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1. Déterminer une condition nécessaire et suffisante pour que la matrice

A =

(
0 1

y− 4 2x

)
soit diagonalisable dans M2(R).
2. On pose E1 = {u ∈ R+ : u2 /∈ N} et E2 = R+ \E1. Démontrer que l’ensemble E2 est dénombrable.
3. Soit f : R+ → R, l’application définie par

∀ u ∈ E1, f(u) = 0 et ∀ u ∈ E2, f(u) =
λ

2u
2 .

Déterminer le réel λ pour lequel il existe une variable aléatoire discrète X définie sur un espace proba-
bilisé (Ω,A,P) telle que

∀ u ∈ R+, P(X = u) = f(u).

4. Déterminer la loi et l’espérance de X2.
5. Déterminer la fonction génératrice de X2 et retrouver ainsi l’espérance de X2.
6. Soit Y, une variable aléatoire définie sur Ω, indépendante de X, telle que

∀ u ∈ R+, P(Y = u) =

∣∣∣∣∣∣
0 si u /∈ N,
1

2u+1
sinon.

Déterminer la fonction génératrice de la variable aléatoire

Z = X2 + Y.

En déduire la loi de Z.
7. Calculer la probabilité pour que la matrice aléatoire

A =

(
0 1

Y − 4 2X

)
soit diagonalisable.
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Solution ❀ Une matrice aléatoire

1. Le polynôme caractéristique de A est égal à

X2 − (trA)X+ (detA) = X2 − 2xX+ (4− y).

Son discriminant réduit est égal à x2 + y− 4.
❧ Si le discriminant est strictement négatif, la matrice A n’a pas de valeur propre réelle, donc n’est

pas diagonalisable dans M2(R).
❧ Si le discriminant est nul, alors la matrice A admet une valeur propre unique et comme ce n’est

pas une homothétie, alors elle n’est pas diagonalisable dans M2(R).
❧ Si le discriminant est strictement positif, alors la matrice A admet deux valeurs propres réelles

distinctes et comme elle appartient à M2(R), elle est donc diagonalisable.
Par conséquent, la matrice A est diagonalisable si, et seulement si,

x2 + y > 4.

2. L’ensemble E2 est par définition l’image de N, partie dénombrable de R+, par l’application injec-
tive

[
x 7→ √

x
]
, donc E2 est bien une partie dénombrable deR+.

E2 =
{√

n, n ∈ N
}

3. On sait qu’il existe un espace probabilisé (Ω,A,P) et une variable aléatoire discrète X définie sur
(Ω,A,P) telle que

∀ u ∈ R+, P(X = u) = f(u)

si, et seulement si, la famille
(
f(u)

)
u∈R+

est une famille sommable de réels positifs dont la somme est
égale à 1.

D’après [2.], il s’agit donc de trouver les valeurs de λ ∈ R pour lesquelles la série
∑

λ/2n est une
série de terme général positif dont la somme est égale à 1.

Comme 0 < 1/2 < 1, on reconnaît une série géométrique convergente dont le terme général est
positif si, et seulement si, λ ∈ R+ et dont la somme est égale à

+∞∑
n=0

λ

2n
=

λ

1− 1/2
= 2λ.

Donc le seul réel λ convenable est égal à 1/2.
4. Comme l’ensemble des valeurs prises par X est E2, alors l’ensemble des valeurs prises par X2 est
égal àN et comme E2 ⊂ R+,

∀ n ∈ N, [X2 = n] = [X =
√
n]

donc
∀ n ∈ N, P(X2 = n) =

(1
2

)n+1

.

(C’est presque une loi géométrique !)
❧ La variable X2 est d’espérance finie si, et seulement si, la série

∑
2−(n+1)n est convergente. On

sait que le rayon de convergence de la série entière
∑

xn est égal à 1 et comme il est strictement positif,
on peut dériver terme à terme sur l’intervalle ouvert de convergence, donc

∀ x ∈ ]−1, 1[ ,

+∞∑
n=1

nxn−1 =
d

dx

( 1

1− x

)
=

1

(1− x)2
.

En particulier, pour x = 1/2, la série
∑

2−(n+1)n est convergente et

+∞∑
n=0

n(1/2)
n+1 = (1/2)

2
+∞∑
n=1

n(1/2)
n−1 =

1/4
1/4

= 1

(le terme en n = 0 est nul), donc E(X2) = 1.
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5. Comme X2 est une variable aléatoire à valeurs dansN, sa fonction génératrice F est par définition
la somme de la série entière

∑
P(X2 = n)xn, série entière dont le rayon de convergence est au moins

égal à 1. Donc

∀ x ∈ [−1, 1], F(x) =

+∞∑
n=0

1

2n+1
xn =

1

2

+∞∑
n=0

(x/2)
n

=
1

2
· 1

1− x/2
=

1

2− x
.

On remarque en passant que le rayon de convergence de la série génératrice de X2 est égal à 2, ce
qui prouve que la fonction génératrice est de classe C∞ sur l’intervalle ouvert ]−2, 2[ et, en particulier,
dérivable en x = 1. Cela prouve à nouveau que X2 est une variable aléatoire d’espérance finie et que

E(X2) = F ′(1) =
1

(2− 1)2
= 1.

6. En tant que somme de deux variables aléatoires à valeurs dans N, la fonction Z est encore une
variable aléatoire sur (Ω,A,P) à valeurs dans N, donc sa fonction génératrice G est bien définie sur
[−1, 1] au moins.

La variable aléatoire Y suit la même loi que X2, donc X2 et Y ont même fonction génératrice.
Comme X2 et Y sont indépendantes, alors les variables aléatoires tX

2

et tY sont indépendantes et
comme ces variables sont d’espérance finie pour |t| < 2, alors tZ = (tX

2

)(tY) est aussi une variable
aléatoire d’espérance finie pour t ∈ ]−2, 2[ et

∀ t ∈ ]−2, 2[ , G(t) = E(tZ) = E(tX
2

)E(tY) = [F(t)]2

=
1

(2− t)2
= F ′(t).

Comme le rayon de convergence de la série génératrice de X2 est strictement positif, on peut dériver
terme à terme. Sachant que

∀ t ∈ ]−2, 2[ , F(t) =

+∞∑
n=0

tn

2n+1

on en déduit que

∀ t ∈ ]−2, 2[ , G(t) =

+∞∑
n=1

ntn−1

2n+1
=

+∞∑
n=0

n+ 1

2n+2
· tn

et par unicité du développement en série entière (le rayon de convergence étant strictement positif), on
en déduit que

∀ n ∈ N, P(Z = n) =
n+ 1

2n+2
.

7. D’après [1.], la matrice A est diagonalisable si, et seulement si, la variable aléatoire Z = X2 + Y est
strictement supérieure à 4. On cherche donc

P(Z > 4) = 1− P(Z ⩽ 4) = 1−

4∑
k=0

P(Z = k).

D’après la question précédente,

P(Z = 0) =
1

4
=

16

64
P(Z = 1) =

2

8
=

16

64

P(Z = 2) =
3

16
=

12

64
P(Z = 3) =

4

32
=

8

64

P(Z = 4) =
5

64

donc la probabilité pour que la matrice A soit diagonalisable est égale à

1−
16+ 16+ 12+ 8+ 5

64
=

7

64
.


