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On considère une suite (Xn)n∈N de variables aléatoires définies sur un espace probabilisé (Ω,A,P),
indépendantes et de même loi :

P(X0 = −1) = P(X0 = 1) =
1

2

et, pour tout entier n ⩾ 1, on pose
Sn = X1 + · · ·+ Xn.

1. Soit (An)n∈N, une suite d’événements telle que la série
∑
P(An) soit convergente.

1. a. Démontrer que
B =

⋂
n⩾1

⋃
k⩾n

Ak ∈ A.

1. b. Démontrer que
P(B) = lim

n→+∞P

( ⋃
k⩾n

Ak

)
.

1. c. En déduire que P(B) = 0.
2. Démontrer que

∀ t ∈ R, ch t ⩽ exp(t2/2).

☞ On pourra par exemple étudier les variations de

ψ(t) =
t2

2
− ℓn(ch t).

3. a. Calculer φ(t) = E(etXn).
3. b. En déduire la valeur de E(etSn).
3. c. Comparer

lim
n→+∞E(etSn/

√
n) et

∫+∞
−∞ ext

e−x2/2

√
2π

dx.

☞ On rappelle que ∫+∞
−∞

e−x2/2

√
2π

dx = 1.

4. Soit a > 0.
4. a. Que vaut P(Sn ⩾ a) lorsque n < a?
4. b. Démontrer que

∀ t ∈ R∗
+, P(Sn ⩾ a) ⩽ e−ta

E(etSn).

4. c. Déduire de [2.] que

P(Sn ⩾ a) ⩽ inf
t>0

e−ta
E(etSn) ⩽ e−a2/2n.

5. Démontrer que les variables aléatoires Sn et −Sn ont même loi et en déduire que

P(|Sn| ⩾ a) ⩽ 2e
−a2/2n.

6. Soit ε > 0. Pour tout n ∈ N, on pose

An,ε =

[
|Sn|

n
⩾ ε

]
∈ A.

6. a. Démontrer que la série
∑
P(An,ε) est convergente.
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6. b. En déduire qu’il existe un événementΩε ∈ A tel que P(Ωε) = 1 et que

∀ω ∈ Ωε, ∃ nε ∈ N, ∀ k ⩾ nε,
|Sk(ω)|

k
< ε.

7. Démontrer que
O =

⋂
m∈N∗

Ω1/m

est un événement presque sûr et que

∀ω ∈ O, Sk(ω)

k
−−−−−→
k→+∞ 0.

On traduit cette propriété en disant que Sk/k converge presque sûrement vers 0.
8. Pour tout n ∈ N∗, on pose

Un =
[
|Sn| ⩾

√
2αn ℓnn

]
où α > 1 est fixé.
8. a. Démontrer que Un ∈ A et que

∑
P(Un) converge.

8. b. En déduire que, presque sûrement, il existe un nombre fini d’entiers k ⩾ 1 tel que |Sk| ⩾√
2αk ℓnk. Comparer avec [7.]
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Solution ❀ Étude asymptotique d'une marche aléatoire

La famille (Sn)n⩾1 est une marche aléatoire au sens où on étudie le comportement des suites(
Sn(ω)

)
n⩾1

plutôt que la loi de chacune des variables aléatoires Sn.
1. a. Par hypothèse, Ak ∈ A pour tout k ∈ N. Or A est stable par union dénombrable et par intersec-
tion dénombrable, donc B ∈ A.
1. b. Pour tout entier n ⩾ 1, ⋃

k⩾n+1

Ak ⊂ An ∪
⋃

k⩾n+1

Ak =
⋃
k⩾n

Ak

donc B est l’intersection d’une suite décroissante d’événements. Par continuité décroissante de P, on
en déduit que

P(B) = lim
n→+∞P

( ⋃
k⩾n

Ak

)
.

1. c. Par σ-additivité de P,

0 ⩽ P

( ⋃
k⩾n

Ak

)
⩽

+∞∑
k=n

P(Ak).

Le majorant est le reste d’ordre (n− 1) de la série convergente
∑
P(Ak), donc il tend vers 0. On déduit

de la question précédente que P(B) = 0.
2. Il est clair que la fonction ψ est paire et de classe C∞ surR. On vérifie que

∀ t ∈ R, ψ ′(t) = t− 1+
2

e2t + 1

ψ ′′(t) = 1−
1

ch2 t
⩾ 0

ce qui prouve que ψ est convexe sur R. Comme ψ ′(0) = 0, alors ψ atteint son minimum absolu en
t = 0 et comme ψ(0) = 0, alors ψ est positive sur R. On obtient l’inégalité voulue en composant par
exp (qui est croissante).

Meilleure méthode — On sait que

∀ t ∈ R, ch t =
+∞∑
n=0

t2n

(2n)!
et et

2/2 =

+∞∑
n=0

t2n

2nn!
.

Comme t2n ⩾ 0 pour tout (n, t) ∈ N×R et que

2nn! =

n∏
k=1

(2k) ⩽
2n∏
q=1

q = (2n)!,

l’inégalité est démontrée.

3. a. Comme Xn est une variable aléatoire qui ne prend qu’un nombre fini de valeurs, alors etXn est
une variable aléatoire qui ne prend qu’un nombre fini de valeurs et en particulier une variable aléatoire
d’espérance finie.

Comme les variables aléatoires sont toutes de même loi, l’espérance de etXn est indépendante de
n et d’après le théorème de transfert,

φ(t) = et P(Xn = 1) + e−t
P(Xn = −1) = ch t.

3. b. Comme Sn est la somme de n variables aléatoires bornées et indépendantes, alors

etSn = etX1 · · · etXn

est le produit de n variables aléatoires d’espérance finie et indépendantes. Donc

E(etSn) =

n∏
k=1

E(etXk) = [φ(t)]n = chn t.
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3. c. Le réel t étant fixé,

E(etSn/
√
n) = chn t√

n
=

(
1+

t2

2n
+ O(t2)

)n

−−−−−→
n→+∞ et

2/2.

❧ On sait que [x 7→ e−x2/2] est intégrable surR. Le changement de variable affine [x 7→ x− t] montre
que [x 7→ e−(x−t)2/2] est intégrable surR et comme

exte−x2/2 = e−(x−t)2/2 et
2/2︸ ︷︷ ︸

Cte

,

la fonction [x 7→ exte−x2/2] est intégrable surR et∫+∞
−∞ ext

e−x2/2

√
2π

dx = et
2/2

∫+∞
−∞

e−(x−t)2/2

√
2π

dt = et
2/2.

Ce n’est pas une coïncidence ! Avec les hypothèses de l’énoncé, les variables aléatoires centrées et réduites
Sn/

√
n convergent en loi vers la loi normale centrée réduite et, par définition, si une variable aléatoire N

suit la loi normale centrée réduite, alors

E(etN) =

∫+∞
−∞ ext

e−x2/2

√
2π

dx.

Il reste à démontrer pourquoi la convergence en loi implique (ici) la convergence de E(etSn/
√
n) vers

E(etN)...

4. a. Par inégalité triangulaire,

∀ω ∈ Ω, |Sn(ω)| ⩽
n∑

k=1

|Xk(ω)|.

Or P(|Xk| ⩽ 1) = 1, donc P(|Sn| ⩽ n) = 1 et P(Sn ⩾ a) = 0 pour tout n < a.
4. b. La variable aléatoire etSn est positive et d’espérance finie. D’après l’inégalité de Markov,

P(etSn ⩾ eta) ⩽ e−ta
E(etSn).

Or t > 0, donc [x 7→ etx] est une bijection croissante deR dansR∗
+, donc

[etSn ⩾ eta] = [Sn ⩾ a]

et finalement
∀ t ∈ R∗

+, P(Sn ⩾ a) ⩽ e−ta
E(etSn).

4. c. La quantité P(Sn ⩾ a) est indépendante de t : on peut donc passer à l’inf dans l’inégalité précé-
dente. D’après [2.],

e−ta
E(etSn) ⩽ exp

(nt2
2

− ta
)

et le trinôme en t atteint son minimum pour t = a/n > 0, donc

inf
t>0

e−ta
E(etSn) ⩽ min

t>0
exp

(nt2
2

− ta
)
= e−a2/2n.

5. On considère la fonction f : Nn → N définie par

f(x1, . . . , xn) = x1 + · · ·+ xn.

Comme les variables aléatoires X1, . . ., Xn sont indépendantes, alors les variables aléatoires −X1, . . .,
−Xn sont indépendantes et de même loi que X0 :

P(−Xk = −1) = P(Xk = 1) = P(X0 = 1) =
1

2
,

P(−Xk = 1) = P(Xk = −1) = P(X0 = −1) =
1

2
.
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Par conséquent, les deux vecteurs aléatoires (X1, . . . , Xn) et (−X1, . . . ,−Xn) ont même loi jointe. Donc
leurs sommes

Sn = f(X1, . . . , Xn) et − Sn = f(−X1, . . . ,−Xn)

ont même loi.
❧ Comme a > 0,

[|Sn| ⩾ a] = [Sn ⩾ a] ⊔ [Sn ⩽ −a] = [Sn ⩾ a] ⊔ [−Sn ⩾ a]

et comme −Sn
d
= Sn, alors

P(|Sn| ⩾ a) = P(Sn ⩾ a) + P(Sn ⩾ a) = 2P(Sn ⩾ a).

On déduit de la question précédente que

P(|Sn| ⩾ a) ⩽ 2e
−a2/2n.

6. a. On applique la majoration du [5.] avec a = nε :

∀ n ⩾ 1, 0 ⩽ P(An,ε) ⩽ e
−nε2/2 = (e−ε2/2)n.

Or ε > 0, donc 0 < e−ε2/2 < 1, donc la série
∑
P(An,ε) est convergente.

6. b. D’après le lemme de Borel-Cantelli [[1.]], l’événement⋂
n⩾1

⋃
k⩾n

Ak,ε

est négligeable, donc l’évément contraire

Ωε =
⋃
n⩾1

⋂
k⩾n

Ac
k,ε

est presque sûr et, par définition deΩε,

∀ω ∈ Ωε, ∃ n ⩾ 1, ∀ k ⩾ n,
|Sk(ω)|

k
< ε.

7. Puisque une union dénombrable d’événements négligeables est encore un événement négligeable,
une intersection dénombrable d’événements presque sûrs est encore un événement presque sûr, donc
O ∈ A est presque sûr.

De plus, par définition de O, siω ∈ O, alors

∀m ⩾ 1, ∃ n ⩾ 1, ∀ k ⩾ n,

∣∣∣∣Sk(ω)

k
− 0

∣∣∣∣ < 1

m
,

ce qui prouve bien que Sk(ω)/k tend vers 0 lorsque k tend vers +∞.
8. a. L’ensemble Un est un événement car Sn est une variable aléatoire.

❧ On applique la majoration du [5.] à a =
√
2αn ℓnn :

∀ n ⩾ 1, 0 ⩽ P(|Sn| ⩾ a) ⩽ 2e
−αℓn n =

2

nα
.

Comme α > 1, la série
∑
P(|Sn| ⩾ a) est convergente.

8. b. D’après le lemme de Borel-Cantelli [[1.]], l’événement

U =
⋃
n⩾1

⋂
k⩾n

Uc
n

est presque sûr et, par définition de U, siω ∈ U, alors

∃ n ⩾ 1, ∀ k ⩾ n, |Sk(ω)| <
√
2αk ℓnk.

Cela signifie que |Sk(ω)| <
√
2αk ℓnk à partir d’un certain rang et donc que l’inégalité contraire :

|Sk| ⩾
√
2αk ℓnk

n’est vraie que pour un nombre fini d’indices k.
❧ Comme √

2αk ℓnk
k

−−−−−→
k→+∞ 0,

cette propriété est plus précise que le résultat établi au [7.]


