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Espaces euclidiens (deuxième partie)

1. ✍ Un espace euclidien est un espace vectoriel réel de dimension
finie muni d’un produit scalaire.

2. Dans la suite de ce chapitre, sauf indication contraire,
(
E, ( · | · )

)
désigne toujours un espace euclidien.

3. Si l’endomorphisme u ∈ L(E) et les vecteurs x et y de E
sont représentés dans une base orthonormée de E par la matrice A
et par les colonnes X et Y, alors

X⊤.A.Y =
〈

x
∣
∣ u(y)

〉
X⊤.X = ‖x‖2.

4. Quelle que soit la matrice A = (ai,j)16i,j6n, quelles que
soient les colonnes X = (xi)16i6n et Y = (yi)16i6n,

X⊤.A.Y =
n

∑
i=1

n

∑
j=1

xiai,jyj.

Si la matrice A est diagonale, alors

X⊤.A.X =
n

∑
i=1

ai,ix
2
i .

5. Rappels sur la réduction des endomorphismes
Soit u ∈ L(E).
5.1 Si F et G sont deux sous-espaces vectoriels stables par u,
alors F + G et F ∩ G sont stables par u.
5.2 Si le sous-espace F est stable par l’endomorphisme u,
alors son orthogonal F⊥ est stable par l’adjoint u∗.
5.3 Si u est inversible, alors u−1 est un polynôme en u et u est
un polynôme en u−1 :

u−1 ∈ K[u], u ∈ K[u−1].

5.4 Si P est un polynôme annulateur de u, irréductible et uni-
taire, alors P est le polynôme minimal de u.
5.5 Si le produit PQ est un polynôme annulateur de u et si
P(u) est injectif, alors

∀ x ∈ E, (PQ)(u)(x) = 0E = P(u)
(
Q(u)(x)

)

et Q est un polynôme annulateur de u.
5.6 Si P est un diviseur non constant du polynôme minimal
de u, alors le sous-espace Ker P(u) contient un vecteur x0 6= 0E.
5.7 L’endomorphisme u n’a pas de vecteur propre dans le
sous-espace vectoriel

F =
( ⊕

λ∈Sp(u)

Ker(u − λ IE)
)⊥

.

Par suite, si F est stable par u, alors le spectre de l’endomor-
phisme uF induit par restriction de u à F est vide.

Entraînement

6. Si F et G sont deux sous-espaces orthogonaux de E, alors

E = F
⊥
⊕ G

⊥
⊕ (F⊥ ∩ G⊥).

On peut exprimer les trois projections relatives à cette décompo-
sition en somme directe en fonction d’une base orthonormée de
F et d’une base orthonormée de G.
7. Soit (yk)16k6r, une famille de vecteurs de E. Les formes
linéaires ϕk = [x 7→ ( yk | x ) ] sont liées dans l’espace dual
E∗ = L(E,R) si, et seulement si, la famille (yk)16k6r est liée et
rg(ϕk)16k6r = rg(yk)16k6r.

8. Soit (ε0, . . . , εd), une base de E = Rd[X] qui est orthonor-
mée pour le produit scalaire ϕ. On considère une suite (Pn)n∈N
de vecteurs de E telles que ‖Pn‖ tende vers 0.

1.
∀ 0 6 k 6 d, ( εk | Pn ) −−−−→

n→+∞
0

2.

∀ x ∈ R, Pn(x) =
d

∑
k=0

( εk | Pn ) εk(x) −−−−→
n→+∞

0.

9. Soit (E, 〈 · | · 〉 ), un espace préhilbertien réel.
9.1 Quel que soit le sous-espace F, le sous-espace F⊥ est
fermé.
9.2 Si E = F ⊕ F⊥, alors F est fermé.

I

Réduction des isométries

I.1 Rappels

10. Un endomorphisme u de E est une isométrie (ou un au-
tomorphisme orthogonal) lorsque

∀ x ∈ E,
∥
∥u(x)

∥
∥ = ‖x‖.

10.1 ➙ Un endomorphisme u de E est une isométrie si, et seulement si,
il conserve le produit scalaire :

∀ (x, y) ∈ E × E,
(

u(x)
∣
∣ u(y)

)
= ( x | y ) .

10.2 Une matrice M ∈ Mn(R) est orthogonale si, et seulement
si,

M⊤.M = In

c’est-à-dire si
M.M⊤ = In.

10.3 ➙ Soit u ∈ L(E), représenté par la matrice M dans une base
orthonormée de E. L’endomorphisme u est une isométrie si, et seulement
si, la matrice M est orthogonale.
10.4 ➙ Caractérisations des matrices orthogonales
Soit M ∈ Mn(R). Les propositions suivantes sont équivalentes.

1. La matrice M est orthogonale.
2. La matrice M est inversible et M−1 = M⊤.
3. La matrice M représente une isométrie dans une base orthonor-

mée de E.
4. La matrice M est la matrice de passage d’une base orthonormée

à une base orthonormée.
5. Les colonnes de la matrice M forment une base de Mn,1(R) qui

est orthonormée pour le produit scalaire canonique.
6. Les lignes de la matrice M forment une base de M1,n(R) qui

est orthonormée pour le produit scalaire canonique.
10.5 Le déterminant d’une matrice orthogonale (resp. d’une
isométrie) est égal à ±1. Les rotations sont les isométries dont le
déterminant est égal à 1.
11. ➙ Stabilité de l’orthogonal [7.106.3]
Si u est une isométrie de E et si V est un sous-espace stable par u, alors

l’orthogonal V⊥ est stable par u.

12. Spectre d’une isométrie
12.1 ➙ Si λ ∈ R est une valeur propre de u ∈ O(E), alors λ = ±1.
12.2 Considérée comme une matrice réelle, une matrice ortho-
gonale ne peut admettre comme valeurs propres que 1 et −1.
12.3 Les valeurs propres d’une matrice orthogonale considé-
rée comme une matrice complexe sont des nombres complexes de
module 1.



ESPACES EUCLIDIENS (DEUXIÈME PARTIE)

13. Soit u ∈ O(E).
On considère les sous-espaces vectoriels

V+ = Ker(u − IE) et V− = Ker(u + IE).

13.1 Les sous-espaces vectoriels V+ et V− sont orthogonaux.
13.2 Les sous-espaces

V+
⊥
⊕ V− et F =

(
V+

⊥
⊕ V−

)⊥

sont stables par u.
13.3 Si x est un vecteur non nul de F, alors le sous-espace
Vect(x, u(x)) est un plan.
13.4 Si dim E = 3, alors dim F 6 2.

I.2 Isométries en dimension n > 3

14. Suite de [13] – Le sous-espace F = (V+ ⊕ V−)⊥ est stable
par u. On suppose qu’il existe un entier k tel que 2k 6 dim F et
des plans P1, . . ., Pk contenus dans F, deux à deux orthogonaux
et stables par u.
14.1 Si G est un sous-espace vectoriel de F, alors

F = G
⊥
⊕ (V+

⊥
⊕ V−

⊥
⊕ G)⊥.

14.2 Si dim F > 2k, alors le sous-espace vectoriel

Fk+1 =
[
(V+

⊥
⊕ V−)

⊥
⊕ (P1

⊥
⊕ P2

⊥
⊕ · · ·

⊥
⊕ Pk)

]⊥

est stable par u [7.106.3] et contenu dans F, donc dim F > 2k + 2.
14.3 Dans ce cas, l’endomorphisme uk+1 induit par restriction
de u à Fk+1 est une isométrie qui n’a pas de valeurs propres
réelles et son polynôme minimal admet un diviseur µk+1 irré-
ductible de degré 2.
14.4 Si xk+1 est un vecteur non nul de Ker

(
µk+1(uk+1)

)
, alors

Pk+1 = Vect(xk+1, u(xk+1))

est un plan stable par u, contenu dans F et orthogonal aux plans
P1, . . ., Pk.
15. ➙ Soit u ∈ O(E). Il existe des plans vectoriels P1, . . ., Pd, stables
par u et deux à deux orthogonaux tels que

E = Ker(u − IE)
⊥
⊕ Ker(u + IE)

⊥
⊕

( ⊥⊕

16k6d

Pk

)

.

16. ➙ Traduction matricielle
En notant p = dim V+ et q = dim V−, il existe une base orthonormée
B de E et des réels 0 < ω1, . . . , ωd < π tels que

MatB(u) = Diag
(

Ip,−Iq, R(ω1), . . . , R(ωd)
)
.

L’entier q est pair si, et seulement si, u est une rotation.

Classifications des isométries vectorielles de l’espace

17. Selon la dimension du sous-espace fixe
Si dim E = 3, on peut classer les isométries de l’espace en fonc-
tion de la dimension du sous-espace fixe V+ = Ker(u − IE).
17.1 Si dim V+ = 3, alors u = IE.
17.2 Si dim V+ = 2, alors u est une réflexion représentée dans
une base orthonormée convenable par la matrice





1 0 0
0 1 0
0 0 −1



 .

17.3 Si dim V+ = 1, alors u est une rotation et il existe un angle
0 < θ 6 π tel que la matrice de u soit

Rx(θ) =

(
1 0
0 R(θ)

)

dans une base orthonormée convenable.
17.4 Si dim V+ = 0, alors il existe 0 < θ 6 π tel que, dans une
base orthonormée convenable, la matrice de u soit

(
−1 0
0 R(θ)

)

=

(
−1 0
0 I2

)(
1 0
0 R(θ)

)

=

(
1 0
0 R(θ)

)(
−1 0
0 I2

)

Cette isométrie est la composée d’une rotation et d’une réflexion
qui commutent.
18. Isométries diagonalisables
En dimension 3, les isométries diagonalisables sont les suivantes.

— L’identité IE.
— Les réflexions.
— Les rotations d’angle θ = π, c’est-à-dire les demi-tours d’axe

V+, appelés aussi symétries axiales.
— La symétrie centrale − IE.

19. Selon le déterminant
Si dim E = 3, on distingue :

— Les rotations (det u = 1) ;
— Les réflexions et les composées d’une rotation et d’une ré-

flexion (det u = −1).

I.3 Méthodes pratiques

Matrice d’une rotation en dimension 3

20. Soient θ, un réel ; n, un vecteur unitaire d’un espace eucli-
dien orienté E de dimension 3 et u ∈ SO(E), la rotation d’angle θ
autour de la droite vectorielle dirigée et orientée par n.
20.1 On a : u(n) = n et

∀ x ∈ (R · n)⊥, u(x) = cos θ · x + sin θ · (n ∧ x)

n ∧ x

x

θ

u(x)

n

20.2 Plus généralement,

∀ x ∈ E, u(x) = ( n | x ) · n + cos θ · (x − ( n | x ) · n)

+ sin θ · (n ∧ x)

ce qui permet d’écrire la matrice de u dans une base orthonormée
directe quelconque.

Analyse d’une rotation en dimension 3

21. Soit u, une isométrie deR3 représentée dans une base or-
thonormée directe par une matrice orthogonale A ∈ O3(R) :

A⊤.A = I3.

16.2



I RÉDUCTION DES ISOMÉTRIES

21.1 On vérifie qu’il s’agit d’une matrice de rotation en calcu-
lant une matrice colonne N ∈ M3,1(R) telle que

AN = N et N⊤.N = 1.

Cette colonne représente un vecteur unitaire n qui dirige l’axe de
la rotation u.
Il reste à déterminer le réel θ (unique modulo 2π) tel que u soit la
rotation d’angle θ autour de la droite orientée par n.
21.2 On choisit une matrice colonne V ∈ M3,1(R) qui repré-
sente un vecteur unitaire v orthogonal à n :

N⊤.V = 0, V⊤.V = 1.

21.3 Avec w = n ∧ v, la famille B0 = (n, v, w) est une base
orthonormée directe. La matrice de u relative à cette base est





1 0 0
0 cos θ − sin θ
0 sin θ cos θ



 .

Par conséquent, tr(A) = 1 + 2 cos θ et

det(N, V, AV) = detB0

(
n, v, u(v)

)
=

∣
∣
∣
∣
∣
∣

1 0 0
0 1 cos θ
0 0 sin θ

∣
∣
∣
∣
∣
∣

= sin θ.

21.4 Une autre méthode d’étude est présentée au [120].

Entraînement

22. Questions pour réfléchir
1. Une matrice M ∈ Mn(R) telle que det M = ±1 est-elle

une matrice orthogonale ?
2.a La matrice In est une matrice de rotation.
2.b La matrice −In est-elle une matrice de rotation ?
3. Si det M = 1, la matrice M est-elle une matrice de rota-

tion ?
4. Si dim E = 3, quelles symétries orthogonales sont aussi des

rotations ?
5. Une réflexion peut-elle être une rotation ?
6. Matrice d’une symétrie orthogonale relative à une base or-

thonormée quelconque ; à une base orthonormée adaptée aux sous-
espaces propres.

7. Si une isométrie u ∈ O(E) est diagonalisable, alors u est
une symétrie.

8. Expliciter une matrice orthogonale P telle que

Diag(1, 1,−1) = P⊤. Diag(−1, 1, 1).P.

Est-il possible de choisir P de telle sorte que det P = 1 ?
9. Suite de [17] –
9.a Les matrices Rx(θ) et Rx(−θ) sont-elles semblables ?
9.b Étudier l’existence d’une matrice P ∈ SOn(R) telle que

Rx(−θ) = P⊤.Rx(θ).P.

Interpréter géométriquement.
10. Suite de [20] – Si u 6= IE, alors il n’y a que deux couples

(n, θ) ∈ E × [−π, π]

possibles et ils sont opposés. Interpréter géométriquement.
11. Suite de [21] – Si A ∈ O3(R) et si l’équation AN = N

n’a que le vecteur N = 0 pour solution, que dire de la matrice A ?

23. Soit u, un endomorphisme de E tel que

u ◦ u∗ ◦ u = u.

Le sous-espace F = (Ker u)⊥ est stable par u et l’endomorphisme
induit par restriction de u à F est une isométrie.

24. Matrices de rotation
L’espace R3 est muni de sa structure euclidienne orientée cano-
nique. Les matrices suivantes représentent, dans la base cano-
nique, la rotation d’angle θ autour de la droite vectorielle orientée
par le vecteur n. →[20], [21]
24.1 Pour θ = π/3 et n = (1,−1, 1) :

1
3





2 −2 −1
1 2 −2
2 1 2





24.2 Pour θ = π/3 et n = (1, 1, 0) :

1
4





3 1
√

6
1 3 −

√
6

−
√

6
√

6 2





24.3 Pour eiθ = 3+4i
5 et n = (0,−1, 2) :

1
25





15 −8
√

5 −4
√

5
8
√

5 17 −4
4
√

5 −4 23





24.4 Pour eiθ = 4+3i
5 et n = (

√
2, 0, 1) :

1
15





14 −3
√

3
√

2
3
√

3 12 −3
√

6√
2 3

√
6 13





24.5 Pour θ = π/6 et n = (1, 0,−1) :

1
4





2 +
√

3
√

2 −2 +
√

3
−
√

2 2
√

3 −
√

2
−2 +

√
3

√
2 2 +

√
3





24.6 Pour θ = 2π/3 et n = (1, 0, 2) :

1
10





−2 −2
√

15 6
2
√

15 −5 −
√

15
6

√
15 7





24.7 Pour θ = π/2 et n = (1, 1, 1) :

1
3





1 1 −
√

3 1 +
√

3
1 +

√
3 1 1 −

√
3

1 −
√

3 1 +
√

3 1





24.8 Pour eiθ = 1+2i√
5

et n = (0, 1, 1) :

1
10





2
√

5 −2
√

10 2
√

10
2
√

10 5 +
√

5 5 −
√

5
−2

√
10 5 −

√
5 5 +

√
5





24.9 Pour θ = 3π/4 et n = (−2, 0, 1) :

1
10





8 −
√

2 −
√

10 −4 − 2
√

2√
10 −5

√
2 2

√
10

−4 − 2
√

2 −2
√

10 2 − 4
√

2





25. Soit θ ∈ R∗. La matrice

M(θ) =

(
1 + θ cos 2θ −θ sin 2θ
−θ sin 2θ 1 − θ cos 2θ

)

est-elle diagonalisable?

16.3
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26. Soient u ∈ O(E) et v = u − IE.
26.1 Comme Ker v = (Im v)⊥, pour tout vecteur x ∈ E, il
existe deux vecteurs y ∈ Ker v et z ∈ E tels que

x = y + v(z) et ‖x‖2 = ‖y‖2 + ‖v(z)‖2.

Le couple (y, z) est-il unique? Que valent u(y) et ‖u(z)‖ ?
26.2 La suite de terme général

xn =
1
n

n

∑
k=1

uk(x)

converge vers le projeté orthogonal de x sur Ker v.
27. Soient A et B, deux matrices de Mp,q(R) telles que

A⊤.A = B⊤.B.

On note f (resp. g), l’application linéaire de Rq dans Rp canoni-
quement associée à la matrice A (resp. à la matrice B). Les espaces
R

q etRp sont munis de leurs structures euclidiennes canoniques
respectives.
27.1 Quels que soient les vecteurs x et y deRq,

〈
f (x)

∣
∣ f (y)

〉
=

〈
g(x)

∣
∣ g(y)

〉
.

27.2 Les sous-espaces vectoriels Ker f et Ker g sont égaux.
27.3 Si

(
f (xk)

)

16k6r
est une base orthonormée de Im f , alors

(xk)16k6r est une famille libre deRq et
(

g(xk)
)

16k6r
est une base

orthonormée de Im g.
27.4 Il existe une matrice orthogonale U ∈ Op(R) telle que
A = UB.

II

Théorème spectral

28. Rappels
On considère un espace euclidien E dont le produit scalaire est
noté ( · | · ) .
28.1 L’adjoint d’un endomorphisme u de E est l’unique endo-
morphisme u∗ de E tel que

∀ (x, y) ∈ E × E,
(

x
∣
∣ u(y)

)
=

(
u∗(x)

∣
∣ y

)
.

28.2 Un endomorphisme u de E est dit auto-adjoint (ou sy-
métrique) lorsqu’il est égal à son adjoint u∗, c’est-à-dire :

∀ (x, y) ∈ E × E,
(

u(x)
∣
∣ y

)
=

(
x
∣
∣ u(y)

)
.

28.3 En général, un projecteur p possède deux sous-espaces
propres : son noyau

Ker p = Ker(p − 0 · IE) = Im(IE −p)

et son image

Im p = Ker(IE −p) = Ker(p − 1 · IE).

Ces sous-espaces vectoriels sont supplémentaires dans E :

E = Ker p ⊕ Im p

et la décomposition de chaque vecteur est connue :

∀ x ∈ E, x =
[
x − p(x)

]
+ p(x).

28.4 Par définition, un projecteur p ∈ L(E) est une projection
orthogonale si, et seulement si, les deux sous-espaces vectoriels

Ker p et Im p = Ker(p − IE)

sont orthogonaux. On connaît alors une décomposition de E en
somme directe orthogonale :

E = Ker p
⊥
⊕ Ker(p − IE).

Propriétés des endomorphismes auto-adjoints

29. ➙ Un projecteur p ∈ L(E) est une projection orthogonale si, et
seulement si, l’endomorphisme p est auto-adjoint.

30. ➙ S’il existe une base orthonormée de vecteurs propres pour u,
alors u est un endomorphisme auto-adjoint.

31. Sous-espaces stables
31.1 ➙ L’endomorphisme induit par restriction de u ∈ S(E) à un
sous-espace F stable par u est un endomorphisme auto-adjoint de F.
31.2 Si u(x) et y sont orthogonaux, alors x et u(y) sont ortho-
gonaux.
31.3 ➙ Si u est un endomorphisme auto-adjoint de E, alors

E = Ker u
⊥
⊕ Im u.

31.4 ➙ Les sous-espaces propres d’un endomorphisme auto-adjoint
sont deux à deux orthogonaux.

31.5 ➙ Si F est un sous-espace stable par u ∈ S(E), alors F⊥ est stable
par u.

32. Polynôme minimal
32.1 On considère une matrice M ∈ Sn(R) comme une ma-
trice de Mn(C) et un vecteur propre X ∈ Mn,1(C) de M associé
à la valeur propre λ ∈ C.

λ.X⊤.X = (MX)
⊤

.X = X
⊤.MX = λX

⊤.X

32.2 ➙ Le polynôme minimal d’un endomorphisme auto-adjoint est
scindé dansR[X]. →[61]
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II THÉORÈME SPECTRAL

Versions géométriques du théorème spectral

33. Soit u ∈ S(E).
33.1 Si V est un sous-espace stable par u de dimension supé-
rieure à 1, alors il contient un vecteur propre de u.
33.2 Si V1, . . ., Vr sont les sous-espaces propres de u, alors le
sous-espace

F =
[

V1
⊥
⊕ V2

⊥
⊕ · · ·

⊥
⊕ Vr

]⊥

est stable par u mais ne contient aucun vecteur propre de u.
33.3 ➙ Tout endomorphisme auto-adjoint u d’un espace euclidien E est
diagonalisable et

E =
⊥⊕

λ∈Sp(u)

Ker(u − λ IE).

33.4 Décomposition spectrale
Pour tout endomorphisme auto-adjoint u,

u = ∑
λ∈Sp(u)

λ · pλ

où pλ est la projection orthogonale sur Ker(u−λ IE), sous-espace
propre de u associé à λ. →[38.3]

Versions vectorielles du théorème spectral

34. Rappels
Si un endomorphisme u de E est auto-adjoint, alors la matrice
MatB(u) est symétrique, quelle que soit la base orthonormée B

de E.
Réciproquement, s’il existe au moins une base orthonormée B de
E telle que la matrice MatB(u) soit symétrique, alors l’endomor-
phisme u est auto-adjoint.
35. ➙ Soit u ∈ S(E). Il existe une base orthonormée de E constituée
de vecteurs propres de u.

36. Soient u ∈ S(E) et B = (εk)16k6n, une base orthonormée
de vecteurs propres de u. On suppose que les valeurs propres de
u sont rangées par ordre croissant :

λ1 6 λ2 6 · · · 6 λn.

36.1 Pour tout x ∈ E,

x =
n

∑
k=1

( εk | x ) · εk et u(x) =
n

∑
k=1

λk ( εk | x ) · εk.

36.2 Comme

‖x‖2 =
n

∑
k=1

( εk | x ) 2,

alors
λ1 ‖x‖2

6
(

x
∣
∣ u(x)

)
6 λn ‖x‖2.

37. Soit u ∈ S(E).
37.1 ➙ Pour tout x ∈ E, il existe une famille orthogonale (xλ)λ∈Sp(u)

de vecteurs de E telle que

x = ∑
λ∈Sp(u)

xλ

et que
∀λ ∈ Sp(u), xλ ∈ Ker(u − λ · IE).

37.2 En particulier,

‖x‖2 = ∑
λ∈Sp(u)

‖xλ‖2 et u(x) = ∑
λ∈Sp(u)

λ · xλ.

37.3 On en déduit que
(

x
∣
∣ u(x)

)
= ∑

λ∈Sp(u)

λ ‖xλ‖2

et que
∥
∥u(x)

∥
∥2

= ∑
λ∈Sp(u)

λ2‖xλ‖2
6

(

max
λ∈Sp(u)

|λ|
)2

‖x‖2.

Versions matricielles du théorème spectral

38.1 ➙ Pour tout endomorphisme u ∈ S(E), il existe une base ortho-
normée B0 de E telle que MatB0 (u) soit diagonale.
38.2 ➙ Pour toute matrice symétrique réelle A, il existe une matrice

orthogonale P ∈ On(R) telle que P⊤.A.P soit diagonale.
38.3 Soient u ∈ S(E) et B0 = (ε1, . . . , εn), une base orthonor-
mée de E constituée de vecteurs propres de u. Pour toute base
orthonormée B,

MatB(u) =
n

∑
k=1

λkXk.X⊤
k

où λk est la valeur propre de u associée à εk et Xk = MatB(εk).
38.4 Soient u ∈ S(E) et B1 = (e1, . . . , en), une base orthogo-
nale de E constituée de vecteurs propres de u. Pour toute base
orthonormée B,

MatB(u) =
n

∑
k=1

λk

Yk.Y⊤
k

Y⊤
k .Yk

où λk est la valeur propre de u associée à ek et Yk = MatB(ek).

Entraînement

39. Questions pour réfléchir
1. Si M est une matrice symétrique et s’il existe une matrice

orthogonale P telle que

P⊤.M.P =

(
A1 B
0 A2

)

,

alors B = 0 et les matrices A1 et A2 sont symétriques. (Par un
calcul direct ou en appliquant [31.5] et [31.1].)

2. Suite de [31.5] – On suppose que dim E = 2 et que x est
un vecteur propre unitaire de u ∈ S(E). Si y est un vecteur unitaire
orthogonal à x, alors (x, y) est une base orthonormée de vecteurs
propres de u.

3. Soient u ∈ S(E), un endomorphisme auto-adjoint et B,
une base de vecteurs propres de u. Cette base est-elle nécessaire-
ment orthonormée ? Est-elle nécessairement orthogonale ?

4. Un endomorphisme u ∈ L(E) est auto-adjoint si, et seule-
ment si,

E =
⊥⊕

λ∈Sp(u)

Ker(u − λ IE).

5. Suite de [37.2] –

min
x∈E
x 6=0

(
u(x)

∣
∣ x

)

‖x‖2 = λ1 max
x∈E
x 6=0

(
u(x)

∣
∣ x

)

‖x‖2 = λr

6. Un endomorphisme u de E est auto-adjoint si, et seule-
ment si, il existe une base orthonormée de E constituée de vecteurs
propres de u.

7. Si A ∈ Sn(R) est semblable à la matrice diagonale ∆,
combien existe-t-il de matrices P ∈ On(R) telles que

P⊤.A.P = ∆ ?

8. La matrice symétrique

A =

(
i 1
1 −i

)

∈ M2(C)

n’est pas diagonalisable. Comparer avec [38.2].
9. Une matrice M ∈ Mn(R) est symétrique si, et seulement

si, il existe des matrices P1, P2, . . ., Pr dans Mn(R) telles que
M ∈ Vect(Pk, 1 6 k 6 r) avec

{
∀ 1 6 k 6 r, P2

k = Pk = P⊤
k

∀ 1 6 j < k 6 n, PjPk = PkPj = 0
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40. Soit A ∈ Mn(R), telle que A.A⊤.A = In. La matrice A
est inversible et comme son inverse est symétrique, elle est elle-
même symétrique et A = In.

41. Soit A ∈ GLn(R) telle que A2 + A⊤ = In.
Comme A = In − (A⊤)2, alors

(A − In)(A2 + A − In) = 0n

et comme 1 n’est pas valeur propre de A, alors la matrice A est
symétrique.
42. Soit A ∈ Mn(R), la matrice dont tous les coefficients sont
nuls, sauf

∀ 1 6 i < n, ai,i+1 = ai+1,i = 1.

La matrice A est diagonalisable et possède n valeurs propres
deux à deux distinctes.
43. Pour toute matrice A ∈ Mn(R), →[66]

Ker A⊤.A = Ker A, Im A⊤.A = (Ker A)⊥,

Ker A.A⊤ = (Im A)⊥, Im A.A⊤ = Im A

et en particulier

rg(A⊤.A) = rg(A.A⊤) = rg(A).

44. Soit E, un espace euclidien. Tout endomorphisme auto-
adjoint v ∈ S(E) est continu : il existe une constante K > 0 telle
que

∀ x ∈ E,
∥
∥v(x)

∥
∥ 6 K ‖x‖.

45. Soient U ∈ Mn,1(R), une colonne non nulle, et α ∈ R∗.
La matrice

A = In + αU.U⊤

est diagonalisable. Préciser ses éléments propres.
46. Codiagonalisation d’endomorphismes auto-adjoints
Soient f et g, deux endomorphismes auto-adjoints.

1. S’il existe une base de E constituée de vecteurs propres à
la fois pour f et pour g, alors f ◦ g = g ◦ f .

2. On suppose que f ◦ g = g ◦ f . Pour tout λ ∈ Sp( f ), on
note gλ, l’endomorphisme induit par restriction de g au sous-
espace

E
f
λ = Ker( f − λ IE).

Tout vecteur propre de gλ est aussi un vecteur propre de f . Il
existe une base orthonormée de E constituée de vecteurs propres
à la fois pour f et pour g.
47. Endomorphismes contractants [37.2]
Soit u ∈ S(E).
47.1

min
‖x‖=1

∥
∥u(x)

∥
∥ = min

λ∈Sp(u)
|λ|, max

‖x‖=1

∥
∥u(x)

∥
∥ = max

λ∈Sp(u)
|λ|

47.2 Pour tout polynôme P ∈ R[X],

∀ x ∈ E,
∥
∥P(u)(x)

∥
∥ 6 max

λ∈Sp(u)

∣
∣P(λ)

∣
∣ ‖x‖.

47.3 Un endomorphisme auto-adjoint u est contractant :

∀ x ∈ E,
∥
∥u(x)

∥
∥ 6 ‖x‖

si, et seulement si, Sp(u) ⊂ [−1, 1]. Il est strictement contractant :

∀ x 6= 0,
∥
∥u(x)

∥
∥ < ‖x‖

si, et seulement si, Sp(u) ⊂ ]−1, 1[.

48. Les espaces Rn et Mn(R) sont munis de leurs struc-
tures euclidiennes canoniques respectives. On considère la ma-
trice Kn ∈ Mn(R) définie par Kn(i, j) = 1 si |i − j| = 1 et
Kn(i, j) = 0 sinon.
48.1 Il existe une base orthonormée (Uk)16k6n de Rn et des
réels (λk)16k6n tels que

∀ 1 6 k 6 n, KnUk = λkUk.

48.2 L’endomorphisme T de Mn(R) défini par

∀ M ∈ Mn(R), T(M) = KnM + MKn + M

est diagonalisable.
48.3 La famille (Vi,j)16i,j6n = (Ui.U⊤

j )16i,j6n est une base or-
thonormée de Mn(R) constituée de vecteurs propres de T.
49. Soit A ∈ Sn(R), une matrice telle que

∀ 1 6 i, j 6 n, ai,j > 0 et ∀ 1 6 i 6 n,
n

∑
j=1

ai,j = 1.

On admet que dim Ker(A − In) = 1 et on note

∀ X ∈ Mn,1(R), ‖X‖ = max
16i6n

|xi|.

1. Déterminer Ker(A − In).
2. Comme

∀ X ∈ Mn,1(R), ‖AX‖ 6 ‖X‖,

toutes les valeurs propres de A appartiennent au segment [−1, 1].
3. La matrice B = In + A est inversible [5.11].
4. La suite de matrices (Ap)p∈N converge vers une matrice

R semblable à E1,1 = Diag(1, 0, . . . , 0).

50. L’espace E = R3 est muni de sa structure euclidienne ca-
nonique. On note f , l’endomorphisme de E canoniquement asso-
cié à la matrice

A =





11 5 −5
5 3 −3
−5 −3 3



 .

50.1 Le sous-espace F = (Ker f )⊥ est stable par f et, avec

u1 = (1, 0, 0) et u2 =
1√
2
· (0, 1,−1),

cet espace admet B = (u1, u2) comme base orthonormée.
50.2 On note g, l’endomorphisme de F induit par restriction
de f . La matrice de g relative à la base B est égale à

(
11 5

√
2

5
√

2 6

)

.

50.3 La matrice A est semblable à Diag(0, 1, 16).
51. Soient u et v, deux vecteurs linéairement indépendants de
R

n. Ils sont représentés par les matrices colonnes U et V dans la
base canonique et on note f , l’endomorphisme de Rn représenté
par la matrice

A = In + U.V⊤ + V.U⊤

dans la base canonique.
51.1 Le réel λ est une valeur propre de f si, et seulement si, il
existe un vecteur x non nul tel que

(λ − 1) · x = ( x | u ) · v + ( x | v ) · u.

51.2 Si n > 3, alors le spectre de f est constitué des réels

1, 1 + ( u | v ) − ‖u‖ ‖v‖, 1 + ( u | v ) + ‖u‖ ‖v‖

et la matrice A est diagonalisable.
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52. Soit A = (ai,j)16i,j6n ∈ Mn(R), la matrice de coefficients

∀ 1 6 i, j 6 n, ai,j = i + j.

On note U et V, les matrices colonnes qui représentent les vec-
teurs

u = (1, 1, . . . , 1) et v = (1, 2, . . . , n)

dans la base canonique de Rn.
52.1 Comme A = V.U⊤ + U.V⊤, la matrice A est diagonali-
sable, l’image de A est engendrée par U et V et le noyau de A est
l’orthogonal de Im A.
52.2 Si X est un vecteur propre de A associé à une valeur
propre non nulle, alors il existe deux réels a et b tels que

X = aU + bV.

52.3 Les valeurs propres non nulles de A sont

( u | v ) ± ‖u‖ ‖v‖
et les sous-espaces propres correspondant sont les droites diri-
gées par les vecteurs ‖v‖ U ± ‖u‖V.
53. Soit u ∈ S(E). Pour tout entier impair p ∈ N, il existe un,
et un seul, endomorphisme v ∈ S(E) tel que vp = u.
54. Soit A ∈ Mn(R), une matrice nilpotente d’indice p. Si les
matrices A et A⊤ commutent, alors la matrice symétrique A⊤.A
est nilpotente et la matrice A est nulle [43].
55. L’espace E = Rn[X] étant muni du produit scalaire défini
par

∀ P, Q ∈ E, 〈 P | Q 〉 =
∫ 1

−1
P(t)Q(t) dt,

on considère l’application f définie par

∀ P ∈ E, f (P) =
1
2
(X2 − 1)P′′ + XP′ − P.

55.1 L’application f est un endomorphisme auto-adjoint de E
et sa matrice relative à la base canonique de E est triangulaire
supérieure. Pour tout entier 0 6 k 6 n, il existe un vecteur propre
Pk de f associé à la valeur propre

λk =
k2 + k − 2

2

et deg Pk = k.
55.2 On note (Tk)06k6n, la base orthonormée de E déduite de
la base canonique par l’algorithme de Gram-Schmidt. Alors, pour
tout entier 0 6 k 6 n,

f (Tk) =
k

∑
i=0

〈 f (Tk) | Ti 〉 · Ti = 〈 Tk | f (Tk) 〉 · Tk

et les polynômes Pk et Tk sont proportionnels.
56. Pour tout endomorphisme u d’un espace euclidien E,
l’application u∗ ◦ u est un endomorphisme auto-adjoint et il
existe une base orthonormée (ek)16k6n de E telle que

∀ i 6= j,
(

u(ei)
∣
∣ u(ej)

)
= 0.

57. Soient A ∈ Sn(R) et W, l’ensemble des vecteurs propres
unitaires de A (l’espace Mn,1(R) étant muni de sa norme eucli-
dienne canonique). On pose

∀ X ∈ W, FA(X) = min
u∈R

tr
[
(A − u · X.X⊤)2].

La fonction FA atteint un minimum m(A) sur W et

m(A) = tr(A2)− ρ(A2)

où ρ(A2) est le rayon spectral de A2, défini par

∀ M ∈ Mn(R), ρ(M) = max{|λ|, λ ∈ Sp(M)}.

58. Pour tout t ∈ R, on pose

A(t) =





1 1 1
1 1 0
1 0 t



 .

58.1 Pour tout t ∈ R, la matrice A(t) est diagonalisable et ses
valeurs propres vérifient

a(t) < 0 < b(t) < 2 < c(t).

58.2 Lorsque t tend vers +∞,

−1/t < a(t) < 0 < 2 − 2/t < b(t) < 2

donc c(t) = t + O(1).
59. L’espace Rn est muni du produit scalaire canonique. On
considère une matrice symétrique S ∈ Sn(R) et l’application f :
R

n → R définie par

∀ X ∈ Rn, f (X) = X⊤.S.X.

Les valeurs propres de S sont rangées par ordre croissant et
comptées avec multiplicité :

λ1 6 λ2 6 · · · 6 λn.

59.1 Pour tout vecteur unitaire X ∈ Rn,

λ1 6 f (X) 6 λn.

59.2 Quels que soient X et Y dans Rn,

2X⊤ .S.Y = f
(X + Y√

2

)

− f
(X − Y√

2

)

.

59.3 En notant R, l’ensemble des couples (X, Y) de vecteurs
unitaires et orthogonaux deRn,

max
(X,Y)∈R

|X⊤.S.Y| = λn − λ1

2
.

60.
1. Toutes les matrices de Sn(R) sont diagonalisables.
2. Parmi les matrices triangulaires supérieures strictes, seule

la matrice nulle est diagonalisable.
3. Si V est un sous-espace de Mn(R) dont toutes les ma-

trices sont diagonalisables, alors

dim V 6
n(n + 1)

2
.

61. Polynôme minimal de u ∈ S(E)
Le polynôme minimal d’un endomorphisme auto-adjoint est
scindé dans R[X]. On peut démontrer ce fait sans recourir à la
notion de spectre complexe. →[32]
61.1 Soit f ∈ S(V) où dim V = 2.

1. Le polynôme caractéristique C f de f ∈ S(V) est de la
forme (X − a)(X − b)− c2 et est scindé dans R[X].

2. Le polynôme C f admet une racine double si, et seulement
si, f est une homothétie.
61.2 Soit P, un diviseur irréductible de degré 2 du polynôme
minimal de u ∈ S(E).

3. L’endomorphisme P(u) n’est pas injectif et, quel que soit
le vecteur x0 ∈ Ker P(u), ce n’est pas un vecteur propre de u.

4. Si x0 est un vecteur non nul de Ker P(u), alors le sous-
espace vectoriel

V = Vect(x0, u(x0))

est un plan stable par u.
5. Le polynôme minimal de l’endomorphisme uV induit par

restriction de u à V est le polynôme P.
6. Conclure.
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III

Endomorphismes auto-adjoints positifs

62.1 ✍ Une matrice symétrique A ∈ Sn(R) est positive lorsque

∀ X ∈ Mn,1(R), X⊤.A.X > 0.

L’ensemble des matrices symétriques positives est noté S+
n (R).

62.2 ✍ Une matrice symétrique A ∈ Sn(R) est dite définie posi-
tive lorsque

∀ X ∈ Mn,1(R) \ {0}, X⊤.A.X > 0.

L’ensemble de ces matrices est noté S++
n (R).

63.1 ✍ Un endomorphisme auto-adjoint u ∈ S(E) est positif lorsque

∀ x ∈ E,
(

x
∣
∣ u(x)

)
> 0.

L’ensemble des endomorphismes auto-adjoints positifs de l’espace E est
noté S+(E).
63.2 ✍ Un endomorphisme auto-adjoint u ∈ L(E) est défini posi-
tif lorsque

∀ x ∈ E \ {0E},
(

x
∣
∣ u(x)

)
> 0.

L’ensemble des endomorphismes auto-adjoints définis positifs de E est
noté S++(E).

64. Les définitions matricielles [62] et vectorielles [63] sont
analogues et on peut préciser cette analogie. →[7.76]
64.1 Soient u ∈ S(E) et B, une base orthonormée quel-
conque de E. Si u est positif (resp. défini positif), alors sa matrice
MatB(u) est symétrique et positive (resp. définie positive).
64.2 Soit u ∈ S(E). S’il existe une base orthonormée de E telle
que la matrice MatB(u) soit symétrique et positive (resp. défi-
nie positive), alors u est un endomorphisme auto-adjoint positif
(resp. défini positif).
65. Exemples et contre-exemples
65.1 IE ∈ S++(E)
65.2 Un projecteur orthogonal est un endomorphisme auto-
adjoint [29] positif, mais n’est pas défini positif en général.
65.3 Une symétrie orthogonale est un endomorphisme auto-
adjoint qui n’est pas positif en général.

66. Pour toute matrice A ∈ Mn(R), les matrices B = A⊤.A
et C = A.A⊤ sont des matrices symétriques positives : →[71]

∀ X ∈ Mn,1(R),

{

X⊤.B.X = ‖AX‖2

X⊤.C.X = ‖A⊤.X‖2
.

Les matrices A⊤.A et A.A⊤ sont définies positives si, et seule-
ment si, la matrice A est inversible.
67. Caractérisations spectrales
On note Σ1 = [‖x‖ = 1], la sphère unité de E et on considère un
endomorphisme u ∈ S(E), dont les valeurs propres sont rangées
par ordre croissant :

λ1 < λ2 < · · · < λr.

67.1 Suite de [37.2] –

λ1 = min
x∈Σ1

(
x
∣
∣ u(x)

)
, λr = max

x∈Σ1

(
x
∣
∣ u(x)

)

67.2 Variante [36]
Si A ∈ Sn(R), alors il existe une matrice P ∈ On(R) telle que

P⊤.A.P = Diag(α1, . . . , αn).

En notant P⊤.X = (yi)16i6n, on obtient

X⊤ .A.X =
n

∑
k=1

αky2
k et







min
X⊤.X=1

X⊤ .A.X = min
16k6n

αk,

max
X⊤.X=1

X⊤ .A.X = max
16k6n

αk.

67.3 ➙ Un endomorphisme auto-adjoint u ∈ S(E) est :
1. positif si, et seulement si, ses valeurs propres sont positives ;
2. défini positif si, et seulement si, ses valeurs propres sont stric-

tement positives.
67.4 ➙ Un endomorphisme auto-adjoint est défini positif si, et seule-
ment si, il est positif et inversible.
67.5 ➙ Un endomorphisme auto-adjoint est défini positif si, et seule-
ment si, il existe un réel α > 0 tel que

∀ x ∈ E,
(

x
∣
∣ u(x)

)
> α‖x‖2.

Caractérisation des produits scalaires

68. On considère un espace euclidien E : sur cet espace est dé-
fini un produit scalaire de référence : ( · | · ) et une norme, notée
‖·‖, est associée à ce produit scalaire.
Nous allons nous intéresser aux autres produits scalaires définis
sur E.
69. Représentation matricielle d’un produit scalaire
Soit ϕ, un produit scalaire quelconque sur E et B = (e1, . . . , en),
une base de E.
69.1 La matrice de Gram relative à la base B est la matrice Γ
définie par [7.8]

Γ =
(

ϕ(ei, ej)
)

16i,j6n
.

69.2 Quels que soient les vecteurs x et y de E, respectivement
représentés par les colonnes X et Y dans la base B,

ϕ(x, y) = X⊤.Γ.Y.

69.3 La matrice de Gram Γ d’un produit scalaire est symé-
trique et définie positive.

∀ x 6= 0E, X⊤.Γ.X = ϕ(x, x) > 0.

69.4 Soit Q ∈ GLn(R), la matrice de passage de la base B à
une base B′. La matrice Γ′ = MatB′ (ϕ) s’exprime en fonction de
la matrice Γ = MatB(ϕ) par la relation suivante :

Γ′ = Q⊤.Γ.Q.

En particulier, si B′ est une base orthonormée pour ϕ, alors

Q⊤.Γ.Q = In, c’est-à-dire Γ = P⊤.P

où P = Q−1 = Mat(B′ → B).
70. Produit scalaire associé à une matrice A ∈ S++

n (R)
Soit A ∈ S++

n (R), une matrice symétrique définie positive.
70.1 L’application

ψA =
[

(X, Y) 7→ X⊤ .A.Y
]

est un produit scalaire sur Mn,1(R).
70.2 Pour toute base B de E, il existe un produit scalaire ϕ sur
E dont la matrice de Gram relative à B soit la matrice A.
71. Factorisation d’une matrice A ∈ S+

n (R)
Soit A ∈ S+

n (R).
71.1 Il existe une matrice orthogonale Q et une matrice diago-
nale ∆ ∈ Mn(R) telles que

A = Q⊤.∆2.Q

et une matrice P telle que

A = P⊤.P.

La matrice P est inversible si, et seulement si, la matrice A est
définie positive. →[66]
71.2 Si A ∈ S++

n (R), alors l’algorithme de Gram-Schmidt ap-
pliqué au produit scalaire ψA [70.1] prouve l’existence d’une ma-
trice triangulaire inversible P telle que A = P⊤.P.
71.3 Une application ϕ : E × E → R est un produit scalaire
si, et seulement si, il existe un automorphisme u de E tel que

∀ (x, y) ∈ E × E, ϕ(x, y) =
(

u(x)
∣
∣ u(y)

)
.
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Entraînement

72. Questions pour réfléchir
1. Si A ∈ Sn(R), alors A2 ∈ S+

n (R).
2. Si A ∈ S+

n (R), alors les coefficients diagonaux de A sont
tous positifs.

3. Un endomorphisme auto-adjoint u est positif si, et seule-
ment si, pour tout x ∈ E, l’angle formé par le couple

(
x, u(x)

)
est

un angle aigu.
4. L’ensemble S+(E) est-il un espace vectoriel ?
5. L’ensemble S+(E) est une partie convexe de L(E) et un

cône positif :

∀ (λ, u) ∈ R+ × S+(E), λ · u ∈ S+(E).

6. Un endomorphisme auto-adjoint défini positif est positif et
inversible.

7. On suppose connue une décomposition de E en somme di-
recte orthogonale :

E =
⊥⊕

16k6r

Fk.

On note p1, . . ., pr, les projections associées à cette décomposition
de E.

7.a Les pk, 1 6 k 6 r, sont des projecteurs orthogonaux tels
que

∀ 1 6 k < ℓ 6 n, pk ◦ pℓ = pℓ ◦ pk = 0.
7.b Tout endomorphisme u ∈ Vect(pk, 1 6 k 6 r) est auto-

adjoint. Condition pour que u soit positif ? défini positif ?

73. Soient A et B, deux matrices appartenant à S+
n (R).

1. La matrice A + B est symétrique et positive.
2. Si A ∈ S++

n (R), alors A + B ∈ S++
n (R).

74. Si la matrice symétrique

A =

(
B C

C⊤ D

)

est définie positive, alors det B > 0.
75. Soit A ∈ Mn(R). La propriété

∀ X ∈ Mn,1(R), X⊤.A.X > 0

est vraie si, et seulement si, les valeurs propres de la matrice B =

A⊤ + A sont toutes positives.
76. Matrice de Hilbert
La matrice de Gram relative à la base canonique de E = Rn[X]
du produit scalaire défini par

∀ P, Q ∈ E, ( P | Q ) =
∫ 1

0
P(t)Q(t) dt

est la matrice

H =
( 1

i + j + 1

)

06i,j6n
.

Cette matrice H est diagonalisable.
Pour U ∈ Mn+1,1(R), le scalaire U⊤.H.U peut s’exprimer comme
l’intégrale d’une fonction positive, donc les valeurs propres de H
sont strictement positives.
77. Base orthogonale commune [69.4]
Soit ϕ, un produit scalaire sur E. Notons ϕ0 = ( · | · ) , le produit
scalaire de référence.
77.1 Si B0 est une base orthonormée pour ϕ0, alors

MatB0 (ϕ0) = In et MatB0 (ϕ) = Γ ∈ S++
n (R).

77.2 Il existe une matrice orthogonale Q et une matrice diago-
nale ∆ telle que

Q⊤.Γ.Q = ∆.
77.3 La matrice Q est la matrice de passage de la base B0 à
une base B. Comme →[69.4]

MatB(ϕ0) = In et MatB(ϕ) = ∆,
alors la base B est simultanément une base orthonormée pour ϕ0
et une base orthogonale pour ϕ.

78. Soient A ∈ S++
n (R) et B ∈ Sn(R). L’application

ϕ =
[

(X, Y) 7→ X⊤.A.Y
]

est un produit scalaire sur Mn,1(R) et comme l’application
[

X 7→ (A−1B).X
]

est un endomorphisme auto-adjoint de Mn,1(R) pour le produit
scalaire ϕ, la matrice (A−1B) est diagonalisable.
79. Soient A et B, deux matrices symétriques réelles. On sup-
pose que la matrice B est définie positive.
79.1 L’application ϕB définie par

∀ X, Y ∈ Mn,1(R), ϕB(X, Y) = X⊤.B.Y

est un produit scalaire sur Mn,1(R).
79.2 Il existe une matrice diagonale D, dont les coefficients
diagonaux sont strictement positifs, et une matrice orthogonale
P telles que

B = P.D.P⊤.

Il existe une matrice symétrique et inversible L telle que B = L2.
79.3 Il existe une matrice symétrique réelle C telle que

AX = λBX ⇐⇒ C(LX) = λ(LX)

pour toute matrice colonne X et tout réel λ.
79.4 Il existe une base (ek)16k6n de Mn,1(R), orthonormée
pour le produit scalaire ϕB, et des scalaires réels λ1, . . ., λn tels
que

∀ 1 6 i 6 n, Aei = λi Bei.

80. Décomposition spectrale d’une matrice symétrique
Soit (λk)16k6r, le spectre d’une matrice A de Sn(R).

1. Il existe des matrices (Pk)16k6r telles que

Q(A) =
r

∑
k=1

Q(λk)P
⊤
k .Pk

pour tout polynôme Q ∈ R[X]. En particulier, la matrice A est
une combinaison linéaire de matrices symétriques positives :

A =
r

∑
k=1

λkP⊤
k .Pk.

2. Pour tout X ∈ Mn,1(R),

r

∑
k=1

‖PkX‖2 = ‖X‖2.

81.1 Pour toute matrice A ∈ S+
n (R),

(det A)1/n
6

1
n

tr(A).

81.2 Pour toute matrice M ∈ Mn(R),

|det M|2 6

( tr(M⊤.M)

n

)n

82. Soit A ∈ Mn(R), une matrice antisymétrique.
1. Quelle que soit la matrice colonne X,

X⊤.A.X = 0.

2. Si B ∈ S++
n (R), alors la matrice A + B est inversible.

83.1 Si A est une matrice antisymétrique réelle, alors exp(A)
est une matrice de rotation.
83.2 Pour A ∈ Sn(R), comparer les spectres et les sous-
espaces propres de A et de exp(A).
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84. Racine carrée d’un endomorphisme auto-adjoint positif
Tout endomorphisme v ∈ S+(E) tel que v2 = u est une racine
carrée de u ∈ S+(E).

1. On suppose qu’il existe une racine carrée v de u.
1.a Si Fk est le sous-espace propre de v associé à la valeur

propre µk, alors Fk contenu dans un sous-espace propre de u. À
quelle valeur propre de u ce sous-espace est-il associé?

1.b Chaque sous-espace propre de v est aussi un sous-espace
propre de u.

2. Il existe une, et une seule, racine carrée de u.
3. Interprétation matricielle.

85. Factorisation de Cartan
Soit A ∈ GLn(R). Il existe une matrice S ∈ S++

n (R) telle que
S2 = A⊤.A [84] et une matrice orthogonale O ∈ On(R) telle que

A = OS.

Cette factorisation, analogue de la représentation trigonomé-
trique des nombres complexes, est unique.
86. Soient A ∈ S++

n (R) et B ∈ Mn,m(R). On suppose que le
rang de la matrice B est égal à m.
86.1 L’entier n est supérieur à l’entier m.
86.2 Le noyau de la matrice

C =

(
A B

B⊤ 0

)

est réduit à la colonne nulle. La matrice C est-elle inversible?
87.1 La matrice S est symétrique et définie positive si, et seule-
ment si, il existe une matrice inversible P telle que S = P.P⊤ [71].
87.2 Quelles que soient S ∈ S++

n (R) et T ∈ Sn(R), la matrice
ST est semblable à une matrice symétrique réelle et donc diago-
nalisable.
87.3 Si A est diagonalisable, alors il existe S ∈ S++

n (R) telle
que

A⊤ = S−1.A.S.

Étudier la réciproque.
88. Double produit vectoriel
Soit a ∈ R3, un vecteur unitaire. Comme

∀ (x, y) ∈ R3 ×R3,
(
(a ∧ x) ∧ a

∣
∣ y

)
= ( a ∧ x | a ∧ y )

l’endomorphisme f = [x 7→ (a ∧ x) ∧ a] est auto-adjoint, positif
mais pas défini positif.
Reconnaître f à l’aide de la formule du double produit vectoriel :

u ∧ (v ∧ w) = ( u | w ) · v − ( u | v ) · w.

89. Soit A = (Ai,j)16i,j6n ∈ S+
n (R). On suppose que les coef-

ficients Ai,j sont tous différents de 0 et on considère la matrice

B = (Bi,j)16i,j6n =
( 1

Ai,j

)

16i,j6n
.

89.1 Si rg A = 1, alors B ∈ S+
n (R).

89.2 Si rg A > 2, alors il existe deux indices 1 6 i < j 6 n tels
que

A0 =

(
ai,i ai,j
aj,i aj,j

)

∈ S++

2 (R).

Le déterminant de la matrice

B0 =

(
bi,i bi,j
bj,i bj,j

)

est strictement négatif, donc il existe un couple (xi, xj) 6= (0, 0)
tel que

(
xi xj

)
B0

(
xi
xj

)

< 0

et la matrice symétrique B n’est pas positive.

90. Soit A ∈ Sn(R), une matrice dont les valeurs propres
sont strictement positives. On les note :

0 < λ1 6 λ2 6 · · · 6 λn

et on pose κA =
√

λn/λ1.
90.1 Il existe une matrice orthogonale P telle que les matrices
P−1AP et P−1A−1P soient diagonales.
90.2 Quels que soient les réels y1, . . ., yn,

( n

∑
i=1

y2
i

)2
6

( n

∑
i=1

λiy
2
i

)( n

∑
i=1

1
λi

y2
i

)

donc
‖X‖2

6 [(X⊤.A.X)(X⊤.A−1.X)]1/2

pour tout X ∈ Mn,1(R).
90.3 En posant Y = P⊤.X = (y1, . . . , yn), on a :

(X⊤ .A.X)(X⊤.A−1.X) = κ2
A

( n

∑
i=1

λi

λn
y2

i

)( n

∑
i=1

λ1

λi
y2

i

)

donc

[(X⊤.A.X)(X⊤.A−1.X)]1/2
6

κA

2

n

∑
i=1

[ λi

λn
+

λ1

λi

]

y2
i

6
κA + κ−1

A

2
‖X‖2.
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IV FORMES QUADRATIQUES

IV

Formes quadratiques

91. Soit E, un espace vectoriel réel (de dimension quel-
conque).
91.1 ✍ Une application q : E → R est une forme quadratique lors-
qu’il existe une application bilinéaire symétrique ϕ : E × E → R telle
que

∀ x ∈ E, q(x) = ϕ(x, x).

91.2 ➙ L’ensemble des formes quadratiques sur E est un sous-espace
vectoriel de l’espace des applications de E dansR.
91.3 Si la dimension de E est finie, toute forme quadratique
sur E est une application continue.
91.4 Si q est une forme quadratique sur E, alors

∀ λ ∈ R, ∀ x ∈ E, q(λx) = λ2q(x)

et l’application

ϕq = [(x, y) 7→ q(x + y)− q(x − y)] : E × E → R

est une forme bilinéaire symétrique.
91.5 ✍ Soit q : E → R, une forme quadratique. L’unique forme bili-
néaire symétrique ϕ : E × E → R telle que

∀ x ∈ E, q(x) = ϕ(x, x)

est la forme bilinéaire symétrique associée à q.

92. On peut définir des formes bilinéaires symétriques sur un
espace vectoriel E, quel que soit le corps de baseK.
92.1 Le lien entre formes bilinéaires symétriques et formes
quadratiques n’est assuré que si la caractéristique du corpsK est
différente de 2 (c’est-à-dire si on peut diviser par 2).
92.2 Seules les propriétés relatives au signe sont spécifiques au
corpsK = R.
93. Exemple fondamental
Soient f et g, deux formes linéaires sur E.
93.1 L’application

ψ = [(x, y) 7→ f (x)g(y)] : E × E → R

est une forme bilinéaire sur E.
93.2 L’application

ϕ = [(x, y) 7→ ϕ(x, y) + ϕ(y, x)] : E × E → R

est une forme bilinéaire symétrique sur E.
93.3 ➙ L’application

q = [x 7→ f (x)g(x)] : E → R

est une forme quadratique sur E.
93.4 ⊲ Quels que soient les scalaires réels α1, . . ., αn, quelles que soient
les formes linéaires f1, . . ., fn sur E, l’application q : E → R définie
par

∀ x ∈ E, q(x) =
n

∑
k=1

αk

[
fk(x)

]2

est une forme quadratique sur E.
93.5 Si les formes linéaires f1, . . ., fn sont linéairement indé-
pendantes, on dit que la forme quadratique q est décomposée en
carrés.
94. Cône isotrope
Soit q, une forme quadratique sur E.
94.1 L’ensemble Cq =

{
x ∈ E : q(x) = 0

}
est un cône de E.

94.2 ✍ L’ensemble {
x ∈ E : q(x) = 0

}

est le cône isotrope de la forme quadratique q.
94.3 ✍ La forme quadratique q est dite définie lorsque son cône iso-
trope est réduit au vecteur nul.
94.4 Suite de [93.4] – Si la forme quadratique q est décomposée
en carrés, alors le cône isotrope de q contient l’intersection des
hyperplans Ker fk pour 1 6 k 6 n.

95. Dégénérescence
On considère une forme quadratique q et la forme bilinéaire sy-
métrique ϕ qui lui est associée.
95.1 ✍ Deux vecteurs x et y sont conjugués pour la forme ϕ lorsque
ϕ(x, y) = 0.

95.2 ✍ Le conjugué d’une partie A ⊂ E est l’ensemble A0 ⊂ E défini
par

A0 =
{

x ∈ E : ∀ y ∈ A, ϕ(x, y) = 0
}

.

95.3 Quelle que soit la partie A, le conjugué A0 est un sous-
espace de E.
95.4 ✍ Un sous-espace vectoriel F de E est dit non isotrope pour la
forme quadratique q lorsque

F ∩ F0 = {0E}.

95.5 Le sous-espace F est non isotrope si, et seulement si, la
restriction à F de la forme quadratique q est non dégénérée.
95.6 ✍ Un sous-espace vectoriel F de E est dit totalement iso-
trope pour la forme quadratique q lorsqu’il est contenu dans son conju-
gué :

F ⊂ F0.

95.7 Le sous-espace E0 est contenu dans le cône isotrope de q
et totalement isotrope.
95.8 ✍ La forme quadratique q est dite non dégénérée lorsque le
sous-espace

E0 =
{

x ∈ E : ∀ y ∈ E, ϕ(x, y) = 0
}

est réduit au vecteur nul.
95.9 Si la forme quadratique q est définie [94.3], alors elle est
non dégénérée.
96. Signe d’une forme quadratique
96.1 ✍ Une forme quadratique q est positive lorsque

∀ x ∈ E, q(x) > 0.

Elle est définie positive lorsque

∀ x ∈ E \ {0}, q(x) > 0.

96.2 ✍ Une forme quadratique est dite négative (resp. définie néga-
tive) lorsque la forme −q est positive (resp. définie positive).
96.3 Une forme quadratique définie positive (ou définie néga-
tive) est définie au sens de [94.3].

Représentation matricielle

97. On identifie ici les espaces vectorielsRn et Mn,1(R) en ne
distinguant pas le vecteur x ∈ Rn et la colonne X ∈ Mn,1(R) qui
représente x dans la base canonique deRn.
97.1 Si A ∈ Mn(R) vérifie

∀ X ∈ Rn, X⊤.A.X = 0,

alors A est antisymétrique.
97.2 Si A et B sont deux matrices symétriques réelles telles que

∀ X ∈ Rn, X⊤ .A.X = X⊤.B.X,

alors A = B.
97.3 ➙ L’application q : Rn → R est une forme quadratique surRn

si, et seulement si, il existe une matrice A ∈ Sn(R) telle que

∀ X ∈ Rn, q(X) = X⊤ .A.X.

97.4 La forme quadratique q est positive (resp. définie posi-
tive) si, et seulement si, la matrice symétrique A est positive (resp.
définie positive).
97.5 La forme bilinéaire symétrique associée à q est l’applica-
tion [

(X, Y) 7→ X⊤ .A.Y
]

.
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98. Exemples
98.1 La forme quadratique

[
(u, v, w) 7→ u2 + 3v2 + 2w2] est

définie positive.
98.2 Forme de Lorentz
La forme quadratique

q =
[

(x, y, z, t) 7→ c2t2 − x2 − y2 − z2
]

n’est ni positive, ni négative.
98.3 La forme quadratique q définie surR3 par

q(u, v, w) = 5u2 + 2v2 + w2 − 2uv + 2uw + 2vw

= (u + v + w)2 + (2u − v)2

est positive, sans être définie positive.
98.4 La forme quadratique q définie surR3 par

q(u, v, w) = (u − v)2 + (v − w)2 + (w − u)2

est positive, sans être définie positive : q(u, v, w) = 0 si, et seule-
ment si, u = v = w.
98.5 La forme quadratique surR2 définie par

∀ x = (u, v) ∈ R2, q(x) = u2 + 6uv + v2

= (u + 3y)2 − 8v2

n’est ni positive, ni négative et il existe des vecteurs x 6= 0 tels
que q(x) = 0.
98.6 La forme quadratique surR3 définie par

∀ x = (u, v, w) ∈ R3, q(x) = uv + vw + wu

est représentée par la matrice

A =
1
2





0 1 1
1 0 1
1 1 0





dans la base canonique de R3. Elle n’est ni positive, ni négative.
99. Formule de changement de base
Soient B = (ek)16k6n et C = (εk)16k6n, deux bases de E. On
note P ∈ GLn(K), la matrice de passage de B à C .
99.1 Une forme bilinéaire symétrique ϕ sur E est représentée
dans la base B par la matrice

Ω =
(

ϕ(ek, eℓ)
)

16k,ℓ6n
∈ Sn(K).

Dans le cas d’un produit scalaire, on reconnaît la matrice de Gram
du produit scalaire.
99.2 ➙ La forme bilinéaire symétrique ϕ est représentée dans la base C

par la matrice

Ω′ = P⊤.Ω.P.

99.3 ✍ Deux matrices A et B de Mn(K) sont dites congruentes lors-
qu’il existe une matrice inversible P ∈ GLn(K) telle que

B = P⊤.A.P.

99.4 Deux matrices congruentes ont même rang.
99.5 La relation de congruence est une relation d’équivalence
sur Mn(K).
100. Groupe orthogonal
Soient E, un espace vectoriel surK et ϕ, une forme bilinéaire sy-
métrique sur E.
100.1✍ Un automorphisme u ∈ GL(E) est dit ϕ-orthogonal lorsque

∀ x, y ∈ E, ϕ
(
u(x), u(y)

)
= ϕ(x, y).

100.2➙ L’ensemble Oϕ(E) des automorphismes ϕ-orthogonaux de E
est un sous-groupe du groupe GL(E).

100.3 Supposons que E soit un espace de dimension finie et
considérons une base B = (ek)16k6n de E. On note Ω ∈ Sn(K),
la matrice qui représente ϕ dans cette base B.
Un automorphisme u de E est ϕ-orthogonal si, et seulement si, sa
matrice

M = MatB(u)

vérifie :
M⊤.Ω.M = Ω.

Existence d’une base conjuguée

101. Soient E, un espace vectoriel sur K et ϕ, une forme bili-
néaire symétrique sur E.
Pour x et y dans E, on notera 〈x | ϕ | y〉 au lieu de ϕ(x, y). On
notera donc

| ϕ | y〉
l’application partielle [x 7→ 〈x | ϕ | y〉].
102. On considère un sous-espace vectoriel F de E, en suppo-
sant que la dimension de F est finie.
102.1 Les espaces vectoriels F et F∗ = L(E,K) sont isomorphes.
102.2 Si le sous-espace F est non isotrope [95.4], alors l’applica-
tion

[y 7→| ϕ | y〉]
est un isomorphisme de F sur F∗.
102.3 Dans ces conditions, pour tout vecteur u0 ∈ E, il existe
donc un, et un seul, vecteur x0 ∈ F tel que

∀ y ∈ F, 〈u0 | ϕ | y〉 = 〈x0 | ϕ | y〉

et u0 − x0 ∈ F0.
102.4➙ Pour tout sous-espace vectoriel F de E de dimension finie et non
isotrope,

E = F ⊕ F0.

103. On suppose que E est un espace vectoriel de dimension
finie sur un corpsK dont la caractéristique est différente de 2.
On considère une forme bilinéaire symétrique ϕ et la forme qua-
dratique q associée à ϕ.
103.1 Notion de base conjuguée
Les vecteurs d’une base B de E sont deux à deux conjugués si, et
seulement si, la matrice de ϕ relative à B est diagonale.
103.2 Si la forme quadratique q est identiquement nulle, alors
toute base de E est conjuguéee.
103.3 Sinon, il existe un vecteur ε1 tel que q(ε1) 6= 0 et la droite
D = K · ε1 est un sous-espace non isotrope :

E = K · ε1 ⊕ D0.

Si (εk)26k6n est une base conjuguée de D0, alors la famille

(εk)16k6n

est une base conjuguée de E.
103.4➙ Il existe une base de E conjuguée pour ϕ.
103.5 Toute matrice symétrique est congruente à une matrice
diagonale.

Formes quadratiques sur un espace euclidien

104. Soit E, un espace euclidien.
104.1 Si u ∈ S(E) vérifie

∀ x ∈ E, ( x | u(x) ) = 0,

alors u est l’endomorphisme nul.
104.2➙ Une application q : E → R est une forme quadratique sur
E lorsqu’il existe un endomorphisme auto-adjoint u ∈ S(E) tel que

∀ x ∈ E, q(x) = ( x | u(x) ) .

104.3 La forme quadratique q est positive (resp. définie posi-
tive) si, et seulement si, l’endomorphisme u ∈ S(E) est positif
(resp. défini positif).
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105. Exemples
Soit E, un espace euclidien.
105.1 Pour tout endomorphisme u ∈ L(E), l’application q défi-
nie par

∀ x ∈ E, q(x) =
∥
∥u(x)

∥
∥2

est une forme quadratique positive sur E. Elle est définie positive
si, et seulement si, l’endomorphisme u est injectif.
105.2 Pour tout endomorphisme u ∈ L(E), l’application q défi-
nie par

∀ x ∈ E, q(x) = ( x | u(x) )

est la forme quadratique sur E associée à (u + u∗)/2 ∈ S(E).
105.3 Soit q, une forme quadratique. Pour tout endomorphisme
u de E, l’application q ◦ u est une forme quadratique.
105.4 Quels que soient les vecteurs a et b de E, les applications

[

x 7→ ( a | x ) 2
]

et q = [x 7→ ( a | x ) · ( b | x ) ]

sont des formes quadratiques sur E. La forme q est associée à
l’endomorphisme auto-adjoint u défini par

∀ y ∈ E, u(y) = ( b | y ) · a + ( a | y ) · b.

105.5 L’application q définie par

q(P) =
∫ 1

0
P(t)P′′(t) dt

= P(1)P′(1)− P(0)P′(0)−
∫ 1

0

[
P′(t)

]2 dt

est une forme quadratique sur E = Rn [X]. Est-elle positive?
105.6 L’application q définie sur Mn(R) par

q(M) = tr(M⊤M) + (tr M)2

est une forme quadratique définie positive.
106. Décomposition canonique en carrés
On considère la forme quadratique q, associée à un endomor-
phisme auto-adjoint u de E.
106.1 Il existe une base orthonormée B = (ek)16k6n de valeurs
propres de u et, en notant λk, la valeur propre réelle associée au
vecteur propre ek,

∀ x ∈ E, q(x) =
n

∑
k=1

λk ( ek | x ) 2.

106.2 Cette décomposition permet de comparer la forme qua-
dratique q à la norme euclidienne sur E.

∀ x ∈ E,
(

min
16k6n

λk

)

· ‖x‖2
6 q(x) 6

(

max
16k6n

λk

)

· ‖x‖2

107. Forme quadratique décomposée en carrés
Soient ε1, ε2, . . ., εn, des formes linéaires linéairement indépen-
dantes sur E. La forme quadratique ψ : E → R définie par [93.4]

∀ x ∈ E, ψ(x) =
n

∑
k=1

αk

[
εk(x)

]2

est positive si, et seulement si, tous les αk sont positifs [4.44].
108. La définition [104.2] vaut également dans le cas où la di-
mension de l’espace E est infinie.
108.1 On considère l’application q définie sur E = C 0([0, 1],R)
par

∀ f ∈ E, q( f ) =
∫ 1

0
f 2(t) dt.

1. L’application q est une forme quadratique sur E.
2. Existe-t-il une forme linéaire T sur E telle que q = T2 ?
3. S’il existe des formes linéaires ε1, . . ., εn linéairement in-

dépendantes telles que

q ∈ Vect(ε2
1, . . . , ε2

n),

alors Ker ε1 ∩ · · · ∩ Ker εn = {0E}.

On sait [4.44] qu’il existe une famille (uk)16k6n telle que

∀ 1 6 i, k 6 n, ε i(uk) = δi,k.

Commenter.
108.2 Pour toute fonction h ∈ E, l’application définie par

∀ f ∈ E, qh =
∫ 1

0
f 2(t)h(t) dt

est une forme quadratique sur E. Condition sur h pour que ϕh
soit positive? définie positive?

Questions, exercices & problèmes

Perfectionnement

109. Exemples et contre-exemples
1. Exemples d’endomorphismes auto-adjoints? non auto-

adjoints?
2. Exemples d’endomorphismes auto-adjoints positifs ? dé-

finis positifs ? non positifs ?
3. Exemple d’endomorphisme u tel que det u = ±1 et qui

n’est pas une isométrie.
4. Si ‖·‖ désigne la norme associée au produit scalaire défini

par

∀ P, Q ∈ R[X], ( P | Q ) =
∫ 1

0
P(t)Q(t) dt,

alors ‖Xn‖ tend vers 0 alors que la suite des fonctions [t 7→ tn] ne
converge pas simplement surR vers la fonction nulle. Comparer
avec [8] et avec [7.154].
110. Méthodes

1. Comment déterminer l’adjoint d’un endomorphisme?
2. Comment vérifier qu’une matrice est orthogonale?
3. Soit A ∈ O3(R).
3.a Comment déterminer si A est une matrice de rotation?
3.b Comment déterminer un plan stable par A ?
4. Comment vérifier qu’un endomorphisme est une isomé-

trie?
5. Comment vérifier qu’un endomorphisme est une projec-

tion orthogonale? une symétrie orthogonale?
6. Un endomorphisme u est représenté par la matrice A

dans une base B (qui n’est pas nécessairement une base ortho-
normée).

6.a Comment déterminer si u est auto-adjoint?
6.b Comment déterminer si u est une isométrie?

Approfondissement

111. Il existe une matrice M ∈ S2(R) telle que tr M = a et
det M = b si, et seulement si, a2 > 4b.
112. Soient A1, . . ., Ap ∈ Sn(R).
112.1 S’il existe une matrice A ∈ Sn(R) telle que

∀ 1 6 k 6 p, Ak ∈ R[A],

alors les matrices Ak commutent deux à deux.
112.2 Si les matrices Ak commutent deux à deux, alors [123] il
existe une matrice orthogonale P telle que P⊤.Ak.P soit diagonale
pour tout 1 6 k 6 p.
Il existe donc des polynômes Q1, . . ., Qp tels que

∀ 1 6 k 6 p, Ak = Qk(A)

où A = P. Diag(1, 2, . . . , n).P⊤ ∈ Sn(R).
113. Caractérisation des homothéties
On considère un espace euclidien E.

1. Si tout hyperplan de E est stable par u, alors l’adjoint u∗
de u est une homothétie [12.66], donc u est une homothétie.

2. S’il existe un entier 2 6 r < n tel que tout sous-espace de
dimension r soit stable par u, alors tout hyperplan de E est stable
par u.
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114. Endomorphismes anti-symétriques
L’endomorphisme f d’un espace euclidien E est dit anti-symé-
trique lorsque

∀ x, y ∈ E,
(

f (x)
∣
∣ y

)
= −

(
x
∣
∣ f (y)

)
.

114.1 Les propriétés suivantes sont équivalentes :
1. f est anti-symétrique.
2. Pour tout x ∈ E,

(
f (x)

∣
∣ x

)
= 0.

3. La matrice A qui représente u dans une base orthonormée
est anti-symétrique : A⊤ = −A.
114.2 On suppose ici que E est un espace euclidien orienté de
dimension 3.

4. Pour tout u ∈ E, l’application fu = [x 7→ u ∧ x] est anti-
symétrique.

5. Pour tout endomorphisme anti-symétrique f , il existe un,
et un seul, vecteur u ∈ E tel que f = fu.

6. L’endomorphisme fu est diagonalisable si, et seulement
si, u = 0.

7. Il existe [88] une base orthonormée de R3 constituée de
vecteurs propres de f 2. Quels sont les valeurs propres et les sous-
espaces propres de f 2 ?
114.3 Soit f ∈ L(E), un endomorphisme anti-symétrique d’un
espace euclidien de dimension quelconque.

8. Si F est un sous-espace stable par f , alors F⊥ est aussi
stable par F.

9. Le noyau et l’image de f sont supplémentaires et ortho-
gonaux dans E.

E = Ker f
⊥
⊕ Im f

10. Soit λ ∈ C, une racine du polynôme minimal de f , consi-
déré comme un polynôme à coefficients complexes.

10.a Si A ∈ Mn(R) est la matrice de u dans une base ortho-
normée B, alors il existe un vecteur-colonne X ∈ Mn,1(C) tel
que AX = λX et

|λ|2 (X)⊤.X = (AX)⊤.(AX) = −λ2 (X)⊤.X.

10.b Qu’en conclure si λ ∈ R? Et si λ ∈ C \R?
11. Le rang de f est pair et det( f ) > 0.
12. L’endomorphisme f est-il diagonalisable?

115. Décomposition QR
115.1 L’ensemble On(R) des matrices orthogonales et l’en-
semble T+

n des matrices triangulaires supérieures dont les va-
leurs propres sont strictement positives sont des sous-groupes de
GLn(R) et On(R) ∩ T+

n = {In}.
115.2 Soit A ∈ GLn(R).

1. L’application

ϕ =
[

(X, Y) 7→ X⊤.(A⊤.A).Y
]

est un produit scalaire sur E = Mn,1(R). La base canonique de E
est-elle orthonormée pour ce produit scalaire?

2. Il existe une base B de E, orthonormée pour ϕ, telle que
la matrice de passage P de la base canonique à la base B appar-
tienne à T+

n .
3. Il existe une matrice R ∈ T+

n telle que A⊤.A = R⊤.R.
4. Il existe un, et un seul, couple (Q, R) ∈ On(R) × T+

n tel
que A = QR.

116. Soient E, un espace euclidien et u, un endomorphisme tri-
gonalisable de E.
116.1 Il existe une base orthonormée B de E dans laquelle la
matrice de u est triangulaire.
116.2 L’adjoint u∗ de u est un polynôme en u si, et seulement si,
u est auto-adjoint.

117. Une forme quadratique q telle que q(x) 6= 0 pour tout
x 6= 0 est définie positive ou définie négative.

Pour aller plus loin

118. Questions pour réfléchir
1. Soit

(
E, ( · | · ) ), un espace préhilbertien. Pour tout vec-

teur a ∈ E, la forme linéaire ϕa = [x 7→ ( a | x ) ] est continue. Le
théorème de Riesz [7.68.3] est-il encore vrai en dimension infi-
nie?

2. Si E est un espace réel de dimension finie et si u ∈ L(E)
est diagonalisable, alors il existe un produit scalaire sur E pour
lequel u est un endomorphisme auto-adjoint.

3. Suite de [8] – La suite (Pn)n∈N converge uniformément
sur tout segment [a, b] deR.

4. Étudier la structure du cône isotrope de u ∈ L(E) :

C0(u) =
{

x ∈ E :
(

x
∣
∣ u(x)

)
= 0

}

et comparer C0(u) au noyau de u.
5. Soit u ∈ GL(E).
5.a Existe-t-il une structure euclidienne sur E pour laquelle u

est une isométrie?
5.b Étudier le cas où u est une symétrie.

119. Soit u, un endomorphisme de R3 muni de sa structure
euclidienne orientée canonique.

1. Quels que soient x, y et z dans R3,

Det
(
u(x), y, z

)
+ Det

(
x, u(y), z

)
+ Det

(
x, y, u(z)

)

= tr(u) · Det(x, y, z).

2. D’après [7.69.3], il existe un, et un seul, endomorphisme
v deR3 tel que

∀ (x, y) ∈ R3 ×R3, v(x ∧ y) = u(x) ∧ y + x ∧ u(y).

120. Étude d’une rotation en dimension 3 (variante de [21])
Dans un espace euclidien orienté de dimension 3, on considère
une rotation u autour du vecteur unitaire n.
120.1 Pour toute base orthonormée directe B = (n, v, w) de E
(obtenue en complétant le vecteur unitaire n),

MatB(u) =





1 0 0
0 cos θ − sin θ
0 sin θ cos θ



 .

120.2 D’après [20],

∀ x ∈ E, (u − u−1)(x) = (2 sin θ) · (n ∧ x)

120.3 Si A ∈ SO3(R) est la matrice relative à une base orthonor-
mée directe B0 de la rotation u, alors il existe trois réels (p, q, r)
tels que

1
2
(A − A⊤) =





0 −r q
r 0 −p
−q p 0





et

cos θ =
tr A − 1

2
et sin θ ·MatB0 (n) =





p
q
r



 .

Comparer avec [21].
121. Structure euclidienne sur E∗
La structure euclidienne de E permet de définir une structure eu-
clidienne naturelle sur son espace dual E∗ = L(E,R).
Pour tout a ∈ E, on pose ϕa = [x 7→ ( a | x ) ].

1. Il existe un, et un seul, produit scalaire 〈 · | · 〉 sur E∗ tel
que

∀ (a, b) ∈ E × E, 〈 ϕa | ϕb 〉 = ( a | b )

et l’application [a 7→ ϕa] est une isométrie de
(
E, ( · | · )

)
sur

(
E∗, 〈 · | · 〉

)
.

2. Une base B de E est une base orthonormée pour ( · | · )
si, et seulement si, sa base duale B∗ est une base orthonormée de
E∗ pour 〈 · | · 〉 .
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122. On considère un espace euclidien (E, ( · | · ) ).
1. Si 〈 · | · 〉 est un produit scalaire sur E, alors il existe un,

et un seul, endomorphisme auto-adjoint défini positif u tel que

∀ (x, y) ∈ E × E, 〈 x | y 〉 =
(

x
∣
∣ u(y)

)
.

2. Soit v, un endomorphisme de E auto-adjoint pour ( · | · ) .
Alors v est auto-adjoint pour 〈 · | · 〉 si, et seulement si, il com-
mute à l’endomorphisme u : u ◦ v = v ◦ u.
123. Codiagonalisation de matrices symétriques [12.220]
Soit (Ai)i∈I , une famille de matrices symétriques réelles de même
taille.
Il existe une matrice inversible P telle que toutes les matrices

P−1 AiP

soient diagonales si, et seulement si, les matrices Ai commutent
deux à deux.
124.1 Si A ∈ S+

n (R), alors il existe une matrice R ∈ S+
n (R) telle

que A = R2 et
tr(PA) = 〈 PR | R 〉 6 tr A

pour toute matrice orthogonale P.
124.2 Soit A ∈ M2(R), telle que

∀ P ∈ O2(R), tr(PA) 6 tr A.

Alors la matrice A est symétrique.
124.3 Soit A ∈ Mn(R). Si

∀ P ∈ On(R), tr(PA) 6 tr A,

alors A ∈ S+
n (R).

125. Factorisation d’une isométrie
On considère un espace euclidien

(
E, ( · | · )

)
.

Toute isométrie de E est décomposable en un nombre fini de ré-
flexions et le nombre de réflexions qui apparaissent dans cette
factorisation peut être choisi inférieur à dim E.
125.1 Soit f ∈ O(E), tel que f 6= IE. Il existe u 6= 0E tel que
f (u) 6= u et on pose v = f (u).

1. Il existe une réflexion r telle que r(u) = v.
2. Pour tout x ∈ E tel que f (x) = x,

( x | u − v ) = 0 et r(x) = x.

3.
dim Ker(r ◦ f − IE) > dim Ker( f − IE)

125.2 On construit une suite ( fn)n∈N d’isométries de E en po-
sant f0 = f et, pour tout p > 1,

— si fp−1 = IE, alors fp = IE ;

— sinon, alors fp = rp ◦ fp−1, où rp est une réflexion telle que

dim Ker( fp − IE) > dim Ker( fp−1 − IE).

Il existe un entier p 6 dim E tel que fp = IE. Que peut-on en
déduire sur f ?
125.3 Applications

4. Décomposition d’une rotation du plan en produit de
deux réflexions.

5. Classification géométrique des isométries de l’espace en
fonction du sous-espace fixe (identité, réflexions, rotations, com-
posées d’une rotation et d’une réflexion qui commutent).
126. Matrices orthosemblables
La matrice B ∈ Mn(R) est orthosemblable à la matrice A lorsque

∃ P ∈ On(R), B = P⊤.A.P.

1. Cette relation est une relation d’équivalence sur Mn(R).
2. Deux matrices orthosemblables sont semblables. La réci-

proque est-elle vraie?
3. Si A est symétrique et si B est orthosemblable à A, alors

B est symétrique.

4. Que dire d’une matrice orthosemblable à une matrice dia-
gonale?

5. Interpréter géométriquement la notion de matrices ortho-
semblables.
127. Réduction simultanée de deux formes quadratiques
127.1 Aspects théoriques
L’espaceRn est muni d’un produit scalaire 〈 · | · 〉 représenté par
la matrice A ∈ S++

n (R) dans la base canonique. On considère une
forme quadratique q, représentée par la matrice B ∈ Sn(R) dans
la base canonique.

1. Il existe une matrice diagonale D1 et une matrice P1 telles
que

P⊤
1 .P1 = In et B = P⊤

1 .D1.P1.

2.a Il existe un, et un seul, endomorphisme auto-adjoint u de
R

n tel que
∀ x ∈ Rn, q(x) = 〈 x | u(x) 〉 .

2.b La matrice de u relative à la base canonique est A−1B.
2.c Il existe une matrice diagonale D2 et une matrice P2 telles

que
P⊤

2 .P2 = A et B = P⊤
2 .D2.P2.

En outre, A−1.B = P−1
2 .D2.P2. Discuter l’unicité des matrices P2

et D2.
2.d La base (ε1, . . . , εn) de Rn représentée par la matrice P−1

2
dans la base canonique est orthonormée pour 〈 · | · 〉 et

∀ i 6= j,
〈

ε i

∣
∣ u(ε j)

〉
= 0.

127.2 Exemples
L’espaceR2 est muni du produit scalaire canonique ( · | · ) .

3. Les formes quadratiques définies par

∀ x = (x, y) ∈ R2,
{

q1(x) = x2 + 2xy + 5y2

q2(x) = x2 + 2xy + 3y2

sont définies positives.
4. La matrice

(
1 1
1 5

)−1 (1 1
1 3

)

=

(
1 1/2
0 1/2

)

est semblable à Diag(1, 1/2).
5. Il existe une base (ε1, ε2) deR2, orthonormée pour ( · | · ) ,

telle que

q1(x) = (3 −
√

5) ( ε1 | x ) 2 + (3 +
√

5) ( ε2 | x ) 2

pour tout x ∈ R2. Par suite,

min
x 6=0

q1(x)

( x | x )
= 3 −

√
5 et max

x 6=0

q1(x)

( x | x )
= 3 +

√
5.

6. On note 〈 · | · 〉 , le produit scalaire associé à q1.
6.a Les vecteurs u = (1, 0) et v = (−1/2, 1/2) forment une base

deR2 qui est orthonormée pour 〈 · | · 〉 .
6.b La forme quadratique définie par

∀ x = (x, y) ∈ R2, q2(x) = x2 + 2xy + 3y2

est représentée par la matrice Diag(1, 1/2) dans la base (u, v),
donc

∀ x ∈ R2, q2(x) = 〈 u | x 〉 2 +
1
2
〈 v | x 〉 2

et

min
x 6=0

q2(x)

q1(x)
=

1
2

et max
x 6=0

q2(x)

q1(x)
= 1.
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128. L’application q : Rd → R définie par

q(x) =
n

∑
k=1

x2
k −

n+p

∑
k=n+1

x2
k

(avec 1 6 n < n + p 6 d) est une forme quadratique surRd.
128.1 Sa matrice dans la base canonique (e1, . . . , ed) de Rd est
égale à

Diag(1, . . . , 1
︸ ︷︷ ︸

n

,−1, . . . ,−1
︸ ︷︷ ︸

p

, 0, . . . , 0
︸ ︷︷ ︸

d−(n+p)

).

128.2 Tout sous-espace G dont la dimension est strictement su-
périeure à n rencontre le sous-espace

F0 = Vect(en+1, . . . , ed),

au sens où dim(F0 ∩ G) > 1.
128.3 Si F est un sous-espace tel que la restriction de q à F soit
définie positive :

∀ x ∈ F \ {0}, q(x) > 0

alors dim F 6 n.
129. L’espace Rd étant muni de sa structure euclidienne ca-
nonique, on note S1(F), la sphère unité de chaque sous-espace
vectoriel F ⊂ Rd :

∀ x ∈ Rd, x ∈ S1(F) ⇐⇒
{

x ∈ F
‖x‖ = 1 .

On considère une famille croissante de nombre réels :

a1 6 a2 6 · · · 6 ad.

1. L’application q : Rd → R définie par

∀ x ∈ Rd, q(x) =
d

∑
k=1

akx2
k

est une forme quadratique surRd.
2.

min
x∈S1(Rd)

q(x) = a1 max
x∈S1(Rd)

q(x) = ad

3. On note Vn, l’ensemble des sous-espaces vectoriels deRd

de dimension 1 6 n 6 d.
3.a →[128]

∀ F ∈ Vn, an 6 sup
x∈S1(F)

q(x) 6 ad

3.b Pour tout 1 6 n 6 d,

min
F∈Gn

sup
x∈S1(F)

q(x) = an et max
F∈Gn

sup
x∈S1(F)

q(x) = ad.

130. Signature d’une forme quadratique
On se donne des formes linéaires f1, . . . , fp, g1, . . . , gq linéaire-
ment indépendantes dans E et des scalaires réels strictement po-
sitifs α1, . . . , αp, β1, . . . , βq . On considère la forme quadratique Q
définie par

∀ x ∈ E, Q(x) =
p

∑
k=1

αk

[
fk(x)

]2 −
q

∑
k=1

βk

[
gk(x)

]2.

1. Il existe un sous-espace F+ de dimension p tel que la res-
triction de Q à F+ soit une forme quadratique définie positive.

2. Si dim F > p, alors il existe x ∈ F, non nul, tel que Q(x) 6
0.

3. Soit A, la matrice de Q relative à une base B. Alors l’en-
tier p (resp. l’entier q) est le nombre de valeurs propres stricte-
ment positives (resp. strictement négatives) de A.

4. Relier le couple (p, q) au rang de Q.
5. Que dire du couple (p, q) lorsque Q est positive? définie

positive? négative? définie négative? dégénérée?
Le couple (p, q) est la signature de la forme quadratique Q.
131. Formes symplectiques
Soit E, un espace vectoriel réel de dimension finie n.
131.1✍ On appelle forme symplectique sur E toute application bili-
néaire ω : E × E → R antisymétrique :

∀ x, y ∈ E, ω(x, y) = −ω(y, x)

et non dégénérée :

[
∀ y ∈ E, ω(x, y) = 0

]
=⇒ x = 0E.

131.2 Soit B = (ek)16k6n, une base de E. Une forme symplec-
tique ω sur E est représentée dans la base B par la matrice

Ω =
(
ω(ei, ej)

)

16i,j6n
∈ Mn(R).

1. Quels que soient les vecteurs x et y de E,

ω(x, y) = X⊤.Ω.Y

où les colonnes X et Y représentent respectivement x et y dans la
base B.

2. La matrice Ω est antisymétrique et inversible, donc la di-
mension n est paire.
131.3 Pour toute partie F ⊂ E, l’ensemble

Fω =
{

x ∈ E : ∀ y ∈ F, ω(x, y) = 0
}

est un sous-espace vectoriel de E.
131.4 On suppose ici que E = R2 et on considère la matrice

Ω =

(
0 −1
1 0

)

.

(On identifiera chaque vecteur de R2 à la colonne qui le repré-
sente dans la base canonique de R2.)

3. L’application ω =
[

(x, y) 7→ x⊤.Ω.y
]

est une forme sym-

plectique surR2.
4. Pour toute droite vectorielle D ⊂ R2,

Dω = D.

131.5 Plus généralement, quelle que soit la forme symplectique
ω sur E, toute droite vectorielle D ⊂ E est contenue dans le sous-
espace Dω .
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