fait une comparaison somme/intégrale avec la fonction continue et croissante [t — t*| : une
figure soignée et correctement légendée convainc que

t*dt < Sk(n) < J thdt +nk

yn>1, J
0

0

et donc que
1 Sk(n) 1 1
vyn>1 < < + —.
7 k+1 Tkt T k41 n
Comme le majorant et le minorant tendent vers une méme limite, on déduit du Théoréme d’encadre-

ment que

Sk(n) 1

nk+l notoo k+1°

2. Comme la variable aléatoire X ne prend qu’un nombre fini de valeurs, c’est une variable aléatoire
d’espérance finie et, par définition,

N
X)=) kP(X=Kk).
k=1

Comme X est une variable aléatoire discrete a valeurs dans E = [1, N],

N
VISISKN, Xzi=|]|X=

=i

=~

Par o-additivité de P, on en déduit que

N
VI<i<N, P(X>i)=) P(X=k).

k=i
Par conséquent,
N N N N N N
ZP :ZZP ZZP L<igkgN) ZZPX KL (1<ick<N)
i=1 i=1 k=i i=1 k=1 k=1i=1
Nk N
=) Y P(X=k)=) kP(X=k) =E(X).
k=1i=1 k=1

3.a. Tous les X; sont des variables aléatoires sur (Q,.4), donc
[X) ZI]E.A et [X] <1]€.A

pour tout 1 <i << N.
¢ En considérant U, comme une fonction de Q) dans E,

U(w) > i &= YI<j<k, Xj(w)>i

et donc, en traduisant cette équivalence en égalité des images réciproques :

k
:ﬂ[X >iled

j=1

puisque A est stable par intersection (finie ou dénombrable).
@ De méme,
Vi(w) <1 &= V1< <k, Xj(w)<i

et donc
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3.b. Comme Uy : Q — [1,N], on déduit déja de la question précédente que
U =N] =[Ux > N] e A
Par ailleurs, pour tout 1 <i < N,
Uy =il=Ux >inU>i+1°€ A

puisque A est stable par intersection et passage au complémentaire.
De méme,
Vik=1=[V <1 ed
et, pour tout 1 <i <N,
Vk =i=[Vke<iln[Vk <i-1]° € A
a- Ces propriétés démontrent que les applications Uy et Vi sont des variables aléatoires discretes sur
(Q,.A), a valeurs dans E.
4. Par définition de la fonction génératrice,

1o
_ X1y = t
VtE[O)]]) GX1(t)_E(t 1)_N;t

5. Comme la variable aléatoire X; ne prend qu'un nombre fini de valeurs, elle est d’espérance finie
et admet un moment d’ordre deux. D'une part,

N
1 N+1
E f— 'P —1) = — N = —
(X1) ;1 Xy =1) = S1(N) 3
D’autre part, d’apres la formule de transfert,
N
. . 1 2N +T)(N+1)
EX{) =) *P(X;=1)=<S:(N)="————.
(XD) ;1(11) N S2(N) .
Enfin, d’apres la formule de Koenig-Huyghens,
N2 —1
V(X1) = EOX) — [E(X0)]* = ==

6. On réalise une simulation, qu’on affecte a une liste X. Il reste ensuite a calculer le max de chaque
début de liste : la tranche X[ :i+1] contient les valeurs X;, ..., Xj.

def real_V(N, K_0):
X = simul_X(N, K_0)
V = [max(X[:i+1]) for i in range(K_0)]
return V

Et une version moins pythonienne, qui reprend l'algorithme élémentaire de calcul du maximum.

def real_V(N, K_0):
X = simul_X(N, K_0)
M, V = X[e], [X[e]]
for i in range(1l, K_0):
x = X[1i] # nouvelle valeur
if (x>M): # comparaison au maximum connu

M = X # nouveau maximum
V.append (M)
return V

7.a. D’apres[3.a.],

K
PUx 21) =P(Xy > 1,..., Xk 2 1) = H P(X; >1) (par indépendance)
=1
- 1
:E((N—H—]) : N) (par [2.1)
_ (N—i—i—])k
N N
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7.b. Ici, N =10 et, pour tout w € Q,

Vier1 (w) = max{Vi (w), Xy1(w)}

donc
Vk>1, Vi(w) < Vigpr(w) <10
et donc
Ko
() Vi =10] = [Vy,, =101
k=k;

Un raisonnement analogue au [7.a.] montre que

et donc que

Kk
HWFﬂm=1—PWk<%:1_<%>
En particulier, avec ky = 25,
9\ 25
P(Vas = Vag =+ = Vioo =10) = 1= (75 )" ~93%.

On peut vérifier expérimentalement ce calcul avec la fonction suivante, qui retourne une variable de Ber-
noulli égale a 1 si, et seulement si, l'une des 25 premieres valeurs est égale a 10, c’est-a-dire 1(v,, —10)-

def succes():
X = simul_X(10, 25)
return (10 in X)

On exécute un grand nombre de fois la fonction succes () pour constituer une réalisation d’un échantillon
i.i.d. D’apres la Loi des grands nombres, la proportion de 1 parmi les valeurs prises est une estimation assez
fiable de la probabilité P(V,5 = 10).

Nb_iter, prop = 10000, 0

for i in range(Nb_iter):
prop += succes()

prop /= Nb_iter

L’exécution du code précédent donne bien une proportion proche de 93%.
7.c. Par[2]et[7.a.],

N N
. N—i+1)k 1
B =Y Py >i=) NP s
i=1 i=1
Par [1.],
N
Elthe) ~ 3757

lorsque N tend vers +oo.
8. En tant que composées d'une variable aléatoire discréte par une fonction a valeurs dans W, ®(Z)
et @(T) sont des variables aléatoires discretes a valeurs dans W.

@ Pour tout w € W, on note V,,, l'image réciproque de {w} par l'application @ :

Vi = @*({w}).

Alors
[<D(Z) :w] =[ZecV,] et [CD(T) :w] =[T eV,

Comme Z et T sont des variables aléatoires discretes de méme loi a valeurs dans V et que V,, € P(V),
les événements [Z € V,,] et [T € V,,] sont équiprobables :

P(ZeV,,)=P(TeV,)
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et donc
YweWw, P(O(Z)=w)=P(Q(T)=w),

ce qui prouve que les variables aléatoires discretes @ (Z) et ®(T) ont méme loi.
a En particulier, ces variables ont méme espérance (si elles sont d’espérance finie) et méme variance
(si elles admettent un moment d’ordre deux).
9.a. Ilestclair que
f=x—N+T1T—x]

est une application de E dans E. Comme les X; sont des variables aléatoires discretes a valeurs dans E,
alors les Y; = f(X;) sont aussi des variables aléatoires discretes a valeurs dans E.
En tant que variables aléatoires aléatoires bornées, elles sont d’espérance finie et admettent un
moment d’ordre deux.
@ Par linéarité de 1'espérance et [5.],

N+1
E(Y) = (N+1)—E(X) = ~——.
@ On sait que V(aX; +b) = a? V(X;), donc [[5.]]
N2 —1
V(Yi) =V(Xi) = —5
9.b. Comme le vecteur (Xj,...,Xy) est, par hypothese, une famille de variables aléatoires indépen-

dantes, alors le vecteur
(Y1 Yoo )Yn) = (f(X] )) s )f(xn))

est aussi une famille de variables aléatoires indépendantes (lemme des coalitions).
@ Comme Z = X; et T = X; suivent la méme loi, les variables Y; = f(Z) et Y; = f(T) suivent aussi la
méme loi par [8.] Plus précisément,

Ye(w) =1 &= Xy(w)=(N+1) -1

donc

P(Yk:i):P(Xk:(N-ﬁ-])—i):%

ce qui signifie que les variables aléatoires Yy suivent toutes la loi uniforme sur E.
9.c. Onvient en fait de démontrer que les vecteurs aléatoires

Z=(Xy)igckgn et T=(Yi)igkgn

ont méme loi en tant que variables aléatoires a valeurs dans E™. Considérons la fonction ® : E™ — E
définie par
D(x1y...y%n) = (N+1) —min{x1,...,Xn}

D’apres [8.], les variables aléatoires
O(T)=(N+1) —min{Yy,...,Yn} et ®(Z)=(N+1)—Uyx
suivent la méme loi. Or
Vie =max{Xi,...,Xp}=max{(N+1) = Yq,...,(N+1) =Yy} = (N+1) —min{Y1,..., Yn}
donc Vi a méme loi que (N + 1) — Uy et, comme au [9.a.],

E(Vi) = (N+ 1) — E(Uy), V(Vi) = V(Uy).

D’apres [7.c.],
k
E(Vx) ~——" N
W~ 175

lorsque N tend vers 4oo.

10.a. Etant donnés deux entiers x; et x2, le maximum de ces nombres est I'un d’eux et le minimum est
l'autre! Autrement dit, pour tout w € Q,

— oubien Uz (w) = X7 (w) et Va2 (w) = Xz (w)

— oubien Uz (w) = Xz (w) et Vo (w) = X;(w)
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Par conséquent,
W (w) + Vo (w) =X (w) + Xz (w) et Uz(w)Va(w) =X;(w)Xz(w)

pour tout w € Q.
10.b. Comme les variables X; et X, sont (par hypothese de départ) indépendantes et de méme loi,

V(U; + Vo) = V(X7 +X2) =V(X7)+V(X2) =2V(Xq) (indépendance et méme loi)
N2
6
d’apres [5.]. De maniere analogue,
E(U,V,) = E(X1X2) = E(X7) E(X2) = [E(X;)]? (indépendance et méme loi)
N+1y2
=)

@ La covariance se déduit alors de la formule de Koenig-Huyghens :
Cov(U;, V2) = E(U2V2) — E(U2) E(V2)

puisque les deux derniéres espérances du second membre ont déja été calculées ([7.c.], [9.c.]) : le calcul
ne présente pas de réelle difficulté.
10.c. Par [9.c.] et [10.b.],

N2 —1
V(Uy;)=V(V2) et V(U,+V,)= c
Or
V(U.z + Vz) = V(UZ) + V(Vz) JrZCOV(U.z,Vz)
donc 1
V(U;z) = 3 V(U;z +V2) — Cov(U;, V)
et finalement 5 5
N4 —1)(2N* 41
V(Uy) = V(vy) = N1 )

36N?2
10.d. Par [9.c.] et la question précédente,
COV(Uz,Vz) Nz —1

2NV ==y, ~ 2Nz i

donc p2(N) tend vers 1/> lorsque N tend vers +oo.
11.a. Commengons par remarquer que

j
> (2i—1)=28:1() — Solj) =5°
i=1

pour tout j € N*. On peut alors déduire de [2.] que

N N N
ZZI—] :ZZ (2i—-1) =j)lu<igi<N)

N
sz X=j)=) j’P(X=}))

1i=1 j=1

N

Y 2i-1)P(X

i=1

||
Mz

1

[
-
[N
-
I
)
z
[
)

I
I\/]z

—.

et donc, d’apres la formule de transfert (cas d'une variable ne prenant qu'un nombre fini de valeurs)

N
E(X?) =) (i-1P(X=>1i).
i=1
11.b. On applique la relation précédente avec le [7.a.] :

N _. k
e =y ai-nNtHE

i=1
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Avec le changement d'indice i ¢~ (N —i+1):

N
E(UD) =) RIN—i4+1)—1]

i=1

ik
Nk

et finalement

E(] [2) k S k+1 )
11.c. Par Koenig-Huyghens, [11.b.] et [7.c.],

_ 2

(J'imagine mal une simplification de cette expression!)

11.d. L'entier k est fixé, on fait tendre N vers +oo : on peut donc appliquer 1'équivalent calculé au
[1.], sous la forme de développements asymptotiques afin de pouvoir les combiner linéairement (on
n’ajoute pas des équivalents sans précaution).

(2N +1)Sk(N)  2N2

NK =7 e
2801 (N)  2N2
e = 2 FoN
SL(NJ2 N2
[ k( )] _ 5 +O(N2)

N2k (k+1)
On déduit de la formule établie a la question précédente que :

k
(k+1)2(k+2)

k

N2
(k+1)2(k+2) N

V(Uy) = N2 + o(N?) ~

lorsque N tend vers +oc.



