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Dans tout le sujet, N désigne un entier supérieur ou égal à 2 et toutes les variables aléatoires étudiées
sont définies sur un espace probabilisé (Ω,A,P).

On notera E = [[1,N]], l’ensemble des entiers compris (au sens large) entre 1 et N.
Quels que soient les entiers k, n ⩾ 1, on note

Sk(n) =

n∑
i=1

ik.

On rappelle que

∀ n ⩾ 1, S2(n) =
n(2n+ 1)(n+ 1)

6
.

1. Soit k ⩾ 1, un entier. Démontrer que

1

nk+1
Sk(n) −−−−−→

n→+∞ 1

k+ 1
.

2. Soit X, une variable aléatoire discrète à valeurs dans E = [[1,N]]. Démontrer que

E(X) =

N∑
i=1

P(X ⩾ i).

On considère une famille (X1, . . . , Xk) de variables aléatoires indépendantes et de même loi, qui
suivent toutes la loi uniforme sur E :

∀ 1 ⩽ i ⩽ N, P(X1 = i) =
1

N
.

On pose alors

∀ω ∈ Ω, Uk(ω) = min{X1(ω), . . . , Xk(ω)},

Vk(ω) = max{X1(ω), . . . , Xk(ω)}.

3. a. Démontrer que
∀ i ∈ E, [Uk ⩾ i] ∈ A et que [Vk ⩽ i] ∈ A.

3. b. En déduire que
∀ i ∈ E, [Uk = i] ∈ A et que [Vk = i] ∈ A.

Que signifient ces propriétés?
4. Calculer la fonction génératrice de X1.
5. Exprimer E(X1), E(X2

1) et V(X1) en fonction de N.
6. On se propose dans cette question de simuler les variables aléatoires Vk pour N = 10 et 1 ⩽ k ⩽
K0 = 100.

On rappelle que des appels répétés à l’instruction random.randint(1,10) simulent correctement
le comportement de variables aléatoires indépendantes qui suivent la loi uniforme sur E = [[1, 10]].

Ainsi, la fonction simul_X, dont le code figure ci-dessous, renvoie une liste de longueur K0 = 100
de réalisations des variables X1, . . ., X100.

def simul_X(N, K_0):
L = []
for i in range(K_0):
L.append(random.randint(1,N))

return L
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Utiliser la fonction simul_X pour écrire une fonction real_V(N, K_0) qui retourne une liste de
longueur K0 de réalisations des variables V1, . . ., VK0

.
7. Soit k ⩾ 2, un entier.
7. a. Démontrer que, pour tout i ∈ [[1,N]],

P(Uk ⩾ i) =
(N− i+ 1

N

)k

.

7. b. On exécute la fonction real_V(10,100) plusieurs fois. à chaque fois, on constate que la liste
obtenue se termine par un grand nombre de 10. Justifier mathématiquement cette observation.
7. c. Exprimer E(Uk) en fonction de N et de Sk. En déduire un équivalent de E(Uk) lorsque N tend
vers +∞.
8. Soient Z et T , deux variables aléatoires discrètes, définies sur (Ω,A,P), à valeurs dans un ensemble
fini ou dénombrable V . On sait que : quelle que soit l’application Φ : V → W (où W est aussi un
ensemble fini ou dénombrable), les composées Φ(Z) et Φ(T) sont des variables aléatoires discrètes.

On suppose que Z et T ont même loi. Démontrer que les variables Φ(Z) et Φ(T) ont même loi.
9. Pour tout entier 1 ⩽ i ⩽ n, on pose

Yi = N+ 1− Xi.

9. a. Démontrer que les Yi sont des variables aléatoires discrètes. Calculer leur espérance et leur va-
riance.
9. b. Démontrer que le vecteur (Y1, . . . , Yn) est une famille de variables aléatoires indépendantes et
de même loi. Préciser cette loi.
9. c. En déduire E(Vk) et V(Vk) en fonction de E(Uk) et V(Uk).
10. On considère ici le couple (U2, V2).
10. a. Exprimer U2 + V2 et U2V2 en fonction de X1 et X2.
10. b. En déduire V(U2+V2) et E(U2V2) en fonction de N. Expliquer brièvement comment on peut en
déduire que :

Cov(U2, V2) =
(N2 − 1)2

36N2
.

(Le calcul détaillé n’est pas demandé.)
10. c. Exprimer V(U2) et V(V2) en fonction de N.
10. d. Le coefficient de corrélation est défini par

ρ2(N) =
Cov(U2, V2)√
V(U2)V(V2)

.

Que dire de ρ2(N) lorsque N tend vers +∞?
11. a. On suppose que X est une variable aléatoire discrète, à valeurs dans E = [[1,N]]. Démontrer que

E(X2) =

N∑
i=1

(2i− 1)P(X ⩾ i).

11. b. Exprimer E(U2
k) en fonction de N à l’aide des fonctions Sk et Sk+1.

11. c. En déduire l’expression de V(Uk).
11. d. Calculer un équivalent de V(Uk) lorsque N tend vers +∞.



Sujet pp1915 3

Solution ❀ Probabilités

1. On fait une comparaison somme/intégrale avec la fonction continue et croissante
[
t 7→ tk

]
: une

figure soignée et correctement légendée convainc que

∀ n ⩾ 1,

∫n
0

tk dt ⩽ Sk(n) ⩽
∫n
0

tk dt+ nk

et donc que

∀ n ⩾ 1,
1

k+ 1
⩽

Sk(n)

nk+1
⩽

1

k+ 1
+

1

n
.

Comme le majorant et le minorant tendent vers une même limite, on déduit du Théorème d’encadre-
ment que

Sk(n)

nk+1
−−−−−→
n→+∞ 1

k+ 1
.

2. Comme la variable aléatoire X ne prend qu’un nombre fini de valeurs, c’est une variable aléatoire
d’espérance finie et, par définition,

E(X) =

N∑
k=1

kP(X = k).

Comme X est une variable aléatoire discrète à valeurs dans E = [[1,N]],

∀ 1 ⩽ i ⩽ N, [X ⩾ i] =

N⊔
k=i

[X = k].

Par σ-additivité de P, on en déduit que

∀ 1 ⩽ i ⩽ N, P(X ⩾ i) =

N∑
k=i

P(X = k).

Par conséquent,

N∑
i=1

P(X ⩾ i) =

N∑
i=1

N∑
k=i

P(X = k) =

N∑
i=1

N∑
k=1

P(X = k)1(1⩽i⩽k⩽N) =

N∑
k=1

N∑
i=1

P(X = k)1(1⩽i⩽k⩽N)

=

N∑
k=1

k∑
i=1

P(X = k) =

N∑
k=1

kP(X = k) = E(X).

3. a. Tous les Xj sont des variables aléatoires sur (Ω,A), donc

[Xj ⩾ i] ∈ A et [Xj ⩽ i] ∈ A

pour tout 1 ⩽ i ⩽ N.
❧ En considérant Uk comme une fonction de Ω dans E,

Uk(ω) ⩾ i ⇐⇒ ∀ 1 ⩽ j ⩽ k, Xj(ω) ⩾ i

et donc, en traduisant cette équivalence en égalité des images réciproques :

[Uk ⩾ i] =

k⋂
j=1

[Xj ⩾ i] ∈ A

puisque A est stable par intersection (finie ou dénombrable).
❧ De même,

Vk(ω) ⩽ i ⇐⇒ ∀ 1 ⩽ j ⩽ k, Xj(ω) ⩽ i

et donc

[Vk ⩽ i] =

k⋂
j=1

[Xj ⩽ i] ∈ A.
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3. b. Comme Uk : Ω→ [[1,N]], on déduit déjà de la question précédente que

[Uk = N] = [Uk ⩾ N] ∈ A.

Par ailleurs, pour tout 1 ⩽ i < N,

[Uk = i] = [Uk ⩾ i] ∩ [Uk ⩾ i+ 1]c ∈ A

puisque A est stable par intersection et passage au complémentaire.
De même,

[Vk = 1] = [Vk ⩽ 1] ∈ A
et, pour tout 1 < i ⩽ N,

[Vk = i] = [Vk ⩽ i] ∩ [Vk ⩽ i− 1]c ∈ A.

❧ Ces propriétés démontrent que les applications Uk et Vk sont des variables aléatoires discrètes sur
(Ω,A), à valeurs dans E.
4. Par définition de la fonction génératrice,

∀ t ∈ [0, 1], GX1
(t) = E(tX1) =

1

N

N∑
i=1

ti.

5. Comme la variable aléatoire X1 ne prend qu’un nombre fini de valeurs, elle est d’espérance finie
et admet un moment d’ordre deux. D’une part,

E(X1) =

N∑
i=1

iP(X1 = i) =
1

N
S1(N) =

N+ 1

2
.

D’autre part, d’après la formule de transfert,

E(X2
1) =

N∑
i=1

i2 P(X1 = i) =
1

N
S2(N) =

(2N+ 1)(N+ 1)

6
.

Enfin, d’après la formule de Koenig-Huyghens,

V(X1) = E(X2
1) −

[
E(X1)

]2
=

N2 − 1

12
.

6. On réalise une simulation, qu’on affecte à une liste X. Il reste ensuite à calculer le max de chaque
début de liste : la tranche X[:i+1] contient les valeurs X1, . . ., Xi.

def real_V(N, K_0):
X = simul_X(N, K_0)
V = [max(X[:i+1]) for i in range(K_0)]
return V

Et une version moins pythonienne, qui reprend l’algorithme élémentaire de calcul du maximum.

def real_V(N, K_0):
X = simul_X(N, K_0)
M, V = X[0], [X[0]]
for i in range(1, K_0):
x = X[i] # nouve l l e va leur

if (x>M): # comparaison au maximum connu

M = x # nouveau maximum

V.append(M)
return V

7. a. D’après [3.a.],

P(Uk ⩾ i) = P(X1 ⩾ i, . . . , Xk ⩾ i) =

k∏
j=1

P(Xj ⩾ i) (par indépendance)

=

k∏
j=1

(
(N− i+ 1) · 1

N

)
(par [2.])

=
(N− i+ 1

N

)k

.
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7. b. Ici, N = 10 et, pour tout ω ∈ Ω,

Vk+1(ω) = max{Vk(ω), Xk+1(ω)}

donc
∀ k ⩾ 1, Vk(ω) ⩽ Vk+1(ω) ⩽ 10

et donc
K0⋂

k=k1

[Vk = 10] = [Vk1
= 10].

Un raisonnement analogue au [7.a.] montre que

∀ k ⩾ 1, ∀ 1 ⩽ i ⩽ N, P(Vk ⩽ i) =
( i

N

)k

et donc que

P(Vk = 10) = 1− P(Vk ⩽ 9) = 1−
( 9

10

)k

.

En particulier, avec k1 = 25,

P(V25 = V26 = · · · = V100 = 10) = 1−
( 9

10

)25

≈ 93%.

On peut vérifier expérimentalement ce calcul avec la fonction suivante, qui retourne une variable de Ber-
noulli égale à 1 si, et seulement si, l’une des 25 premières valeurs est égale à 10, c’est-à-dire 1(V25=10).

def succes():
X = simul_X(10, 25)
return (10 in X)

On exécute un grand nombre de fois la fonction succes() pour constituer une réalisation d’un échantillon
i.i.d. D’après la Loi des grands nombres, la proportion de 1 parmi les valeurs prises est une estimation assez
fiable de la probabilité P(V25 = 10).

Nb_iter, prop = 10000, 0
for i in range(Nb_iter):
prop += succes()

prop /= Nb_iter

L’exécution du code précédent donne bien une proportion proche de 93%.

7. c. Par [2.] et [7.a.],

E(Uk) =

N∑
i=1

P(Uk ⩾ i) =

N∑
i=1

(N− i+ 1)k

Nk
=

1

Nk
Sk(N).

Par [1.],

E(Uk) ∼
N

k+ 1

lorsque N tend vers +∞.
8. En tant que composées d’une variable aléatoire discrète par une fonction à valeurs dans W, Φ(Z)
et Φ(T) sont des variables aléatoires discrètes à valeurs dans W.

❧ Pour tout w ∈ W, on note Vw, l’image réciproque de {w} par l’application Φ :

Vw = Φ∗({w}).

Alors [
Φ(Z) = w

]
= [Z ∈ Vw] et

[
Φ(T) = w

]
= [T ∈ Vw].

Comme Z et T sont des variables aléatoires discrètes de même loi à valeurs dans V et que Vw ∈ P(V),
les événements [Z ∈ Vw] et [T ∈ Vw] sont équiprobables :

P(Z ∈ Vw) = P(T ∈ Vw)
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et donc
∀ w ∈ W, P

(
Φ(Z) = w

)
= P

(
Φ(T) = w

)
,

ce qui prouve que les variables aléatoires discrètes Φ(Z) et Φ(T) ont même loi.
❧ En particulier, ces variables ont même espérance (si elles sont d’espérance finie) et même variance

(si elles admettent un moment d’ordre deux).
9. a. Il est clair que

f = [x 7→ N+ 1− x]

est une application de E dans E. Comme les Xi sont des variables aléatoires discrètes à valeurs dans E,
alors les Yi = f(Xi) sont aussi des variables aléatoires discrètes à valeurs dans E.

En tant que variables aléatoires aléatoires bornées, elles sont d’espérance finie et admettent un
moment d’ordre deux.

❧ Par linéarité de l’espérance et [5.],

E(Yi) = (N+ 1) − E(Xi) =
N+ 1

2
.

❧ On sait que V(aXi + b) = a2V(Xi), donc [[5.]]

V(Yi) = V(Xi) =
N2 − 1

12
.

9. b. Comme le vecteur (X1, . . . , Xn) est, par hypothèse, une famille de variables aléatoires indépen-
dantes, alors le vecteur

(Y1, . . . , Yn) =
(
f(X1), . . . , f(Xn)

)
est aussi une famille de variables aléatoires indépendantes (lemme des coalitions).

❧ Comme Z = X1 et T = Xi suivent la même loi, les variables Y1 = f(Z) et Yi = f(T) suivent aussi la
même loi par [8.] Plus précisément,

Yk(ω) = i ⇐⇒ Xk(ω) = (N+ 1) − i

donc
P(Yk = i) = P

(
Xk = (N+ 1) − i

)
=

1

N

ce qui signifie que les variables aléatoires Yk suivent toutes la loi uniforme sur E.
9. c. On vient en fait de démontrer que les vecteurs aléatoires

Z = (Xk)1⩽k⩽n et T = (Yk)1⩽k⩽n

ont même loi en tant que variables aléatoires à valeurs dans En. Considérons la fonction Φ : En → E
définie par

Φ(x1, . . . , xn) = (N+ 1) − min{x1, . . . , xn}.

D’après [8.], les variables aléatoires

Φ(T) = (N+ 1) − min{Y1, . . . , Yn} et Φ(Z) = (N+ 1) −Uk

suivent la même loi. Or

Vk = max{X1, . . . , Xn} = max
{
(N+ 1) − Y1, . . . , (N+ 1) − Yn

}
= (N+ 1) − min{Y1, . . . , Yn}

donc Vk a même loi que (N+ 1) −Uk et, comme au [9.a.],

E(Vk) = (N+ 1) − E(Uk), V(Vk) = V(Uk).

D’après [7.c.],

E(Vk) ∼
k

k+ 1
·N

lorsque N tend vers +∞.

10. a. Étant donnés deux entiers x1 et x2, le maximum de ces nombres est l’un d’eux et le minimum est
l’autre ! Autrement dit, pour tout ω ∈ Ω,

— ou bien U2(ω) = X1(ω) et V2(ω) = X2(ω)
— ou bien U2(ω) = X2(ω) et V2(ω) = X1(ω)
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Par conséquent,

U2(ω) + V2(ω) = X1(ω) + X2(ω) et U2(ω)V2(ω) = X1(ω)X2(ω)

pour tout ω ∈ Ω.
10. b. Comme les variables X1 et X2 sont (par hypothèse de départ) indépendantes et de même loi,

V(U2 + V2) = V(X1 + X2) = V(X1) + V(X2) = 2V(X1) (indépendance et même loi)

=
N2 − 1

6

d’après [5.]. De manière analogue,

E(U2V2) = E(X1X2) = E(X1)E(X2) = [E(X1)]
2 (indépendance et même loi)

=
(N+ 1

2

)2

.

❧ La covariance se déduit alors de la formule de Koenig-Huyghens :

Cov(U2, V2) = E(U2V2) − E(U2)E(V2)

puisque les deux dernières espérances du second membre ont déjà été calculées ([7.c.], [9.c.]) : le calcul
ne présente pas de réelle difficulté.
10. c. Par [9.c.] et [10.b.],

V(U2) = V(V2) et V(U2 + V2) =
N2 − 1

6
.

Or
V(U2 + V2) = V(U2) + V(V2) + 2Cov(U2, V2)

donc
V(U2) =

1

2
V(U2 + V2) − Cov(U2, V2)

et finalement

V(U2) = V(V2) =
(N2 − 1)(2N2 + 1)

36N2
.

10. d. Par [9.c.] et la question précédente,

ρ2(N) =
Cov(U2, V2)

V(U2)
=

N2 − 1

2N2 + 1

donc ρ2(N) tend vers 1/2 lorsque N tend vers +∞.
11. a. Commençons par remarquer que

j∑
i=1

(2i− 1) = 2S1(j) − S0(j) = j2

pour tout j ∈ N∗. On peut alors déduire de [2.] que

N∑
i=1

(2i− 1)P(X ⩾ i) =

N∑
i=1

N∑
j=i

(2i− 1)P(X = j) =

N∑
i=1

N∑
j=1

(2i− 1)P(X = j)1(1⩽i⩽j⩽N)

=

N∑
j=1

j∑
i=1

(2i− 1)P(X = j) =

N∑
j=1

j2 P(X = j)

et donc, d’après la formule de transfert (cas d’une variable ne prenant qu’un nombre fini de valeurs)

E(X2) =

N∑
i=1

(2i− 1)P(X ⩾ i).

11. b. On applique la relation précédente avec le [7.a.] :

E(U2
k) =

N∑
i=1

(2i− 1)
(N− i+ 1)k

Nk
.
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Avec le changement d’indice i← (N− i+ 1) :

E(U2
k) =

N∑
i=1

[2(N− i+ 1) − 1]
ik

Nk

et finalement

E(U2
k) =

(2N+ 1)Sk(N) − 2Sk+1(N)

Nk
.

11. c. Par Koenig-Huyghens, [11.b.] et [7.c.],

V(Uk) = E(U2
k) − [E(Uk)]

2 =
(2N+ 1)Sk(N) − 2Sk+1(N)

Nk
−

[Sk(N)]2

N2k
.

(J’imagine mal une simplification de cette expression !)
11. d. L’entier k est fixé, on fait tendre N vers +∞ : on peut donc appliquer l’équivalent calculé au
[1.], sous la forme de développements asymptotiques afin de pouvoir les combiner linéairement (on
n’ajoute pas des équivalents sans précaution).

(2N+ 1)Sk(N)

Nk
=

2N2

k+ 1
+ O(N2)

2Sk+1(N)

Nk
=

2N2

k+ 2
+ O(N2)

[Sk(N)]2

N2k
=

N2

(k+ 1)2
+ O(N2)

On déduit de la formule établie à la question précédente que :

V(Uk) =
k

(k+ 1)2(k+ 2)
·N2 + O(N2) ∼

k

(k+ 1)2(k+ 2)
·N2

lorsque N tend vers +∞.


