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Soit (Ω,A,P), un espace probabilisé. On considère une variable aléatoire discrète X à valeurs dans
[−1, 1] et une suite (Xi)i∈N de variables aléatoires définies sur (Ω,A,P), indépendantes et de même loi
que X.

On note :
∀ n ⩾ 1, Sn =

X1 + · · ·+ Xn

n
.

1. Démontrer que X est une variable aléatoire d’espérance finie.
On suppose désormais que X est une variable aléatoire centrée (quitte à remplacer X par X−E(X)).

2. Énoncer l’inégalité de Markov pour une variable aléatoire Y définie sur (Ω,A,P). Démontrer cette
inégalité dans le cas où Y ne prend qu’un nombre fini de valeurs.
3. Démontrer que

∀ α > 0, P(|X| ⩾ α) ⩽
E(|X|)

α
.

4. Soient t > 0 et ε > 0. Démontrer que

∀ n ⩾ 1, P(Sn ⩾ ε) = P(entSn ⩾ entε) ⩽
[E(etX)]n

entε
.

5. Soit a > 1. Démontrer que la fonction

ga =

[
x 7→ 1− x

2
a−1 +

1+ x

2
a− ax

]
est positive sur [−1, 1].
☞ On pourra invoquer un argument de convexité.
6. En déduire que

∀ t > 0, ∀ x ∈ [−1, 1], etx ⩽
1− x

2
e−t +

1+ x

2
et.

7. En déduire que E(etX) ⩽ ch t pour tout t > 0.
8. Démontrer que

∀ k ∈ N, ∀ t ∈ R,
t2k

(2k)!
⩽

1

k!

(t2
2

)k

.

En déduire que E(etX) ⩽ exp(t2/2) pour tout t > 0.
9. Soit n ⩾ 1. Démontrer que la fonction[

t 7→ exp(−ntε+ nt2/2)
]

atteint un minimum (en un point qu’on précisera).
10. En déduire que P(Sn ⩾ ε) ⩽ exp(−nε2/2), puis que

P(|Sn| ⩾ ε) ⩽ 2 exp(−nε2/2).

11. Démontrer que la série
∑
P(|Sn| > ε) converge pour tout ε > 0.

12. Soient ε > 0 fixé et, pour tout n ⩾ 1,

Bn =
⋃

m⩾n

[|Sm| > ε].

Démontrer que
⋂

n⩾1 Bn est un événement négligeable.
13. Pour tout entier k ⩾ 1, on définit Ωk ⊂ Ω par

ω ∈ Ωk ⇐⇒ ∃ n ∈ N∗, ∀ m ⩾ n, |Sm(ω)| ⩽
1

k
.

Démontrer que chaque Ωk est un événement. Exprimer l’ensemble A défini par

ω ∈ A ⇐⇒ lim
n→+∞Sn(ω) = 0

au moyen des événements Ωk. En déduire que A est un événement.
14. Déduire des questions précédentes que P(A) = 1.
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Solution ❀ Loi des grands nombres

1. Soit (xi)i∈I, la famille, finie ou dénombrable, des valeurs prises par la variable aléatoire discrète X.
Par définition, X est une variable aléatoire d’espérance finie si, et seulement si, la famille(

xi P(X = xi)
)
i∈I

est sommable. Or xi ∈ [−1, 1] pour tout i ∈ I par hypothèse, donc

∀ i ∈ I, |xi|P(X = xi) ⩽ P(X = xi).

Mais X est une variable aléatoire discrète, donc la famille ([X = xi])i∈I est une famille finie ou dé-
nombrable d’événements deux à deux disjoints. Comme P est σ-additive, on en déduit que la famille
(P(X = xi))i∈I est sommable et, d’après le Théorème de comparaison, la famille (xi P(X = xi))i∈I est
sommable elle aussi.

Donc X est bien une variable aléatoire d’espérance finie.

La même démonstration établit que toute variable aléatoire discrète bornée est d’espérance finie.

2. Inégalité de Markov :

Soit Y, une variable aléatoire positive d’espérance finie. Pour tout α > 0,

P(Y ⩾ α) ⩽
E(Y)

α
.

❧ Démonstration dans le cas où Y prend un nombre fini de valeurs : on note (yi)0⩽i<n, la famille
des valeurs (positives) prises par Y et on fixe α > 0.

Par définition,

E(Y) =
∑

0⩽i<n

yi P(Y = yi) =
∑

0⩽i<n
yi<α

yi P(Y = yi) +
∑

0⩽i<n
yi⩾α

yi P(Y = yi).

Si yi < α, alors yi P(Y = yi) ⩾ 0 car Y est à valeurs positives ; si, au contraire, yi ⩾ α, alors

yi P(Y = yi) ⩾ αP(Y = yi)

car P est à valeurs positives. Par conséquent,

E(Y) ⩾ α
∑

0⩽i<n
yi⩾α

P(Y = yi) = αP(Y ⩾ α)

et l’inégalité de Markov en découle (puisque α > 0).
3. Comme X est une variable aléatoire d’espérance finie, alors |X| est aussi une variable aléatoire
d’espérance finie et comme |X| est à valeurs positives, on peut lui appliquer l’inégalité de Markov.
4. Comme nt > 0 et que la fonction exp est strictement croissante, alors

∀ω ∈ Ω, Sn(ω) ⩾ ε ⇐⇒ ntSn(ω) ⩾ ntε⇐⇒ exp[ntSn(ω)] ⩽ exp(ntε).

(NB : il faut insister sur le strictement pour justifier les équivalences !)
On en déduit que

[Sn ⩾ ε] =
[
entSn ⩾ entε

]
et donc que (par croissance de P)

P(Sn ⩾ ε) = P(entSn ⩾ entε).

Par hypothèse, les variables aléatoires X1, X2, . . ., Xn sont indépendantes et bornées. D’après le
Théorème des coalitions, les variables aléatoires etX1 , etX2 , . . ., etXn sont elles aussi indépendantes et
bornées. Or

entSn = etX1etX2 · · · etXn ,

donc entSn est une variable aléatoire positive d’espérance finie et, par indépendance des facteurs,

E(entSn) =

n∏
i=1

E(etXi) =
[
E(etX)

]n
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puisque les variables Xi ont toutes même loi que X.
Comme entSn est une variable aléatoire positive d’espérance finie, on peut lui appliquer l’inégalité

de Markov et en déduire que

P(entSn ⩾ entε) ⩽

[
E(etX)

]n
entε

et donc enfin que

P(Sn ⩾ ε) ⩽

[
E(etX)

]n
entε

pour tout n ⩾ 1.
5. Pour a > 0, on sait que ax = ex ℓn a. Donc ga est clairement de classe C∞ surR. En particulier,

g ′′
a(x) = −ax(ℓna)2 < 0

donc la fonction ga est concave sur [−1, 1].
Or ga(1) = a − a = 0 et ga(−1) = a−1 − a−1 = 0, donc la corde qui joint les points d’abscisses

±1 sur le graphe de ga est un segment de l’axe des abscisses. Comme ga est concave, son graphe est
au-dessus de ses cordes, donc

∀ x ∈ [−1, 1], ga(x) ⩾ 0.

6. Pour t > 0, on pose a = et > 1 et

∀ x ∈ [−1, 1],
1− x

2
e−t +

1+ x

2
et − etx ⩾ 0

d’après la question précédente.
7. Par hypothèse, x = X(ω) ∈ [−1, 1] pour tout ω ∈ Ω et d’après la question précédente,

∀ ω ∈ Ω, etX(ω) ⩽ ch t+ X(ω) sh t.

Les variables X et etX sont d’espérance finie (elles sont bornées toutes les deux par hypothèse) et l’es-
pérance conserve les inégalités, donc

E(etX) ⩽ ch t+ E(X) sh t = ch t

puisque X est centrée par hypothèse.
8. Il s’agit en fait de vérifier que

∀ k ∈ N, 2kk! ⩽ (2k)!

c’est-à-dire

2k ⩽
2k∏

i=k+1

i =

k∏
i=1

(k+ i).

Pour k ⩾ 1, on a de chaque côté un produit de k facteurs ; à gauche, tous les facteurs sont égaux à 2 ; à
droite, les facteurs sont tous supérieurs à (k+i) ⩾ (k+1) ⩾ 2. Par conséquent, l’inégalité est démontrée
pour k ⩾ 1.

Enfin, pour k = 0, l’inégalité est évidente : elle se réduit à 1 ⩽ 1...
Donc :

∀ k ∈ N, ∀ t ∈ R,
t2k

(2k)!
⩽

1

k!

(t2
2

)k

.

❧ On en déduit que

∀ t ∈ R, ch t =

+∞∑
k=0

t2k

(2k)!
⩽

+∞∑
k=0

t2k

2kk!
⩽

+∞∑
k=0

(t
2
/2)k

k!
= exp(t2/2)

et donc, d’après la question précédente, que

∀ t > 0, E(etX) ⩽ exp(t2/2).

9. Posons
∀ t > 0, fn(t) = exp(−ntε+ nt2/2).

Il est clair que fn est strictement positive et dérivable sur ]0,+∞[ et que

f ′n(t) = n(t− ε)fn(t)
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donc f ′n(t) est du signe de (t− ε).
La fonction fn est donc strictement décroissante sur ]0, ε] et strictement croissante sur [ε,+∞[.

Cette fonction atteint donc un minimum en t = ε et ce minimum est égal à

fn(ε) = exp(−nε2/2).

10. D’après [4.] et [7.],
∀ t > 0, P(Sn ⩾ ε) ⩽ fn(t).

Le minorant (à gauche) étant indépendant de t, on peut passer à la borne inférieure par rapport à t > 0
et obtenir :

P(Sn ⩾ ε) ⩽ fn(ε) = exp(−nε2/2).

❧ La propriété |Sn(ω)| ⩾ ε est vraie si Sn(ω) ⩾ ε ou si Sn(ω) ⩽ −ε. Par conséquent,

[|Sn| ⩾ ε] = [Sn ⩾ ε] ⊔ [Sn ⩽ −ε] = [Sn ⩾ ε] ⊔ [−Sn ⩾ ε]

et donc, par additivité de P,

P(|Sn| ⩾ ε) = P(Sn ⩾ ε) + P(−Sn ⩾ ε).

Les variables aléatoires −X1, . . ., −Xn vérifient les mêmes hypothèses que les variables aléatoires
X1, . . ., Xn : elles sont discrètes, à valeurs dans [−1, 1], indépendantes (Théorème des coalitions) et
toutes de même loi (celle de −X, qui est a priori différente de celle de X).

Par conséquent,

P(−Sn ⩾ ε) = P
(
(−X1) + · · ·+ (−Xn) ⩾ ε

)
⩽ exp(−nε2/2)

et finalement
P(|Sn| ⩾ ε) ⩽ 2 exp(−nε2/2).

11. La majoration précédente peut aussi s’écrire

∀ n ∈ N∗, P(|Sn| ⩾ ε) ⩽ 2qn

avec 0 < q = exp(−ε2/2) < 1. Par comparaison avec une série géométrique, la série
∑
P(|Sn| ⩾ ε) est

donc (absolument) convergente.
❧ Il est par ailleurs clair que : si |Sn(ω)| > ε, alors |Sn(ω)| ⩾ ε. Cela se traduit par[

|Sn| > ε
]
⊂

[
|Sn| ⩾ ε

]
et donc, par croissance de P,

∀ n ⩾ 1, 0 ⩽ P(|Sn| > ε) ⩽ P(|Sn| ⩾ ε).

à nouveau par comparaison, on en déduit que la série
∑
P(|Sn| > ε) est (absolument) convergente.

12. Pour tout m ∈ N∗, on sait que Sm est une variable aléatoire discrète. Notons (sm,i)i∈Im , l’ensemble
(fini ou dénombrable) des valeurs prises par Sm. Il est alors clair que

[|Sm| > ε] =
⊔

i∈Im
|sm,i|>ε

[Sm = sm,i]︸ ︷︷ ︸
∈A

∈ A

en tant qu’union finie ou dénombrable d’événements.
En tant qu’union dénombrable d’événements, l’ensemble

Bn =
⋃

m⩾n

[|Sm| > ε]

est donc un événement et, en tant qu’intersection dénombrable d’événements, l’ensemble⋂
n⩾1

Bn

appartient lui aussi à la tribu A.
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❧ Pour tout n ⩾ 1, il est clair que

Bn = [|Sn| > ε] ∪
⋃

m⩾n+1

[|Sm| > ε] ⊃ Bn+1.

La famille (Bn)n⩾1 est donc une suite décroissante d’événements. Par continuité monotone de P, on
sait alors que

P

( ⋂
n⩾1

Bn

)
= lim

n→+∞P(Bn).

Et comme Bn est, par définition, une union dénombrable d’événements,

∀ n ⩾ 1, 0 ⩽ P(Bn) ⩽
+∞∑
m=n

P(|Sm| > ε).

Le majorant est le reste d’une série convergente (d’après la question précédente), donc il tend vers 0.
Par encadrement, P(Bn) tend vers 0 lorsque n tend vers +∞ et finalement l’événement

⋂
n⩾1 Bn est

négligeable.
13. Par définition,

Ωk =
⋃

n∈N∗

⋂
m⩾n

[|Sm| ⩽ 1/k].

Comme Sm est une variable aléatoire, alors [|Sm| ⩽ 1/k] ∈ A. Comme A est une tribu, elle est stable par
intersection dénombrable et par union dénombrable, donc Ωk ∈ A pour tout k ∈ N∗.

❧ Par définition, la suite de terme général Sn(ω) tend vers 0 si, et seulement si,

∀ ε > 0, ∃ n ∈ N∗, ∀ m ⩾ n, |Sm(ω)| ⩽ ε,

donc
A =

⋂
ε>0

⋃
n∈N∗

⋂
m⩾n

[|Sm| ⩽ ε]

mais cette expression est inutile : l’intersection qui porte sur ε > 0 n’est pas une intersection dénom-
brable !

Il reste alors à remarquer que la suite de terme général Sn(ω) tend vers 0 si, et seulement si,

∀ k ∈ N∗, ∃ n ∈ N∗, ∀ m ⩾ n, |Sm(ω)| ⩽ 1/k

(puisque la suite de terme général 1/k tend vers 0) et donc

A =
⋂

k∈N∗

Ωk ∈ A

puisque A est stable par intersection dénombrable.
14. D’après la question précédente,

Ac =
⋃

k∈N∗

Ωc
k où Ωc

k =
⋂

n∈N∗

⋃
m⩾n

[|Sm| > 1/k].

D’après [12.] (avec ε = 1/k), chaque événement Ωc
k est négligeable. On sait qu’une union dénombrable

d’événements négligeables est elle-même un événement négligeable, donc Ac est négligeable et par
conséquent

P(A) = 1.

❧ On vient ainsi démontrer un cas particulier de la Loi forte des grands nombres : presque sûrement,
la suite de terme général Sn(ω) converge vers 0 = E(X).


