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On s’intéresse ici à une marche aléatoire sur Z : partant initialement de 0, si on se trouve sur l’entier x ∈ Z
à l’instant n ∈ N, on a une chance sur deux de se trouver sur l’entier (x+ 1) et une chance sur deux de se
trouver sur l’entier (x− 1) à l’instant (n+ 1).
Pour décrire ce processus, on considère une suite (Xk)k∈N∗ de variables aléatoires mutuellement indépen-
dantes et de même loi, définies sur un espace probabilisé (Ω,A,P) en supposant que

∀ k ∈ N∗, P(Xk = 1) = P(Xk = −1) =
1

2
.

On considère aussi la suite de variables aléatoires (Sn)n∈N définie par

S0 = 0 et ∀ n ∈ N∗, Sn =

n∑
k=1

Xk.

On définit en outre une fonction
T : Ω → N ∪ {+∞}

en posant
T(ω) = +∞

si Sn(ω) ̸= 0 pour tout n ∈ N∗ et en posant

T(ω) = min
{
n ∈ N∗ : Sn(ω) = 0

}
dans le cas contraire. On admet que T est une variable aléatoire.
Enfin, on définit deux suites réelles (pn)n∈N et (qn)n∈N en posant

∀ n ∈ N, pn = P(Sn = 0)

et
q0 = 0 et ∀ n ∈ N∗, qn = P(T = n).

Partie A. Calcul de pn

On fixe un entier n ∈ N et, pour tout k ∈ N∗, on considère la variable aléatoire Yk définie par

Yk =
Xk + 1

2
.

On admet que (Yk)k∈N∗ est une suite de variables aléatoires mutuellement indépendantes (lemme des
coalitions).

1. Que représente la variable aléatoire Sn ?
2. Calculer p0, p1 et p2.
3. Justifier que pn = 0 pour tout entier impair n.
4. Soit k ∈ N∗. Démontrer que Yk suit une loi de Bernoulli de paramètre 1/2.
5. Pour n > 0, donner la loi de

Zn = Y1 + · · ·+ Yn

et exprimer Sn en fonction de Zn.
6. On suppose qu’il existe m ∈ N tel que n = 2m. Déduire de la question précédente que

p2m =

(
2m

m

)
1

4m
.
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Partie B. Fonction génératrice des pn

On note Rp, le rayon de convergence de la série entière
∑

pnx
n et f, la somme de cette série entière sur son

intervalle de convergence.

7. Démontrer que Rp ⩾ 1.
8. Démontrer que

p2m =
(−1)m

m!

m∏
k=1

(−1

2
− k+ 1

)
pour tout m ∈ N∗.
9. Déterminer un réel α tel que

∀ x ∈ ]−1, 1[ , f(x) = (1− x2)α.

Partie C. Loi de T

On note Rq, le rayon de convergence de la série entière
∑

qnx
n et g, la somme de cette série entière sur

son intervalle de convergence. Pour tout n ∈ N, on considère également la fonction gn : R → R définie
par

∀ x ∈ R, gn(x) = qnx
n.

10. Calculer q1 et q2.
11. Démontrer que la série

∑
gn converge normalement sur [−1, 1]. En déduire que Rq ⩾ 1.

Dans la suite, on admet la relation

∀ n ∈ N∗, pn =

n∑
k=0

pkqn−k.

12. En utilisant un produit de Cauchy et la relation admise ci-dessus, démontrer que

∀ x ∈ ]−1, 1[ , f(x)g(x) = f(x) − 1.

13. En déduire que
∀ x ∈ ]−1, 1[ , g(x) = 1−

√
1− x2.

Calculer le développement en série entière de g en précisant son rayon de convergence.
14. En déduire une expression de qn pour tout n ∈ N∗.
15. En utilisant [11.] et [13.], calculer P(T = +∞). Interpréter le résultat.
16. La variable aléatoire T est-elle une variable aléatoire d’espérance finie?
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Solution ❀ Retour à l'origine d'une marche aléatoire

Complément à caractère culturel
❧ S’il existe n ∈ N∗ tel que Sn(ω) = 0, alors l’ensemble{

n ∈ N∗ : Sn(ω) = 0
}

est une partie non vide de N et admet de ce fait un plus petit élément. L’application T est donc bien
définie.

❧ Il reste à vérifier que T est bien une variable aléatoire sur (Ω,A). Pour cela, il faut d’abord remar-
quer que

∀ n ∈ N∗, [Sn = 0] ∈ A

puisque Sn est une variable aléatoire. On en déduit que

∀ n ∈ N∗, [Sn = 0]c ∈ A

puisqu’une tribu est stable par passage au complémentaire.
D’une part,

[T = +∞] =
⋂

n∈N∗

[Sn = 0]c ∈ A

en tant qu’intersection dénombrable d’événements.
D’autre part, pour tout entier n ⩾ 1,

[T = n] = [S1 = 0]c ∩ · · · ∩ [Sn−1 = 0]c ∩ [Sn = 0] ∈ A

en tant qu’intersection d’un nombre fini d’événéments.

Partie A. Calcul de pn

1. Chaque variable Xk représente le déplacement effectué entre l’instant (k−1) et l’instant k, la variable
Sn représente donc la position à l’instant n.
2. Comme S0(ω) = 0 pour tout ω ∈ Ω, on a

p0 = P(S0 = 0) = P(Ω) = 1.

Comme S1(ω) = X1(ω) ̸= 0 pour tout ω ∈ Ω, on a

p1 = P(S1 = 0) = P(∅) = 0.

Enfin, en décomposant sur le système complet d’événements ([X1 = 1], [X1 = −1]),

[S2 = 0] = [X1 = −X2] = [X1 = 1, X2 = −1] ⊔ [X1 = −1, X2 = 1].

Comme les variables aléatoires X1 et X2 sont indépendantes et suivent la loi de Bernoulli B(1/2),

p2 = P(X1 = 1)P(X2 = −1) + P(X1 = −1)P(X2 = 1) =
1

2
.

3. Comme Xk(ω) = ±1, les deux ensembles{
1 ⩽ k ⩽ n : Xk(ω) = 1

}
et

{
1 ⩽ k ⩽ n : Xk(ω) = −1

}
définissent une partition de {1, . . . , n}. La somme de leurs cardinaux est donc égale à n.

Si Sn(ω) = 0, alors ces deux ensembles ont même cardinal m et par conséquent, n = 2m est un
entier pair.

Par contraposée, si n est impair, alors [Sn = 0] est vide et par conséquent pn = 0.
4. Comme Xk prend les valeurs ±1, alors Yk prend les valeurs (±1+ 1)/2, c’est-à-dire 0 ou 1 avec

[Yk = 1] = [Xk = 1] et [Yk = 0] = [Xk = −1].

Donc Yk suit bien une loi de Bernoulli. Le paramètre de cette loi est

P(Yk = 1) = P(Xk = 1) =
1

2
.
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5. Remarque à caractère culturel
Il existe une fonction (affine !) f telle que Yk = f(Xk) pour tout k ⩾ 1. Comme les variables aléa-

toires Xk sont mutuellement indépendantes et de même loi, les variables aléatoires Yk sont mutuelle-
ment indépendantes (lemme des coalitions) et de même loi (c’est la même fonction f pour toutes les
variables).

❧ En tant que somme de n variables aléatoires indépendantes suivant la loi de Bernoulli B(1/2), la
variable Zn suit la loi binomiale B(n, 1/2).

❧ Puisque Xk = 2Yk − 1,

Sn =

n∑
k=1

(2Yj − 1) = 2

( n∑
k=1

Yk

)
− n = 2Zn − n.

6. D’après la question précédente,

[S2m = 0] = [2Zn = n] = [Z2m = m]

et comme Z2m suit la loi binomiale B(2m, 1/2),

p2m =

(
2m

m

)
1

22m
=

1

4m

(
2m

m

)
.

On peut donner une interprétation combinatoire de cette expression : on choisit m indices parmi les n = 2m
indices pour situer les montées ; chacune des m montées est effectuée avec la probabilité 1/2 et chacune des
m descentes est effectuée avec la probabilité 1/2.

Partie B. Fonction génératrice des pn

7. Comme pn est une probabilité, on a évidemment

∀ n ∈ N, ∀ 0 < x < 1, 0 ⩽ pnx
n ⩽ xn.

Pour 0 < x < 1, la série géométrique
∑

xn est convergente, donc la série
∑

pnx
n est convergente (par

comparaison).
Comme la série entière

∑
pnx

n converge au moins sur ]0, 1[, cela prouve que le rayon de conver-
gence est au moins égal à 1.

Le rapport du jury indique que de nombreux candidats ont cru que la série
∑

pn était convergente. Cela
s’explique par une lecture inattentive du titre de la partie : la fonction f est bien une fonction génératrice,
mais ce n’est pas la fonction génératrice d’une variable aléatoire ! En effet, les événements [Sn = 0] ne
constituent pas le système complet d’événements associés à une variable aléatoire...

8. Pour tout m ⩾ 1,

(−1)m
m∏

k=1

(−1

2
− k+ 1

)
=

m∏
k=1

1+ 2k− 2

2
=

1

2m

m∏
k=1

(2k− 1) =
1

2m

m∏
k=1

2k(2k− 1)

2k
=

(2m)!

2m.(2mm!)

et on retrouve ainsi l’expression de p2m calculée au [7.]
9. On sait que

∀ u ∈ ]−1, 1[ , (1+ u)α =

+∞∑
m=0

cmum

avec c0 = 1 et

∀m ⩾ 1, cm =
α(α− 1) · · · (α−m+ 1)

m!
.

Pour x ∈ ]−1, 1[, on a −1 < −x2 ⩽ 0 et donc

(1− x2)α =

+∞∑
m=0

cm(−x2)m =

+∞∑
m=0

(−1)mcmx2m.

Or, d’après [7.] et [3.],

∀ x ∈ ]−1, 1[ , f(x) =

+∞∑
m=0

p2mx2m

et d’après la question précédente, p2m = (−1)mcm pour α = −1/2.
On a donc

∀ x ∈ ]−1, 1[ , f(x) =
1√

1− x2
.
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Partie C. Loi de T

10. On a

q1 = P(T = 1) = P(S1 = 0), q2 = P(T = 2) = P(S1 ̸= 0, S2 = 0)

et d’après [2.]

q1 = 0, q2 =
1

2
.

11. Pour tout x ∈ [−1, 1], il est clair que

∀ n ⩾ 1,
∣∣gn(x)

∣∣ ⩽ qn = P(T = n).

On a trouvé un majorant indépendant de x ∈ [−1, 1].
Comme les événements [T = n] sont deux à deux disjoints, la série

∑
P(T = n) est convergente

(σ-additivité de P), donc la série de fonctions
∑

gn converge normalement sur le segment [−1, 1].
❧ En particulier, la série

∑
gn(x) converge absolument pour tout |x| ⩽ 1, ce qui prouve que le rayon

de convergence Rq est au moins égal à 1.
12. Le produit de Cauchy des séries entières

∑
pnx

n et
∑

qnx
n est la série entière

∑
wnx

n définie
par

∀ n ∈ N, wn =

n∑
k=0

pkqn−k.

D’après [7.], on a Rp ⩾ 1 et d’après [11.], on a Rq ⩾ 1. Par conséquent, pour |x| < 1 (au moins !), la série∑
wnx

n est absolument convergente et

+∞∑
n=0

wnx
n =

(+∞∑
n=0

pnx
n

)(+∞∑
n=0

qnx
n

)
= f(x)g(x).

D’après l’énoncé,
∀ n ⩾ 1, wn = pn.

En outre, w0 = p0q0 = 0 (puisque q0 = 0), donc

∀ x ∈ ]−1, 1[ ,

+∞∑
n=0

wnx
n =

+∞∑
n=1

pnx
n = f(x) − p0 = f(x) − 1. (par [2.])

On en déduit que
∀ x ∈ ]−1, 1[ , f(x)g(x) = f(x) − 1.

13. On connaît l’expression de f(x) depuis [12.] et on déduit de la question précédente que

∀ x ∈ ]−1, 1[ , g(x) = 1−
√

1− x2.

❧ Le développement en série entière de (1 + u)1/2 est connu, son rayon de convergence est égal à 1
et les coefficients sont donnés par la formule rappelée au [9.] Cette fois, α = 1/2 et, pour tout n ⩾ 1,

cn =
1 · (−1) · (−3) · · · (3− 2n)

2n.n!
=

(−1)n−1

2nn!
· [1 · 3 · · · (2n− 3)] =

(−1)n−1(2n− 2)

22n−1 · n!(n− 1)!

avec c0 = 1 bien sûr.
Pour |x| < 1, on a u = −x2 ∈ ]−1, 1[ et donc

√
1− x2 = 1+

+∞∑
n=1

cn(−x2)n = 1−

+∞∑
n=1

(2n− 2)!

22n−1 · n!(n− 1)!
· x2n.

Par conséquent,

g(x) = 1−
√
1− x2 =

+∞∑
n=1

(2n− 2)!

n!(n− 1)!
· x2n

22n−1

pour tout x ∈ ]−1, 1[.
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14. Comme le rayon de convergence est strictement positif (il est égal à 1), on peut invoquer l’unicité
du développement en série entière. On déduit de l’expression précédente que

q0 = 0, ∀ n ∈ N, q2n+1 = 0

et que

∀ n ⩾ 1, q2n =
(2n− 2)!

22n−1 · n!(n− 1)!
.

15. Par [11.], la fonction g est continue sur [−1, 1]. En particulier,

+∞∑
n=1

qn = g(1) = lim
x

<→1

1−
√
1− x2 = 1.

Or
Ω = [T = +∞] ⊔

⊔
n∈N∗

[T = n]

et par σ-additivité de P,

1 = P(Ω) = P(T = +∞) +

+∞∑
n=1

qn.

On en déduit que P(T = +∞) = 0, ce qui signifie que, pour presque tout ω ∈ Ω, il existe au moins un
entier n ⩾ 1 tel que Sn(ω) = 0.
16. Comme g est la fonction génératrice de T , on sait que T est une variable aléatoire d’espérance finie
si, et seulement si, g est dérivable au point 1.

Pour 0 < x < 1, on déduit de [13.] que

g(1) − g(x)

1− x
=

1− (1−
√
1− x2)

1− x
=

√
1+ x

1− x
.

Cela prouve que g n’est pas dérivable au point 1 (le taux d’accroissement tend vers +∞) et donc que T
n’est pas une variable aléatoire d’espérance finie.


