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On considére deux variables aléatoires X et Y définies sur un méme espace probabilisé (Q, A, P). On
suppose que ces deux variables aléatoires sont indépendantes et suivent toutes deux la loi uniforme
sur Z/N7Z :
VOo<k<n, P(X=%(k) :%

oul (k) est la classe de k dans Z/nZ.

On rappelle que la série des inverses des nombres premiers est divergente : si (px)x>1 est la suite
croissante des nombres premiers, alors la série )1/, est divergente.
1. Onnote A, le fait que X soit inversible dans Z/nZ.
l.a. Vérifier que A est bien un événement.
1.b. Calculer la probabilité de A.
1.c. Comment choisir n pour que la probabilité de A soit supérieure a 99%?
1.d. Comment choisir n pour que la probabilité de A soit inférieure a 1%?
2. Calculer laloide X + Y.
3. Onadmet que I'espérance et la variance conservent leurs propriétés habituelles avec les variables
aléatoires a valeurs dans Z/nZ.
3.a. Déduire de la question précédente que

3.b. Commenter le résultat précédent.
3.c. Proposer une maniere de décrire la valeur moyenne et la dispersion des valeurs d"une variable
aléatoire a valeurs dans Z/nZ.
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Solution % Lois de probabilité sur Z/nZ
1.a. Comme X est une variable aléatoire définie sur 1'espace probabilisé
(Q,AP)
a valeurs dans Z/nZ (ensemble fini, donc naturellement muni de la tribu discrete £ = P(Z/n7Z)),
Vo<k<n, [X=%(k)]eA

D’apres le cours, la valeur X(w) € Z/nZ est inversible si, et seulement si, il existe 1 < k < n premier a
n tel que X(w) = €n (k). Autrement dit :

A = [X est inversible] = U X =%n(k)].

1<k<n
kAn=1
Comme A est stable par union, on en déduit que
A€ A,
c’est-a-dire que A est bien un événement.
1.b. Comme
([X = an(kn)og«n

est un systeme complet d’événements, on a en fait décomposé A en une union d’événements deux a
deux disjoints :

A = [X est inversible] = |_| X =%n(k)].

1<k<n
kAn=1

Par additivité de la mesure P, on en déduit que

PA)= )  P(X=%(Kk).

1<k<n
kAn=1

Comme la loi de X est uniforme sur Z/nZ, ensemble fini de cardinal n, on en déduit que

1 #((Z/nz)”)

P(A) = — =7 T/
lgén n n
kAn=1

et donc, par définition de l'indicatrice d’Euler, que

p(A) = 2
n
1.c. Silentier n est premier, alors on sait que
eMm)=n—1
et donc que
1
PA)=1——.
n

11 suffit de choisir n premier supérieur a 100, par exemple n = 101, pour que P(A) > 99%.
1.d. Lasuite (px)k>1 entiers premiers énumérés par ordre croissant tend vers +o0, donc

en(1 N é) k—:roo ;7:

Comme la série )} 1/, est une série divergente de terme général positif, on en déduit que la série

Z@n(1 — P1k)

est une série divergente de terme général négatif et donc que ses sommes partielles tendent vers —oo.
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Par conséquent, la suite de terme général

tend vers 0.
11 est donc possible de choisir N assez grand pour que

N 1 1
[10-5.) <30

k=1
Pour
N
n=]]re
k=1
on a donc
1 A 1 1
P =— —1) = —— ) < —=.
(A =—-TIee—n=TI(1 pk) —
k=1 k=1
On peut démontrer que
N
Z]— ~ {ninN
— Pk N—+oo

ce qui suggere que

a 1 1
11 (1 — p—k) ~exp(—fninN) = N
et donc que P(A) < 1072 pour N > e'%0 ~ 2.10%3...

2. Nous allons décomposer 1'événement

X+Y =%n(k)]
au moyen du systéme complet d’événements

([X = (g“(i)])ogi<n'

Pourtout0 <k <mn,ona:

n—1

X+Y=%n(k)] = | | X+Y=2%(K]NX=%En(i)
b

= | | X=¢OINnlY =% (k-1

,_.
Il
[

On a obtenu une union d’événements deux a deux disjoints. Par additivité de P, on en déduit que

3
|

PIX+Y=%u(k) = Y P(X=% ()] NIY =% (k1))

o
Il
)

3
|

PX=%.(1)).P(Y =%n(k—1))

,..
Il
)

1 1

Il
3
X

n2 n

puisque les variables aléatoires X et Y sont indépendantes et suivent la loi uniforme sur Z/nZ.
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On constate donc que la variable aléatoire X + Y suit, comme X et Y, la loi uniforme sur Z/nZ.
3.a. Comme X + Y suit la méme loi que X, on a donc

EXX+Y)=E(X) et V(X+Y)=V(X).
@ Par linéarité de 1’'espérance, on a aussi
E(X+Y)=E(X) +E(Y) =2E(X)
puisque X et Y suivent la méme loi. On en déduit que
E(X) =0.
a Comme X et Y sont indépendantes et suivent la méme loi, on a aussi
V(X+Y) =V(X)+ V(Y) =2V(X).

On en déduit également que
V(X) = 0.

3.b. C’est tres étrange! La variable X n’est pas constante et pourtant sa variance est nulle...
En fait, ni ’espérance, ni la variance ne sont définies pour les variables aléatoires étudiées ici! En
effet, Z/n7Z est muni d"une structure d’anneau, mais pas d’espace vectoriel, donc la formule usuelle

n—1 n—1
E0) = Y PX = %u(k)6(K) = = > %l
k=0 k=0

n’a pas de sens : on ne peut pas diviser par n dans Z/nZ (d’une part, parce qu’il n’y a pas de division
dans un anneau et d’autre part, parce que la classe %, (n) est aussi la classe de 0 et n’est donc inversible
dans Z/nZ pour aucune valeur de n!)
L’espérance n’étant pas définie, on ne peut pas non plus donner un sens a la variance...
3.c.  Onsait que l'application
2ikmt

Gn(k) — exp

réalise une bijection de Z/nZ sur I'ensemble U,, des racines n-iémes de l'unité.
On peut ainsi en quelque sorte transporter une loi de probabilité sur Z/nZ vers une loi de proba-
bilité sur U,. Comme U,, C C, on peut sans difficulté définir 1'espérance selon les méthodes usuelles :

n—1
E(X) = Z e?t/M PIX =%, (k)] € C
k=0

(et si X suit la loi uniforme sur Z/nZ, cette espérance est nulle).
La variance mérite une attention plus soutenue : il faut veiller & ce qu’elle soit nulle seulement
pour une variable aléatoire presque stirement constante! On pourra donc poser

2
V(X) =E[|[X—EX)|"] € R+
et par linéarité de I'espérance, la relation de Koenig-Huyghens devient alors

V(X) = E[IX?] — | E(X)|*.



