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Espaces euclidiens (deuxiéme partie)

1.  # Un espace euclidien est un espace vectoriel réel de dimension
finie muni d’un produit scalaire.

2. Dans la suite de ce chapitre, sauf indication contraire,
(E, (-]-)) désigne toujours un espace euclidien.

3. Si 'endomorphisme u € L(E) et les vecteurs x et y de E
sont représentés dans une base orthonormée de E par la matrice A
et par les colonnes X et Y, alors

XTAY = (x|u(y)) XT.X = x|

4, Quelle que soit la matrice A = (lli,]')lgi,jgn, quelles que
soient les colonnes X = (X;)1<i<n et Y = (Vi)1<i<ns

n n
XT.A.Y = Z Z xl-al-,jyj.
i=1j=1
Si la matrice A est diagonale, alors

n
XTAX =Y ax?
i=1

5. Rappels sur la réduction des endomorphismes

Soitu € L(E).

5.1 Si F et G sont deux sous-espaces vectoriels stables par u,
alors F + G et F N G sont stables par 1.

5.2 Si le sous-espace F est stable par I'endomorphisme u,
alors son orthogonal F* est stable par l'adjoint u*.

5.3 Si u est inversible, alors u ! est un polyndme en u et u est

un polynéme en 1! :

ut e Kul, ueKul.
5.4 Si P est un polynome annulateur de u, irréductible et uni-
taire, alors P est le polynéme minimal de u.
5.5 Si le produit PQ est un polyndme annulateur de u et si

P(u) est injectif, alors

(PQ)(u)(x) = 0p = P(u)(Q(u)(x))

et Q est un polynéme annulateur de u.

5.6 Si P est un diviseur non constant du polyndme minimal
de u, alors le sous-espace Ker P(u) contient un vecteur xy # Of.
5.7 L’endomorphisme u n’a pas de vecteur propre dans le
sous-espace vectoriel

Vx€E,

F:( b Ker(uf/\h;)>L

A€Sp(u)

Par suite, si F est stable par u, alors le spectre de I'endomor-
phisme ur induit par restriction de u a F est vide.

Entrainement

6. Si F et G sont deux sous-espaces orthogonaux de E, alors

1 1
E=F®G& (F-nGh).

On peut exprimer les trois projections relatives a cette décompo-
sition en somme directe en fonction d"une base orthonormée de
F et d’une base orthonormée de G.

7. Soit (yk)1<k<r, une famille de vecteurs de E. Les formes
linéaires ¢ = [x+— (yx|x)] sont liées dans l'espace dual
E* = L(E,R) si, et seulement si, la famille (yy)1<k<, est liée et

rg(Pr)1<k<r = 18k )1<k<r

8. Soit (e, ..., &4), une base de E = R4[X] qui est orthonor-
mée pour le produit scalaire ¢. On consideére une suite (Py)nen
de vecteurs de E telles que || P, || tende vers 0.

1.
<k <
VO\k\d, (€k|Pn)m0
2.
d
VxeR, Pu(x) :];)(eﬂpn)sk(x) —=0

9. Soit (E, (|-} ), un espace préhilbertien réel.

9.1 Quel que soit le sous-espace F, le sous-espace F- est
fermé.

9.2 SiE=F@® L, alors T est fermé.

Réduction des isométries

1.1 Rappels

10. Un endomorphisme u de E est une isométrie (ou un au-
tomorphisme orthogonal) lorsque

()] = ll=-

10.1 = Un endomorphisme u de E est une isométrie si, et seulement si,
il conserve le produit scalaire :

Vx€eE,

V(xy) €ExE,  (u(x)|uly)) = (x]y).

10.2  Une matrice M € M, (RR) est orthogonale si, et seulement
si,

M'M=1I,
c’est-a-dire si

MM" = I,

10.3 = Soit u € L(E), représenté par la matrice M dans une base
orthonormée de E. L'endomorphisme u est une isométrie si, et seulement
si, la matrice M est orthogonale.
10.4 = Caractérisations des matrices orthogonales
Soit M € M, (IR). Les propositions suivantes sont équivalentes.

1. Lamatrice M est orthogonale.

2. Lamatrice M est inversibleet M—' = M ",

3. Lamatrice M représente une isométrie dans une base orthonor-
mée de E.

4.  Lamatrice M est la matrice de passage d’une base orthonormée
a une base orthonormée.

5. Les colonnes de la matrice M forment une base de M, 1 (R.) qui
est orthonormée pour le produit scalaire canonique.

6.  Les lignes de la matrice M forment une base de 90 ,,(R) qui
est orthonormée pour le produit scalaire canonique.
10.5  Le déterminant d’une matrice orthogonale (resp. d’une
isométrie) est égal a +1. Les rotations sont les isométries dont le
déterminant est égal a 1.

11. = Stabilité de I'orthogonal [7.106.3]
Si u est une isométrie de E et si V est un sous-espace stable par u, alors
I'orthogonal V- est stable par u.

12. Spectre d'une isométrie

12.1 = Si A € R est une valeur propre de u € O(E), alors A = +1.
12.2  Considérée comme une matrice réelle, une matrice ortho-
gonale ne peut admettre comme valeurs propres que 1 et —1.
12.3  Les valeurs propres d’une matrice orthogonale considé-
rée comme une matrice complexe sont des nombres complexes de
module 1.
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13. Soitu € O(E).
On consideére les sous-espaces vectoriels
Vi =Ker(u—1Ig) et V_ =Ker(u+If).

131
13.2

Les sous-espaces vectoriels V. et V_ sont orthogonaux.
Les sous-espaces

VLBV et F= (V+éV,)L

sont stables par u.

13.3  Si x est un vecteur non nul de F, alors le sous-espace
Vect(x, u(x)) est un plan.

13.4 SidimE = 3,alorsdim F < 2.

1.2 Isométries en dimension n > 3

14. Suite de [13] - Le sous-espace F = (V; @ V_)= est stable
par u. On suppose qu'il existe un entier k tel que 2k < dimF et
des plans Py, ..., Py contenus dans F, deux a deux orthogonaux
et stables par u.

14.1 Si G est un sous-espace vectoriel de F, alors
1 1 .
F=Ga(VyaV_3G)".

14.2  Sidim F > 2k, alors le sous-espace vectoriel

11 1L 1
Fp=[VyeV)e(Pehe &R

est stable par u [7.106.3] et contenu dans F, donc dim F > 2k + 2.
14.3  Dans ce cas, I'endomorphisme 11 induit par restriction
de u a Fy,q est une isométrie qui n’a pas de valeurs propres
réelles et son polyndme minimal admet un diviseur pjq irré-
ductible de degré 2.

144 Sixjq estun vecteur non nul de Ker(pi 1 (ug41)), alors

Py 1 = Vect (xy 1, u(xg41))
est un plan stable par u, contenu dans F et orthogonal aux plans
P, ... P

15. = Soit u € O(E). Il existe des plans vectoriels Py, ..
par u et deux a deux orthogonaux tels que

., Py, stables

L
L 1
E=XKer(u—1g) ®Ker(u +1g) & ( b Pk>.
1<k<d

16. = Traduction matricielle
En notant p = dim V. et g = dim V_, il existe une base orthonormée
P de E et des réels 0 < wy, ..., wy < 7 tels que

Matgg(u) = Diag(Ip, —Iz, R(w1), ..., R(wy)).

L'entier q est pair si, et seulement si, u est une rotation.

Classifications des isométries vectorielles de 1’espace

17. Selon la dimension du sous-espace fixe

Si dim E = 3, on peut classer les isométries de 1’espace en fonc-
tion de la dimension du sous-espace fixe V., = Ker(u — If).

171 Sidim V4 = 3,alorsu = If.

17.2  Sidim V} = 2, alors u est une réflexion représentée dans
une base orthonormée convenable par la matrice

1 0] 0
0 1| 0
0 0| -1

16.2

17.3 Sidim V. =1, alors u est une rotation et il existe un angle
0 < 0 < 7t tel que la matrice de u soit

Rx(6) = ((1) R?G))

dans une base orthonormée convenable.
174  Sidim Vy = 0, alors il existe 0 < 6 < 7 tel que, dans une
base orthonormée convenable, la matrice de u soit

(Bl R?G)) - (Bl ﬁ) ((1) R?Q))
- ((1) R?G)) (_01 102)

Cette isométrie est la composée d’une rotation et d'une réflexion
qui commutent.

18. Isométries diagonalisables
En dimension 3, les isométries diagonalisables sont les suivantes.
— L’identité Ig.

— Les réflexions.

— Lesrotations d’angle 8 = 7, c’est-a-dire les demi-tours d’axe
V., appelés aussi symétries axiales.

— La symétrie centrale — 1.
19. Selon le déterminant
Sidim E = 3, on distingue :

— Les rotations (detu = 1);

— Les réflexions et les composées d"une rotation et dune ré-
flexion (detu = —1).

1.3 Méthodes pratiques
Matrice d’une rotation en dimension 3

20. Soient 6, un réel; n, un vecteur unitaire d"un espace eucli-
dien orienté E de dimension 3 et u € SO(E), la rotation d’angle 6
autour de la droite vectorielle dirigée et orientée par n.

201  Ona:u(n) =net
Vxe (R-n)", u(x)=cosf x+sinb-(nAx)
20.2  Plus généralement,

Vx€E u(x)=(n|x) -n+cosf-(x— (n|x) - -n)
+sinf- (nAx)

ce qui permet d’écrire la matrice de 1 dans une base orthonormée

directe quelconque.

Analyse d’une rotation en dimension 3

21. Soit u, une isométrie de R3 représentée dans une base or-
thonormée directe par une matrice orthogonale A € O3(R) :

AT A=1.
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211 On vérifie qu’il s’agit d"une matrice de rotation en calcu-
lant une matrice colonne N € M3 1 (RR) telle que

AN=N e N'N=L
Cette colonne représente un vecteur unitaire n qui dirige 1’axe de
la rotation u.
Il reste a déterminer le réel 6 (unique modulo 27) tel que u soit la
rotation d’angle 6 autour de la droite orientée par n.
212 On choisit une matrice colonne V € M1 (R) qui repré-
sente un vecteur unitaire v orthogonal a n :

NT.V =0, viv=1

213  Avec w = n Awv, la famille ) = (n,v, w) est une base
orthonormée directe. La matrice de u relative a cette base est

1 0 0

0 cosf® —sinf

0 sinf  cosf

Par conséquent, tr(A) =1+ 2cos0 et

0
cosf| = sin6.

1 0
det(N,V,AV) = detg, (n,0,u(v)) = |0 1
0 0 sinf

214 Une autre méthode d’étude est présentée au [120].
Entrainement
22. Questions pour réfléchir

1. Une matrice M € M, (R) telle que det M = =+1 est-elle
une matrice orthogonale?

2.a La matrice I;; est une matrice de rotation.

2.b La matrice —I,, est-elle une matrice de rotation ?

3. SidetM =1, la matrice M est-elle une matrice de rota-
tion?

4. SidimE = 3, quelles symétries orthogonales sont aussi des
rotations ?

5. Une réflexion peut-elle &tre une rotation ?

6.  Matrice d'une symétrie orthogonale relative a une base or-
thonormée quelconque; a une base orthonormée adaptée aux sous-
espaces propres.

7. Si une isométrie u € O(E) est diagonalisable, alors u est
une symétrie.

8.  Expliciter une matrice orthogonale P telle que

Diag(1,1,~1) = P".Diag(—1,1,1).P.
Est-il possible de choisir P de telle sorte que detP =17
9.  Suite de [17] -

9.a Les matrices Ry (6) et Ry(—0) sont-elles semblables?
9.b Etudier I'existence d'une matrice P € SO, (R) telle que

Ry(—0) = PT.R(6).P.

Interpréter géométriquement.
10.  Suite de [20] — Si u # Ig, alors il n’y a que deux couples

(n,0) € Ex [—m, 7]
possibles et ils sont opposés. Interpréter géométriquement.

11.  Suite de [21] - Si A € O3(R) et si I'équation AN = N
n'a que le vecteur N = 0 pour solution, que dire de la matrice A?
23. Soit 1, un endomorphisme de E tel que

uouou=u.

Le sous-espace F = (Ker u) est stable par u et I"endomorphisme
induit par restriction de 1 a F est une isométrie.

24. Matrices de rotation

L'espace R3 est muni de sa structure euclidienne orientée cano-
nique. Les matrices suivantes représentent, dans la base cano-
nique, la rotation d’angle 6 autour de la droite vectorielle orientée
par le vecteur n. —[20], [21]

241 Pourf="/zetn=(1,-1,1):
2 -2 -1
1 1 2 -2
3\ 1 2
242 Pourf="/3etn=(1,1,0):
1 (3 1 Ve
A 3 —V6
-V6 V6 2
243 Pourel? = 3+T4i etn=(0,—-1,2):
1 (15 —8V5 —45
% 8v/5 17 —4
45  —4 23
244 Poure? =+ etn = (1/2,0,1):
1 [ 14 —3v3 V2
5 33 12 —3v6
V2 36 13
245 Pourb = "T/getn=(1,0,—1):
24+V3 V2 243
-2 23 =2
—2+V3 V2 243
246 Pourf =21/3etn = (1,0,2):
1 [ 2 -2V15 6
0 2v/15 -5 —V/15
6 V15 7
247 Pourf="Thetn=(1,1,1):
1 1-Vv3 1+V3
1+v3 1 1-38
1-v3 1+3 1
24.8 Poure? = L\/é' etn=1(0,1,1):
1 25 —2y/10 210
10 2V/10 5++5 5-/5
-2V/10 5-+5 5445
249 Pourf =37/yetn=(-2,0,1):

0 V10 —-5v/2
—4-22 —2V10

—4-2\2
2v/10
2442

25. Soit 6 € R*. La matrice

M(6) = (1 + 6 cos26

—Bsin 26

—0sin 20
1 —6cos26

est-elle diagonalisable ?

16.3
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26. Soient u € O(E) etv =u —If.
261 Comme Kerv = (Imov)!, pour tout vecteur x € E, il
existe deux vecteurs y € Kerv etz € E tels que
2 2 2
x=y+o(z) et |x][”=yl"+ o)

Le couple (y, z) est-il unique? Que valent u(y) et ||u(z)]|?

26.2  Lasuite de terme général
1 &
=Y uf(x)
=

converge vers le projeté orthogonal de x sur Kerv.
27. Soient A et B, deux matrices de M 4(R) telles que

AT.A=BT.B.

On note f (resp. g), 'application linéaire de RY dans IR? canoni-
quement associée a la matrice A (resp. a la matrice B). Les espaces
RY et R” sont munis de leurs structures euclidiennes canoniques
respectives.

271 Quels que soient les vecteurs x et y de R,

(fE[f@)) = (ex)[8W))-

Les sous-espaces vectoriels Ker f et Ker ¢ sont égaux.
Si (f(xk)); <<, €st une base orthonormée de Im f, alors

27.2
27.3

(xk)1<k<r est une famille libre de R7 et (g(xx))

orthonormée de Im g.
27.4 1l existe une matrice orthogonale U € Op(RR) telle que
A = UB.

1<ker est une base

164

II

Théoréme spectral

28. Rappels
On consideére un espace euclidien E dont le produit scalaire est
noté (-|-).

28.1  L'adjoint d’un endomorphisme u de E est I'unique endo-
morphisme u* de E tel que
V(xy) eExE, (x|u(y)) = (u"(x)]y).

28.2  Un endomorphisme u de E est dit auto-adjoint (ou sy-

métrique) lorsqu’il est égal a son adjoint u*, c’est-a-dire :

(u(x)|y) = (x[u))-

28.3  En général, un projecteur p possede deux sous-espaces
propres : son noyau

V(x,y) € EXE,

Kerp =Ker(p —0-Ig) = Im(Ig —p)
et son image
Imp = Ker(Ig —p) = Ker(p — 1 -1f).
Ces sous-espaces vectoriels sont supplémentaires dans E :
E=Kerp®Imp
et la décomposition de chaque vecteur est connue :

VxeE  x=[x—px)]+p).
28.4  Par définition, un projecteur p € L(E) est une projection
orthogonale si, et seulement si, les deux sous-espaces vectoriels

Kerp et Imp = Ker(p — 1)
sont orthogonaux. On connait alors une décomposition de E en
somme directe orthogonale :

L
E =Kerp ®Ker(p —If).

Propriétés des endomorphismes auto-adjoints

29. = Un projecteur p € L(E) est une projection orthogonale si, et
seulement si, I'endomorphisme p est auto-adjoint.

30. = S’il existe une base orthonormée de vecteurs propres pour u,
alors u est un endomorphisme auto-adjoint.

31. Sous-espaces stables

311 = L'endomorphisme induit par restriction de u € S(E) a un
sous-espace F stable par u est un endomorphisme auto-adjoint de F.
312 Siu(x) ety sont orthogonaux, alors x et u(y) sont ortho-
gonaux.

31.3 = Siu est un endomorphisme auto-adjoint de E, alors

1
E =Keru & Imu.

31.4 = Les sous-espaces propres d'un endomorphisme auto-adjoint
sont deux a deux orthogonaux.

31.5 = Si F est un sous-espace stable par u € S(E), alors F* est stable
par u.

32. Polynéme minimal

321 On consideére une matrice M € S,(R) comme une ma-
trice de M, (C) et un vecteur propre X € M, 1(C) de M associé
a la valeur propre A € C.

IX' X =(MX) X=X .MX=AX' X

32.2 = Le polyndéme minimal d'un endomorphisme auto-adjoint est
scindé dans R[X]. —[61]
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Versions géométriques du théoréme spectral

33. Soitu € S(E).
33.1  SiV est un sous-espace stable par u de dimension supé-
rieure a 1, alors il contient un vecteur propre de u.
332 SiVj, ...V, sont les sous-espaces propres de u, alors le
sous-espace
B A

F=[newna---av
est stable par u mais ne contient aucun vecteur propre de u.
33.3 = Tout endomorphisme auto-adjoint u d’un espace euclidien E est
diagonalisable et

1
E= € Ker(u—Alg).
A€Sp(u)

33.4  Décomposition spectrale
Pour tout endomorphisme auto-adjoint u,

Y. Am

A€Sp(u)

u =

ol p, estla projection orthogonale sur Ker(u — A Ir), sous-espace
propre de u associé a A. —[38.3]

Versions vectorielles du théoréme spectral

34. Rappels

Si un endomorphisme u de E est auto-adjoint, alors la matrice
Matgz (1) est symétrique, quelle que soit la base orthonormée %
deE.

Réciproquement, s’il existe au moins une base orthonormée % de
E telle que la matrice Mat (1) soit symétrique, alors I’endomor-
phisme u est auto-adjoint.

35. = Soit u € S(E). Il existe une base orthonormée de E constituée
de vecteurs propres de .

36. Soient u € S(E) et & = (gx)1<k<y, Une base orthonormée
de vecteurs propres de u. On suppose que les valeurs propres de
u sont rangées par ordre croissant :

/\1<)\2<"'<)\n-

36.1 Pour tout x € E,
n n
x=Y (eelx) g et ulx)=Y A(egl|x) -
k=1 k=1
36.2 Comme ;
2 2
2" =) (exlx)?,
k=1
alors

Al < (x| u(x)) < A x>

37. Soitu € S(E).
37.1 = Pour tout x € E, il existe une famille orthogonale (x ) yesp(u)

de vecteurs de E telle que

x= Y x
A€Sp(u)
et que
VA €Sp(u), x, € Ker(u—A-Ig).
37.2  En particulier,
= ¥ Jal? et u@)= ¥ A-x.
A€Sp(u) A€Sp(u)
37.3  Onen déduit que
2
(xlu(x) = X Allxall
A€Sp(u)
et que

2
2 2
Y Alal® < ( max [A) [l
AeSp(u) A€Sp(u)

(o) |* =

Versions matricielles du théoréme spectral

38.1 = Pour tout endomorphisme u € S(E), il existe une base ortho-
normée By de E telle que Mat g, (1) soit diagonale.

38.2 = Pour toute matrice symétrique réelle A, il existe une matrice
orthogonale P € Oy (R) telle que P . A.P soit diagonale.

383  Soientu € S(E) et By = (¢1,...,€n), une base orthonor-
mée de E constituée de vecteurs propres de u. Pour toute base
orthonormée %,

n
mat@(u) = Z )\ka.XkT
k=1

ol A est la valeur propre de u associée a ¢ et X = Matg(ex).
384  Soientu € S(E) et %, = (ey,...,ey), une base orthogo-
nale de E constituée de vecteurs propres de u. Pour toute base
orthonormée %,

oYY,
Matgg(u) = Y Ap——%
=Y v

olt Ay est la valeur propre de u associée a ¢y et Yy, = Matg(ey).

Entrainement

39. Questions pour réfléchir
1. Si M est une matrice symétrique et s'il existe une matrice
orthogonale P telle que

- (A, B
= (4 1),

alors B = 0 et les matrices A1 et A, sont symétriques. (Par un
calcul direct ou en appliquant [31.5] et [31.1].)

2. Suite de [31.5] — On suppose que dimE = 2 et que x est
un vecteur propre unitaire de u € S(E). Si y est un vecteur unitaire
orthogonal a x, alors (x,y) est une base orthonormée de vecteurs
propres de u.

3. Soient u € S(E), un endomorphisme auto-adjoint et 4,
une base de vecteurs propres de u. Cette base est-elle nécessaire-
ment orthonormée ? Est-elle nécessairement orthogonale 7

4. Un endomorphisme u € L(E) est auto-adjoint si, et seule-
ment si,

L
E= € Ker(u—Al).
A€Sp(u)
5. Suite de [37.2] -
mini(u(x) |2x) =A maxi(u(x) |2x) = A
b "l

6. Un endomorphisme u de E est auto-adjoint si, et seule-
ment si, il existe une base orthonormée de E constituée de vecteurs
propres de u.

7. Si A € Sy(R) est semblable a la matrice diagonale A,
combien existe-t-il de matrices P € O, (RR) telles que

PTAP=A ?
8. La matrice symétrique
a=(] 1) em@)
n'est pas diagonalisable. Comparer avec [38.2].
9. Une matrice M € 9, (R) est symétrique si, et seulement
si, il existe des matrices Py, P, ..., Pr dans M, (R) telles que

M € Vect(P, 1 < k <r) avec

{ V1i<k<r, P}=P.=Dp/
V1<j<k<1’l, Pjpk:PkPjZO

16.5
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40. Soit A € M, (R), telle que A.AT.A = I,. La matrice A
est inversible et comme son inverse est symétrique, elle est elle-
méme symétrique et A = I;;.

41.  Soit A € GL,(R) telle que A2+ AT = I,,.

Comme A = I, — (AT)?, alors

(A—1,) (A2 + A —I,) = Oy

et comme 1 n’est pas valeur propre de A, alors la matrice A est
symétrique.

42. Soit A € M, (IR), la matrice dont tous les coefficients sont
nuls, sauf

V1i<i<n, Ajit1 = Aiy1,i = 1.

La matrice A est diagonalisable et posseéde n valeurs propres
deux a deux distinctes.

43, Pour toute matrice A € M, (R), —[66]
Ker AT.A =KerA, ImAT.A = (Ker A)L,
KerA.A" = (ImA)*, ImA.AT =ImA

et en particulier

rg(AT.A) =1g(A.AT) =rg(A).
44. Soit E, un espace euclidien. Tout endomorphisme auto-

adjoint v € S(E) est continu : il existe une constante K > 0 telle
que

Vx€eE, (x| <K|x|.

45. Soient U € M, 1(R), une colonne non nulle, et & € R*.
La matrice
A=1I+aUU"

est diagonalisable. Préciser ses éléments propres.

46. Codiagonalisation d’endomorphismes auto-adjoints
Soient f et g, deux endomorphismes auto-adjoints.

1.  S’il existe une base de E constituée de vecteurs propres a
la fois pour f et pour g, alors fog =go f.

2. On suppose que fog = go f. Pour tout A € Sp(f), on
note g,, I'endomorphisme induit par restriction de g au sous-
espace

Ef = Ker(f — ATg).
Tout vecteur propre de g, est aussi un vecteur propre de f. Il

existe une base orthonormée de E constituée de vecteurs propres
a la fois pour f et pour g.

47. Endomorphismes contractants [37.2]
Soitu € S(E).
471
min ||u(x)|| = min [A], max [u(x)|| = max [A]
[x=1 AeSp(u) [lx[=1 A€Sp(u)
47.2  Pour tout polyndme P € R[X],

VxekE, |[P(u)(x)]]< max [P(A)][x].

A€Sp(u)

47.3  Un endomorphisme auto-adjoint u est contractant :

Vx €E, [lu() || < Jlx]]
si, et seulementsi, Sp(u) C [—1,1]. Il est strictement contractant :
ViA0,  [u@)] < sl

si, et seulement si, Sp(u) C |—1,1].
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48. Les espaces R" et M, (IR) sont munis de leurs struc-
tures euclidiennes canoniques respectives. On considere la ma-
trice K, € My, (R) définie par K, (i,j) = 1si|i—j| = 1et
Ky (i,j) = 0 sinon.

48.1 Il existe une base orthonormée (Uy)i<k<, de R" et des
réels (Ag)1<k<y tels que

Vlgkgn, Knuk:)\kuk.

48.2  L'endomorphisme T de My, (RR) défini par

VMeM,(R), T(M)=K,M+MK,+M

est diagonalisable.
483  La famille (V;)1<;i<n =
thonormée de M, (R) constituée de vecteurs propres de T.
49. Soit A € S, (RR), une matrice telle que

-
(ui.uj )1<ij<n €st une base or-

n
V1<ij<n, a;>0 et V1<i<n, Ziai,]-:l.
]:

On admet que dimKer(A — I,;) = 1 et on note

VX em,(R), [X|= .
eMm,1(R), [IX] g%\le

1. Déterminer Ker(A — I,).
2. Comme

vXem (R), [AX] <[X],

toutes les valeurs propres de A appartiennent au segment [—1, 1].
3. Lamatrice B = I, + A est inversible [5.11].
4. La suite de matrices (A” )peN converge vers une matrice

R semblable & E; ; = Diag(1,0,...,0).
50. L'espace E = R? est muni de sa structure euclidienne ca-

nonique. On note f, ’'endomorphisme de E canoniquement asso-
cié a la matrice

1 5 -5
A=|[5 3 -3
-5 -3 3
50.1  Le sous-espace F = (Ker f)* est stable par f et, avec
1
ur =(1,0,0) et up=-—-(0,1,-1),

V2

cet espace admet Z = (u1, uy) comme base orthonormée.
50.2  On note g, 'endomorphisme de F induit par restriction
de f. La matrice de g relative a la base % est égale a

11 52
572 6 )

50.3  Lamatrice A est semblable a Diag(0,1,16).

51. Soient u et v, deux vecteurs linéairement indépendants de
R". Ils sont représentés par les matrices colonnes U et V dans la
base canonique et on note f, l'endomorphisme de IR" représenté
par la matrice

A=L+uvi+vu’

dans la base canonique.
51.1  Leréel A est une valeur propre de f si, et seulement si, il
existe un vecteur x non nul tel que

A=1)-x= (x|u) v+ (x|v) -u
51.2  Sin > 3, alors le spectre de f est constitué des réels
Lo 14 (ulv) —lullllol, 14 (ulv) +ul/ o]

et la matrice A est diagonalisable.
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52. Soit A = (a;j)1<ij<n € Mn(R), la matrice de coefficients

Vlgi,jgn, Lli,]':l'+]'.
On note U et V, les matrices colonnes qui représentent les vec-
teurs

u=(1,1,...,1) et
dans la base canonique de R”".
521  Comme A = V.U" + U.VT, la matrice A est diagonali-
sable, I'image de A est engendrée par U et V et le noyau de A est
I'orthogonal de Im A.
522 Si X est un vecteur propre de A associé a une valeur
propre non nulle, alors il existe deux réels a et b tels que

X=al+0bV.

v=(1,2,...,n)

52.3  Les valeurs propres non nulles de A sont

(ulv) = [lufl o]
et les sous-espaces propres correspondant sont les droites diri-

gées par les vecteurs ||o|| U £ ||u| V.

53. Soit u € S(E). Pour tout entier impair p € N, il existe un,
et un seul, endomorphisme v € S(E) tel que v¥ = u.

54. Soit A € M, (R), une matrice nilpotente d'indice p. Si les

matrices A et AT commutent, alors la matrice symétrique AT.A
est nilpotente et la matrice A est nulle [43].

55. L'espace E = R, [X] étant muni du produit scalaire défini
par

1
YPQeE, (PIQ) = [ PR,

on considere 'application f définie par

VYPEE, f(P)= %(XZ —1)P" + XP' — P.

55.1  L’application f est un endomorphisme auto-adjoint de E
et sa matrice relative a la base canonique de E est triangulaire
supérieure. Pour tout entier 0 < k < n, il existe un vecteur propre
Py de f associé a la valeur propre

K +k-2
)
etdeg P, = k.
55.2  On note (Ty)o<k<y, la base orthonormée de E déduite de
la base canonique par 1’algorithme de Gram-Schmidt. Alors, pour
tout entier 0 < k < n,

k

f(T) =Y (f(T)|T;) -Ti= (Te| f(Te) ) - Ti

i=0
et les polyndmes Py et Ty sont proportionnels.

56. Pour tout endomorphisme u d'un espace euclidien E,
I'application u* o u est un endomorphisme auto-adjoint et il
existe une base orthonormée (ex )1 <x<, de E telle que

Vi#j, (u(e)|ule)) =0.

57. Soient A € S, (R) et W, 'ensemble des vecteurs propres
unitaires de A (I'espace M, 1 (R) étant muni de sa norme eucli-
dienne canonique). On pose

VXEW, Fa(X)=mintr[(A—u-X.X")].

ueR
La fonction F4 atteint un minimum m(A) sur W et
m(A) = tr(A?) — p(A?)
ot p(A?) est le rayon spectral de A?, défini par
VMeM(R), p(M)=max{|A|, A €Sp(M)}.

58. Pour tout t € IR, on pose

1
0
t

A(t) =

—
[ g

58.1  Pour tout € R, la matrice A(t) est diagonalisable et ses
valeurs propres vérifient

a(t) <0< b(t) <2 <c(t).
58.2  Lorsque t tend vers +co,
p<at) <0<2-24<b(t) <2

donc c(t) =t+o(1).
59. L'espace R" est muni du produit scalaire canonique. On
consideére une matrice symétrique S € S, (RR) et 'application f :
R" — R définie par

VX eR", f(X)=X"S8X.

Les valeurs propres de S sont rangées par ordre croissant et
comptées avec multiplicité :

MSA < <A

59.1  Pour tout vecteur unitaire X € R",
/\1 < f(X) < )\n-
59.2  Quels que soient X et Y dans R”,
X+Y X-Y
T — _
2X .s.Y_f( 7 ) f( 7 )
59.3  En notant R, 'ensemble des couples (X, Y) de vecteurs
unitaires et orthogonaux de R”,
max |X'.8.Y|= M
(X,Y)ER 2

60.

1. Toutes les matrices de S, (IR) sont diagonalisables.

2. Parmiles matrices triangulaires supérieures strictes, seule
la matrice nulle est diagonalisable.

3. Si V est un sous-espace de 91, (R) dont toutes les ma-
trices sont diagonalisables, alors

n(n—i—l).

dimV <
im 5

61. Polynéme minimal de u € S(E)
Le polynéome minimal d’un endomorphisme auto-adjoint est
scindé dans R[X]. On peut démontrer ce fait sans recourir a la
notion de spectre complexe. —[32]
611 Soit f € S(V)oudimV = 2.

1. Le polynome caractéristique Cy de f € S(V) est de la
forme (X — a)(X — b) — c? et est scindé dans R[X].

2. Lepolynéme Cy admet une racine double si, et seulement
si, f est une homothétie.
612  Soit P, un diviseur irréductible de degré 2 du polynome
minimal de u € S(E).

3. L'endomorphisme P(u) n’est pas injectif et, quel que soit
le vecteur xo € Ker P(u), ce n’est pas un vecteur propre de u.

4. Si xgp est un vecteur non nul de Ker P(u), alors le sous-
espace vectoriel

V = Vect(x, u(xp))

est un plan stable par u.

5. Lepolyndme minimal de 'endomorphisme uy induit par
restriction de u a V est le polynéme P.

6. Conclure.
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III

Endomorphismes auto-adjoints positifs

62.1 # Une matrice symétrique A € S, (IR) est positive lorsque

VXeM,(R), X .AX=0.

L’ensemble des matrices symétriques positives est noté S, (R).

62.2 # Une matrice symétrique A € S,(R) est dite définie posi-
tive lorsque

VX em, (R)\{0}, X.AX>0.

L’ensemble de ces matrices est noté S;;*(R).
63.1 # Un endomorphisme auto-adjoint u € S(E) est positif lorsque

VxeE (x|u(x)) >0.

L’ensemble des endomorphismes auto-adjoints positifs de I'espace E est
noté S*(E).

63.2 @ Un endomorphisme auto-adjoint u € L(E) est défini posi-
tif lorsque

VxeE\{0e}, (x|u(x)) >o0.

L’ensemble des endomorphismes auto-adjoints définis positifs de E est
noté S**(E).

64. Les définitions matricielles [62] et vectorielles [63] sont
analogues et on peut préciser cette analogie. —[7.76]
64.1 Soient u € S(E) et %, une base orthonormée quel-
conque de E. Si u est positif (resp. défini positif), alors sa matrice
Matg (1) est symétrique et positive (resp. définie positive).

64.2  Soitu € S(E). S'il existe une base orthonormée de E telle
que la matrice Matz (1) soit symétrique et positive (resp. défi-
nie positive), alors u est un endomorphisme auto-adjoint positif
(resp. défini positif).

65. Exemples et contre-exemples
651 Ipe ST (E)
65.2  Un projecteur orthogonal est un endomorphisme auto-

adjoint [29] positif, mais n’est pas défini positif en général.

65.3  Une symétrie orthogonale est un endomorphisme auto-
adjoint qui n’est pas positif en général.

66. Pour toute matrice A € M, (R), les matrices B = AT.A
etC = A.AT sont des matrices symétriques positives: ~ —[71]

2
|AxIP
AT.X|I".

XTB.X =

VX € M1 (R),
n(R) {XTC.X:

Les matrices A'.A et A.AT sont définies positives si, et seule-
ment si, la matrice A est inversible.
67. Caractérisations spectrales

On note X! = [||x|| = 1], la sphere unité de E et on considere un
endomorphisme u € S(E), dont les valeurs propres sont rangées
par ordre croissant :

AM <Ay <o < Ap

67.1  Suitede [37.2] -
Al =min (x|u(x)), Ay =max (x| u(x
1=min (x[u(x)) r=max (x]u(x))
67.2  Variante [36]

Si A € §,(R), alors il existe une matrice P € O, (RR) telle que
P".A.P = Diag(ay,...,an).

Ennotant P".X = (y;)1<i<y, on obtient

N min X' .A.X = min &,

XT.X=1 1<k

XTAX=Y wqy? et . !
=1 max X .A.X = max ag.

XT.X=1 1<k<n
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67.3 = Un endomorphisme auto-adjoint u € S(E) est :

1. positif si, et seulement si, ses valeurs propres sont positives;

2. défini positif si, et seulement si, ses valeurs propres sont stric-
tement positives.
67.4 = Un endomorphisme auto-adjoint est défini positif si, et seule-
ment si, il est positif et inversible.
67.5 = Un endomorphisme auto-adjoint est défini positif si, et seule-
ment si, il existe un réel & > 0 tel que

VxeE (x|u(x)) =afx|>

Caractérisation des produits scalaires

68. On consideére un espace euclidien E : sur cet espace est dé-
fini un produit scalaire de référence: (-|-) et une norme, notée
[I]l, est associée a ce produit scalaire.

Nous allons nous intéresser aux autres produits scalaires définis
sur E.

69. Représentation matricielle d"un produit scalaire
Soit ¢, un produit scalaire quelconque sur E et Z = (e, ..
une base de E.

69.1  La matrice de Gram relative a la base % est la matrice I'
définie par [7.8]

'/el’l)/

= (4’(51’/ ej))1gi,]<n'

69.2  Quels que soient les vecteurs x et iy de E, respectivement
représentés par les colonnes X et Y dans la base %,

p(x,y) = XTIY.
69.3  La matrice de Gram I' d'un produit scalaire est symé-
trique et définie positive.
YV x 7é OE ’

69.4  Soit Q € GL,(R), la matrice de passage de la base # a
une base #'. La matrice I” = Mat 4 (¢) s’exprime en fonction de
la matrice I' = Mat z(¢) par la relation suivante :

XTI.X = ¢(x,x) >0.

I'=0'r.Q.
En particulier, si %’ est une base orthonormée pour ¢, alors
Q'Ir.Q=1, Ccestadire '=P'"P
ot P = Q7' = Mat(B — B).
70. Produit scalaire associé & une matrice A € S;*(R)
Soit A € S,/ "(IR), une matrice symétrique définie positive.
701 L’application

va=[(XY)~ XT.A.Y]

est un produit scalaire sur M, 1 (R).
70.2  Pour toute base # de E, il existe un produit scalaire ¢ sur
E dont la matrice de Gram relative a 4 soit la matrice A.

71. Factorisation d’une matrice A € S;/(R)

Soit A € S (R).

711 Il existe une matrice orthogonale Q et une matrice diago-
nale A € M, (R) telles que

A=Q".A%Q
et une matrice P telle que
A=PTP.
La matrice P est inversible si, et seulement si, la matrice A est
définie positive. —[66]

712 Si A € S,;"(R), alors I'algorithme de Gram-Schmidt ap-
pliqué au produit scalaire 1 4 [70.1] prouve 1’existence d’une ma-
trice triangulaire inversible P telle que A = P'.P.

71.3  Une application ¢ : E x E — R est un produit scalaire
si, et seulement si, il existe un automorphisme u de E tel que

V(x,y) €EXE,  o(xy) = (u(x)|u(y)).
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Entrainement

72. Questions pour réfléchir

1. SiAcS,(R), alors A% € S;(R).

2. Si A€ S;(R), alors les coefficients diagonaux de A sont
tous positifs.

3. Un endomorphisme auto-adjoint u est positif si, et seule-
ment si, pour tout x € E, I'angle formé par le couple (x,u(x)) est
un angle aigu.

4. L'ensemble S*(E) est-il un espace vectoriel ?

5. L'ensemble S*(E) est une partie convexe de L(E) et un
céne positif :

V (Au) ERye XxST(E), A-ueS(E).

6.  Un endomorphisme auto-adjoint défini positif est positif et
inversible.

7. On suppose connue une décomposition de E en somme di-
recte orthogonale :

€
E= P F.
1<k<r

On note pyq, ..
de E.

7.a Les pr, 1 < k < r, sont des projecteurs orthogonaux tels
que

., Pr. les projections associées a cette décomposition

V1<k<£<7’l, Pkopé:PéOPkZO-
7.b Tout endomorphisme u € Vect(py, 1 < k < r) est auto-
adjoint. Condition pour que u soit positif? défini positif 7

73. Soient A et B, deux matrices appartenant a S, (R).
1. Lamatrice A + B est symétrique et positive.
2. SiA €S (R) alors A+ Be S (R).

74. Si la matrice symétrique

B C
A= o)
est définie positive, alors det B > 0.
75. Soit A € M, (R). La propriété

VXeM(R), X.AX>0

est vraie si, et seulement si, les valeurs propres de la matrice B =
AT + A sont toutes positives.

76. Matrice de Hilbert
La matrice de Gram relative a la base canonique de E = Ry [X]
du produit scalaire défini par

1
VP,QeE (PIQ) = [ PQM)dt
est la matrice

1

a (1’ +j+ 1)ogi,]<n'
Cette matrice H est diagonalisable.
Pour U € M, 11(IR), lescalaire U " .H.U peut s’exprimer comme
I'intégrale d"une fonction positive, donc les valeurs propres de H
sont strictement positives.
77. Base orthogonale commune [69.4]
Soit ¢, un produit scalaire sur E. Notons ¢g = (-|-), le produit
scalaire de référence.

771  Si % est une base orthonormée pour ¢, alors
Mateg, (o) =1 et Matg (¢) =T € S;"(R).
77.2 Il existe une matrice orthogonale Q et une matrice diago-

nale A telle que

Q'r.Q=A.
77.3  La matrice Q est la matrice de passage de la base %, a
une base 4. Comme —[69.4]

Matg(po) = In et Matg(p) = A,

alors la base # est simultanément une base orthonormée pour ¢,
et une base orthogonale pour ¢.

78. Soient A € S;;*(R) et B € S, (R). Lapplication
o= [(X, Y) XT.A.Y]
est un produit scalaire sur M, 1 (R) et comme l’application
[X — (A*lB).X}

est un endomorphisme auto-adjoint de M, ; (R) pour le produit
scalaire @, la matrice (A~!B) est diagonalisable.

79. Soient A et B, deux matrices symétriques réelles. On sup-
pose que la matrice B est définie positive.

79.1  L'application ¢p définie par

VX, YeEM,(R), ¢p(X,Y)=X"BY

est un produit scalaire sur M, 1 (R).

79.2 1l existe une matrice diagonale D, dont les coefficients
diagonaux sont strictement positifs, et une matrice orthogonale
P telles que

B=P.D.P'.

1l existe une matrice symétrique et inversible L telle que B = L2.
79.3 Il existe une matrice symétrique réelle C telle que

AX = ABX <= C(LX) = A(LX)

pour toute matrice colonne X et tout réel A.
79.4 1l existe une base (ex)1<k<y de M, 1(R), orthonormée

pour le produit scalaire ¢p, et des scalaires réels Ay, ..., A, tels
que

Vlgign, Ael':)\l'BEi.
80. Décomposition spectrale d"une matrice symétrique

Soit (Ax)1<k<r le spectre d’une matrice A de S;;(R).
1. Il existe des matrices (Py); <<, telles que

;
Q(A) = Y. QUM P

k=1
pour tout polynéme Q € R[X]. En particulier, la matrice A est
une combinaison linéaire de matrices symétriques positives :

r
A=Y AP/ B
k7

=1

2. Pour tout X € M, 1 (R),

.

2 2
Yo IPeX " = [1X1°
k=1

81.1  Pour toute matrice A € S;/(R),
1/n 1
(detA)V" < Etr(A).
81.2  Pour toute matrice M € M, (R),
tr(M".M)\"
|det M2 < (M)

n

82. Soit A € M, (R), une matrice antisymétrique.

1. Quelle que soit la matrice colonne X,
XT.AX=0.

2. SiB e S;*(R), alors la matrice A + B est inversible.

83.1  Si A est une matrice antisymétrique réelle, alors exp(A)
est une matrice de rotation.

832 Pour A € Su(R), comparer les spectres et les sous-
espaces propres de A et de exp(A).
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84. Racine carrée d"un endomorphisme auto-adjoint positif
Tout endomorphisme v € S*(E) tel que v> = u est une racine
carrée de u € S*(E).

1. Onsuppose qu’il existe une racine carrée v de u.

1.a  Si Fy est le sous-espace propre de v associé a la valeur
propre ji, alors Fi contenu dans un sous-espace propre deu. A
quelle valeur propre de u ce sous-espace est-il associé?

1.b Chaque sous-espace propre de v est aussi un sous-espace
propre de .

2. Il existe une, et une seule, racine carrée de u.

3. Interprétation matricielle.

85. Factorisation de Cartan
Soit A € GL,(RR). Il existe une matrice S € S,/*(R) telle que
S% = AT.A [84] et une matrice orthogonale O € O, (R) telle que

A =0S.

Cette factorisation, analogue de la représentation trigonomé-
trique des nombres complexes, est unique.

86.  Soient A € S;"(R) et B € M, (R). On suppose que le
rang de la matrice B est égal a m.

86.1  L'entier n est supérieur a I’entier m.

86.2  Lenoyau de la matrice

A B
C:(BT 0>

est réduit a la colonne nulle. La matrice C est-elle inversible ?
87.1  Lamatrice S est symétrique et définie positive si, et seule-
ment si, il existe une matrice inversible P telle que S = P.PT [71].
872  Quelles que soient S € S,;"(R) et T € S,(R), la matrice
ST est semblable a une matrice symétrique réelle et donc diago-
nalisable.
87.3  Si A est diagonalisable, alors il existe S € S,;"(R) telle
que

T=5"1As.

Etudier la réciproque.

88. Double produit vectoriel

Soita € R3, un vecteur unitaire. Comme
V(xy) eR*xR? ((aAx)Aaly) = (anx|any)

I'endomorphisme f =

mais pas défini positif.

Reconnaitre f al’aide de la formule du double produit vectoriel :

[x — (a A x) Aa] est auto-adjoint, positif

uh(wAw)= (u|w) v— (ulv) -w.

89. Soit A = (A;)1<ij<n € S (R). On suppose que les coef-
ficients A; ; sont tous différents de 0 et on considere la matrice

1
B = Bipheijen = ().
( 1,])1<1,]<n Ai,j 1<ij<n
89.1 SirgA =1, alors B € S;;(R).
89.2  Sirg A > 2, alors il existe deux indices 1 < i < j < n tels
que

ao= (G 41} e spm),

Aji - A
Le déterminant de la matrice

b:: b
By — ii ij
0 (bj,i bm‘)

est strictement négatif, donc il existe un couple (x;, x;) # (0,0)

tel que
X
X; Xj)B ’> <0
(1 ]) 0<xj

et la matrice symétrique B n’est pas positive.
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90. Soit A € S,(R), une matrice dont les valeurs propres
sont strictement positives. On les note :

0< A <A<

eton pose kg = \/m

90.1 Il existe une matrice orthogonale P telle que les matrices
P~1AP et P~ A~1P soient diagonales.

“S A

90.2  Quels que soient les réels vy, ..., Yu,
n 2 n noq
2) < 42 —2
(;%) < (;Az%)(i; Ai%)
donc
[X]1> < [(XT.AX)(XT.A71.X)]1/2
pour tout X € My, 1 (R).
90.3 EnposantY = PT.X = (y1,---,yn),ona:
noA. oA
T T A1 x) =2 22 21,2
(XT.AX)(XT.A .X)—KA<; Any’)<§1 Al-y1>
donc
[(XT.AX)(XT.ATLX)V2 < Ki‘i[ ]
\ 2 = ;
<A e,



IV FORMES QUADRATIQUES

v

Formes quadratiques

91. Soit E, un espace vectoriel réel (de dimension quel-
conque).
91.1 # Uneapplication q : E — R est une forme quadratique lors-
qu’il existe une application bilinéaire symétrique ¢ : E x E — R telle
que

Vx€E, g(x) = @(x,x).

91.2 = L'ensemble des formes quadratiques sur E est un sous-espace
vectoriel de I'espace des applications de E dans R.

91.3  Sila dimension de E est finie, toute forme quadratique
sur E est une application continue.

91.4  Sig est une forme quadratique sur E, alors

VAER, Vx€E, gq(Ax) =A%q(x)
et 'application

og=[(x,y) = q(x+y)—gq(x-y)] : EXE—=R

est une forme bilinéaire symétrique.
91.5 # Soit q : E — R, une forme quadratique. L'unique forme bili-
néaire symétrique ¢ : E x E — R telle que

Vx €E, g(x) = ¢(x,x)

est ln forme bilinéaire symétrique associée 1 4.

92. On peut définir des formes bilinéaires symétriques sur un
espace vectoriel E, quel que soit le corps de base IK.

92.1  Le lien entre formes bilinéaires symétriques et formes
quadratiques n’est assuré que si la caractéristique du corps K est
différente de 2 (c’est-a-dire si on peut diviser par 2).

92.2  Seulesles propriétés relatives au signe sont spécifiques au
corps K = IR.

93. Exemple fondamental

Soient f et g, deux formes linéaires sur E.

93.1  L’application

v=[(xy) — f(x)gy)] : EXE—=R

est une forme bilinéaire sur E.
93.2  L’application

¢=I[xy)— oxy) +ex)]: EXE—=R

est une forme bilinéaire symétrique sur E.
93.3 = L'application

g=[x—fx)gx)] : E=-R

est une forme quadratique sur E.

93.4 > Quels que soient les scalaires réels wy, ..., &y, quelles que soient
les formes linéaires fy, ..., fu sur E, I'application q : E — R définie
par

VyxeE,  q(x)= i P [fk(x)]z

k=1
est une forme quadratique sur E.
93.5  Siles formes linéaires fi, ..., f; sont linéairement indé-
pendantes, on dit que la forme quadratique g est décomposée en
carrés.

94. Cone isotrope
Soit g, une forme quadratique sur E.
941 Lensemble C; = {x € E : q(x) =0} estun cone de E.
94.2 #o L'ensemble
{x € E : q(x) =0}

est le cone isotrope de la forme quadratique q.

94.3 #v La forme quadratique q est dite définie lorsque son cone iso-
trope est réduit au vecteur nul.

94.4  Suitede [93.4] - Si la forme quadratique g est décomposée
en carrés, alors le cone isotrope de g contient l'intersection des
hyperplans Ker fy pour 1 < k < n.

95. Dégénérescence
On considere une forme quadratique g et la forme bilinéaire sy-
métrique ¢ qui lui est associée.
95.1 #» Deux vecteurs x et y sont conjugués pour la forme ¢ lorsque
(P(xr y) =0.
95.2 #1 Le conjugué d'une partie A C E est I'ensemble A° C E défini
par

A'=Ix€cE:VyeA ¢(xy) =0}

953  Quelle que soit la partie A, le conjugué A° est un sous-
espace de E.

95.4 #» Un sous-espace vectoriel F de E est dit non isotrope pour la
forme quadratique q lorsque

FNFY = {0}

95.5  Le sous-espace F est non isotrope si, et seulement si, la
restriction a F de la forme quadratique g est non dégénérée.
95.6 # Un sous-espace vectoriel F de E est dit totalement iso-
trope pour la forme quadratique q lorsqu’il est contenu dans son conju-
gué:

FcCF.

95.7  Le sous-espace E est contenu dans le cone isotrope de g
et totalement isotrope.

95.8 4 La forme quadratique q est dite non dégénérée lorsque le
sous-espace

E'={x€E:VyeE ¢(xy) =0}

est réduit au vecteur nul.

95.9  Sila forme quadratique q est définie [94.3], alors elle est
non dégénérée.

96. Signe d’une forme quadratique

96.1 4 Une forme quadratique q est positive lorsque

VxeE, q(x)=0.

Elle est définie positive lorsque

VxeE\{0}, gq(x)>0.

96.2 #v Une forme quadratique est dite négative (resp. définie néga-
tive) lorsque la forme —q est positive (resp. définie positive).

96.3  Une forme quadratique définie positive (ou définie néga-
tive) est définie au sens de [94.3].

Représentation matricielle

97. On identifie ici les espaces vectoriels R” et M, 1 (R) en ne
distinguant pas le vecteur x € R" et la colonne X € M, 1 (R) qui
représente x dans la base canonique de R".
971  Si A € M, (R) vérifie
VXER", XT.AX=0,
alors A est antisymétrique.
97.2  Si A et B sont deux matrices symétriques réelles telles que
VXeR" X' AX=X'"BX,
alors A = B.
97.3 = L'application q : R" — R est une forme quadratique sur R"
si, et seulement si, il existe une matrice A € Sy (R) telle que
VXeR", g(X)=XT.AX.
974  La forme quadratique g est positive (resp. définie posi-
tive) si, et seulement si, la matrice symétrique A est positive (resp.
définie positive).
97.5  La forme bilinéaire symétrique associée a g est ’applica-
tion
nyw»XTAy]

16.11



ESPACES EUCLIDIENS (DEUXIEME PARTIE)

98. Exemples

98.1 La forme quadratique [(u,v,w) u? 4+ 302 + 2w2] est
définie positive.

98.2 Forme de Lorentz

La forme quadratique

q= [(x,y,z, t) — o y2 — zz]

n’est ni positive, ni négative.
98.3  La forme quadratique g définie sur R3 par
q(u,0,w) = 5u* + 20% 4+ w? — 2uv + 2uw + 2ow
= (u+v+w)?+ (2u—0v)?

est positive, sans étre définie positive.
98.4  La forme quadratique g définie sur R3 par

g(u,v,w) = (u— U)Z + (v— w)2 + (w— u)2

est positive, sans étre définie positive : (1, v, w) = 0 si, et seule-

mentsi, u = v = w.
98.5  La forme quadratique sur R? définie par

Vx=(u0) € R? gq(x)=u®+6uv+v?
= (u+3y)* -8
n’est ni positive, ni négative et il existe des vecteurs x # 0 tels

que g(x) = 0.
98.6  Laforme quadratique sur R3 définie par
Vx=(uo0w) €R3 q(x)=uv+ow+wu

est représentée par la matrice

A=

N =
[ )

1
0
1

(SR

dans la base canonique de R?. Elle n’est ni positive, ni négative.

99. Formule de changement de base

Soient Z = (ex)1<k<n €t € = (€k)1<k<n, deux bases de E. On
note P € GL,(K), la matrice de passage de # a ¢.

99.1  Une forme bilinéaire symétrique ¢ sur E est représentée
dans la base % par la matrice

Q= (@(Ek/ EZ))lgk,ggn € Su(K).

Dans le cas d"un produit scalaire, on reconnait la matrice de Gram
du produit scalaire.

99.2 => La forme bilinéaire symétrique ¢ est représentée dans la base ¢
par la matrice

Q' =PT.Q.P.

99.3 @ Deux matrices A et B de M, (IK) sont dites congruentes lors-
qu'il existe une matrice inversible P € GL,, (IK) telle que

B=PT.AP.
99.4  Deux matrices congruentes ont méme rang.
99.5  La relation de congruence est une relation d’équivalence
sur M, (K).
100.  Groupe orthogonal

Soient E, un espace vectoriel sur K et ¢, une forme bilinéaire sy-

métrique sur E.

100.140 Un automorphisme u € GL(E) est dit p-orthogonal lorsque
Vx,y€E oux),uy) =y

100.2—> L'ensemble Oy (E) des automorphismes ¢-orthogonaux de E
est un sous-groupe du groupe GL(E).
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100.3 Supposons que E soit un espace de dimension finie et
considérons une base Z = (ex)1<k<, de E. On note O € S, (K),
la matrice qui représente ¢ dans cette base 4.
Un automorphisme u de E est g-orthogonal si, et seulement si, sa
matrice

M= Qﬁutgg(u)
vérifie :

MT.QM=Q.

Existence d’une base conjuguée

101.  Soient E, un espace vectoriel sur KK et ¢, une forme bili-
néaire symétrique sur E.
Pour x et y dans E, on notera (x | ¢ | y) au lieu de ¢(x,y). On
notera donc

loly)
I'application partielle [x — (x | ¢ | y)].

102.  On considere un sous-espace vectoriel F de E, en suppo-
sant que la dimension de F est finie.

102.1 Lesespaces vectoriels F et F* = L(E, K) sont isomorphes.
102.2  Sile sous-espace F est non isotrope [95.4], alors 1’applica-
tion

v=lely)]
est un isomorphisme de F sur F*.
102.3 Dans ces conditions, pour tout vecteur uy € E, il existe
donc un, et un seul, vecteur xy € F tel que

VyeF, (uwlely)=(ol¢ly

etug—xp € FO.
102.4=> Pour tout sous-espace vectoriel F de E de dimension finie et non
isotrope,

E=FaF.

103.  On suppose que E est un espace vectoriel de dimension
finie sur un corps KK dont la caractéristique est différente de 2.
On considére une forme bilinéaire symétrique ¢ et la forme qua-
dratique g associée a ¢.

103.1 Notion de base conjuguée

Les vecteurs d’une base % de E sont deux a deux conjugués si, et
seulement si, la matrice de ¢ relative a % est diagonale.

103.2  Si la forme quadratique g est identiquement nulle, alors
toute base de E est conjuguéee.

103.3  Sinon, il existe un vecteur €7 tel que q(e1) # 0 et la droite
D = K - 1 est un sous-espace non isotrope :

E=K-¢ @D
Si (e )2<k<n est une base conjuguée de DY, alors la famille

(k) 1<k<n

est une base conjuguée de E.

103.4=> II existe une base de E conjuguée pour ¢.

103.5 Toute matrice symétrique est congruente a une matrice
diagonale.

Formes quadratiques sur un espace euclidien

104.
104.1

Soit E, un espace euclidien.
Siu € S(E) vérifie

Vx€E, (x|u(x)) =0,
alors u est I’endomorphisme nul.

104.2=> Une application q : E — R est une forme quadratique sur
E lorsqu'il existe un endomorphisme auto-adjoint u € S(E) tel que

q(x) = (xu(x)).

104.3 La forme quadratique g est positive (resp. définie posi-
tive) si, et seulement si, 'endomorphisme u € S(E) est positif
(resp. défini positif).

Vx€eE,
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105.  Exemples
Soit E, un espace euclidien.
105.1 Pour tout endomorphisme u € L(E),

nie par
Vx €E, x) = Hu(x)”2

est une forme quadratique positive sur E. Elle est définie positive
si, et seulement si, I'endomorphisme u est injectif.
105.2  Pour tout endomorphisme u € L(E), I'application g défi-

nie par
VxeE,  g(x)= (x|u(x))

est la forme quadratique sur E associée a (u +u*)/2 € S(E).
105.3  Soit g, une forme quadratique. Pour tout endomorphisme
u de E, I'application g o u est une forme quadratique.

105.4 Quels que soient les vecteurs a et b de E, les applications

l'application g défi-

[x— (alx)?] et q=[x~ (alx)- (b]x)]

sont des formes quadratiques sur E. La forme g est associée a
I'endomorphisme auto-adjoint u défini par

VyeE u(y)= (bly) -a+ (aly) b
105.5 L'application q définie par
1
a(P) = [ POP()
/ / 1 / 2
— P(1)P'(1) — P(0)P (0)—/0 (P'(1)) dt

est une forme quadratique sur E = R, [X]. Est-elle positive?

105.6 L'application q définie sur 91, (R) par
(M) = tr(M" M) + (tr M)?

est une forme quadratique définie positive.

106. Décomposition canonique en carrés

On considere la forme quadratique g, associée a un endomor-
phisme auto-adjoint u de E.

106.1 Il existe une base orthonormée = (ex)1<k<, de valeurs
propres de u et, en notant Ay, la valeur propre réelle associée au
vecteur propre ey,

Vx€E,

)= 3 A (exlx)?
k=1

106.2 Cette décomposition permet de comparer la forme qua-
dratique g a la norme euclidienne sur E.

. 2 2
VacE, ((min Ac) - x| < q(x) < ((max Ar) -]

1<k<n

107.  Forme quadratique décomposée en carrés
Soient €1, €3, ..., €, des formes linéaires linéairement indépen-
dantes sur E. La forme quadratique ¢ : E — R définie par [93.4]

n

Z 9% [sk(x)]z

k=1

Vx€eE yx)=

est positive si, et seulement si, tous les a; sont positifs [4.44].
108.  La définition [104.2] vaut également dans le cas ot la di-
mension de I'espace E est infinie.

108.1  On consideére 'application g définie sur E = ¢°([0,1], R)

par ;
_ 2
- /0 £2(1) dt.

1. L’application g est une forme quadratique sur E.

2.  Existe-t-il une forme linéaire T sur E telle que g = T??

3. S’il existe des formes linéaires ¢, ..., &, linéairement in-
dépendantes telles que

YV f€E,

q € Vect(e3,...,€%),

alors Kere; N ---NKere, = {0}

On sait [4.44] qu'il existe une famille (ux)1<k<, telle que
V1 < l,k < n, sl-(uk) = (si,k.

Commenter.
108.2  Pour toute fonction i € E, I'application définie par

YECE m= [ POnar

est une forme quadratique sur E. Condition sur / pour que ¢y,
soit positive ? définie positive ?

Questions, exercices & problémes

Perfectionnement

109. Exemples et contre-exemples

1. Exemples d’endomorphismes auto-adjoints? non auto-
adjoints?

2. Exemples d’endomorphismes auto-adjoints positifs? dé-
finis positifs ? non positifs ?

3. Exemple d’endomorphisme u tel que detu = +1 et qui
n’est pas une isométrie.

4. Si||-]| désigne la norme associée au produit scalaire défini

par
vP,QcR[X], (P|Q) :/OlP(t)Q(t)dt,

alors || X" || tend vers 0 alors que la suite des fonctions [t — "] ne
converge pas simplement sur R vers la fonction nulle. Comparer
avec [8] et avec [7.154].

110. Méthodes

1. Comment déterminer 1’adjoint d"un endomorphisme?

2. Comment vérifier qu’une matrice est orthogonale ?

3. Soit A € O3(R).

3.a  Comment déterminer si A est une matrice de rotation?

3.b  Comment déterminer un plan stable par A?

. Comment vérifier qu'un endomorphisme est une isomé-
trie?

5. Comment vérifier qu'un endomorphisme est une projec-
tion orthogonale ? une symétrie orthogonale ?

6. Un endomorphisme u est représenté par la matrice A
dans une base # (qui n’est pas nécessairement une base ortho-
normée).

6.a Comment déterminer si u est auto-adjoint?

6.0 Comment déterminer si u est une isométrie?

Approfondissement

111. I existe une matrice M € S;(R) telle que tr M = a et
det M = b si, et seulement si, a2 > 4b.

112.  Soient Ay, ..., Ap € Su(R).

112.1  S'il existe une matrice A € S, (R) telle que

V1i<k<p Ar€cR[A],

alors les matrices Ay commutent deux a deux.

112.2  Si les matrices A commutent deux a deux, alors [123] il
existe une matrice orthogonale P telle que P . A;.P soit diagonale
pour tout 1 < k < p.

Il existe donc des polynomes Qy, ..., Qp tels que

v1<k<p, = Qu(A)

oit A = P.Diag(1,2,...,1n).P" € Sy(R).
113.  Caractérisation des homothéties
On considere un espace euclidien E.

1. Si tout hyperplan de E est stable par u, alors 1’adjoint 1u*
de u est une homothétie [12.66], donc u est une homothétie.

2. S’il existe un entier 2 < r < n tel que tout sous-espace de
dimension r soit stable par u, alors tout hyperplan de E est stable
par u.
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114. Endomorphismes anti-symétriques
L'endomorphisme f d’un espace euclidien E est dit anti-symé-
trique lorsque

VeyeE (fx)]y) =-(x[f).
114.1 Les propriétés suivantes sont équivalentes :

1. f estanti-symétrique.

2. Pourtoutx € E, (f(x)|x) =0.

3. Lamatrice A qui représente u dans une base orthonormée
est anti-symétrique:: AT = —A.

114.2  On suppose ici que E est un espace euclidien orienté de
dimension 3.

4. Pour tout u € E, l'application f, = [x — u A x| est anti-
symétrique.

5.  Pour tout endomorphisme anti-symétrique f, il existe un,
et un seul, vecteur u € E tel que f = fy,.

6. L’endomorphisme f, est diagonalisable si, et seulement
si, u = 0.

7. 1l existe [88] une base orthonormée de R® constituée de
vecteurs propres de f2. Quels sont les valeurs propres et les sous-
espaces propres de f2?

114.3 Soit f € L(E), un endomorphisme anti-symétrique d’un
espace euclidien de dimension quelconque.

8. Si F est un sous-espace stable par f, alors F- est aussi
stable par F.

9. Lenoyau et I'image de f sont supplémentaires et ortho-
gonaux dans E.

1
E=Kerf®Imf

10. Soit A € C, une racine du polynéme minimal de f, consi-
déré comme un polyndme a coefficients complexes.

10.a Si A € M, (R) est la matrice de u dans une base ortho-
normée 2, alors il existe un vecteur-colonne X € M, 1(C) tel
que AX = AX et

IA2(X)T.X = (AX)T.(AX) = —A2 (X)T.X.

10.b Qu’enconcluresiA € R?EtsiA € C\R?
11.  Lerangde f est pair et det(f) > 0.
12.  L'endomorphisme f est-il diagonalisable?

115. Décomposition QR
115.1 Lensemble O,(R) des matrices orthogonales et l’en-
semble T,/ des matrices triangulaires supérieures dont les va-
leurs propres sont strictement positives sont des sous-groupes de
GL,(R) et Oy (R) N TS = {I,,}.
1152  Soit A € GL,(R).

1. Lapplication

o= [(X, Y) XT.(AT.A).Y]

est un produit scalaire sur E = 9, 1 (R). La base canonique de E
est-elle orthonormée pour ce produit scalaire ?

2. Il existe une base # de E, orthonormée pour ¢, telle que
la matrice de passage P de la base canonique a la base # appar-
tiennea T, .

3. Ilexiste une matrice R € T; telleque AT.A = RT.R.

4. Il existe un, et un seul, couple (Q,R) € O,(R) x T,/ tel
que A = QR.

116.  Soient E, un espace euclidien et #, un endomorphisme tri-
gonalisable de E.

116.1 Il existe une base orthonormée % de E dans laquelle la
matrice de u est triangulaire.

116.2 L'adjoint u* de u est un polyndme en u si, et seulement si,
u est auto-adjoint.

117.  Une forme quadratique ¢ telle que g(x) # 0 pour tout
x # 0 est définie positive ou définie négative.
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Pour aller plus loin

118.  Questions pour réfléchir

1. Soit (E, (-|+)), un espace préhilbertien. Pour tout vec-
teur a € E, la forme linéaire ¢, = [x — (a|x )] est continue. Le
théoreme de Riesz [7.68.3] est-il encore vrai en dimension infi-
nie?

2. Si E est un espace réel de dimension finie et si u € L(E)
est diagonalisable, alors il existe un produit scalaire sur E pour
lequel u est un endomorphisme auto-adjoint.

3.  Suite de [8] — La suite (Py),eN converge uniformément
sur tout segment [a,b] de R.

4. FEtudier la structure du céne isotrope de u € L(E) :
Co(u)={x€E: (x|u(x)) =0}

et comparer Cy(u) au noyau de u.

5. Soitu € GL(E).

5.a Existe-t-il une structure euclidienne sur E pour laquelle u
est une isométrie?

5.6 Etudier le cas ol u est une symétrie.

119.  Soit u, un endomorphisme de R3 muni de sa structure
euclidienne orientée canonique.

1. Quels que soient x, y et z dans R3,

Det(u(x),y,z) + Det(x,u(y),z) + Det(x,y, u(z))
= tr(u) - Det(x,y,z).

2. D’apres [7.69.3], il existe un, et un seul, endomorphisme
v de R3 tel que

V(x,y) €eR3xR3, o(xAy)=u(x)Ay+xAu(y).

120. Etude d’une rotation en dimension 3 (variante de [21])
Dans un espace euclidien orienté de dimension 3, on considere
une rotation u autour du vecteur unitaire n.

120.1  Pour toute base orthonormée directe # = (n,v,w) de E
(obtenue en complétant le vecteur unitaire n),

1 0 0
Matyz(u) = |0 cosf —sind
0 sin® cosf
120.2 D’apres [20],
Vx€cE, (u—ut)(x)=(2sinf)- (nAx)
1203  Si A € SO3(R) estla matrice relative a une base orthonor-

meée directe % de la rotation u, alors il existe trois réels (p, g, 7)
tels que

0 —-r g¢q
%(AfAT): ro 0 —p
-9 r 0
et
_ p
CosG:trA2 ! et sinf-Matg,(n) = | g

7

Comparer avec [21].

121.  Structure euclidienne sur E*
La structure euclidienne de E permet de définir une structure eu-
clidienne naturelle sur son espace dual E* = L(E,R).
Pour touta € E, onpose ¢, = [x — (a|x)].
1. Il existe un, et un seul, produit scalaire (-|-) sur E* tel
que
V(a,b) €EXE, (¢algp) = (alb)

et l'application [a — ;] est une isométrie de (E, (-|-)) sur
(E% (1))

2. Une base Z de E est une base orthonormée pour (-|-)
si, et seulement si, sa base duale £* est une base orthonormée de
E* pour (-|-).
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122.  On considere un espace euclidien (E, (- |-)).
1. Si (-]-) estun produit scalaire sur E, alors il existe un,
et un seul, endomorphisme auto-adjoint défini positif u tel que

(x|y) = (x]uy)).

2. Soit v, un endomorphisme de E auto-adjoint pour (-|-).
Alors v est auto-adjoint pour (-|-) si, et seulement si, il com-
mute a I'endomorphisme u: uov =vou.

123.  Codiagonalisation de matrices symétriques [12.220]
Soit (A;);e1, une famille de matrices symétriques réelles de méme
taille.

Il existe une matrice inversible P telle que toutes les matrices

vV (x,y) € EXE,

PlAP

soient diagonales si, et seulement si, les matrices A; commutent
deux a deux.

1241 Si A € S,/ (R), alors il existe une matrice R € S,/ (R) telle
que A = R? et
tr(PA) = (PR|R) <trA

pour toute matrice orthogonale P.
1242 Soit A € M (R), telle que

VP eOR), tr(PA)<trA.

Alors la matrice A est symétrique.
1243 Soit A € M, (R). Si

VP ecO0,(R), tr(PA)<trA,

alors A € S (R).

125.  Factorisation d’une isométrie
On considere un espace euclidien (E, (-|-)).
Toute isométrie de E est décomposable en un nombre fini de ré-
flexions et le nombre de réflexions qui apparaissent dans cette
factorisation peut étre choisi inférieur a dim E.
125.1  Soit f € O(E), tel que f # Ig. Il existe u # Of tel que
f(u) # uetonposev = f(u).

1. Il existe une réflexion r telle que r(u) = v.

2. Pourtoutx € Etel que f(x) = x,

(xlu—v) =0 et r(x)=nx.

dimKer(ro f —Ig) > dimKer(f — If)

1252 On construit une suite (fy,),eN d’isométries de E en po-
sant fo = f et, pour toutp > 1,

— si fp_1 =1, alors fp = Ig;
— sinon, alors fp = rp o f,_1, ol rp est une réflexion telle que

dimKer(f, —Ig) > dimKer(f,_1 — If).
P P

Il existe un entier p < dimE tel que f, = Ig. Que peut-on en
déduire sur f?
125.3 Applications

4. Décomposition d'une rotation du plan en produit de
deux réflexions.

5. Classification géométrique des isométries de ’espace en
fonction du sous-espace fixe (identité, réflexions, rotations, com-
posées d’une rotation et d"une réflexion qui commutent).

126.  Matrices orthosemblables
La matrice B € M, (RR) est orthosemblable a la matrice A lorsque
3P Oy(R), B=P'.AP.
1. Cette relation est une relation d’équivalence sur 9, (RR).
2. Deux matrices orthosemblables sont semblables. La réci-
proque est-elle vraie?
3. Si A est symétrique et si B est orthosemblable a A, alors
B est symétrique.

4. Quedire d'une matrice orthosemblable a une matrice dia-
gonale?

5. Interpréter géométriquement la notion de matrices ortho-
semblables.

127. Réduction simultanée de deux formes quadratiques
127.1  Aspects théoriques
L'espace R" est muni d’un produit scalaire (- |-) représenté par
la matrice A € S;;"(R) dans la base canonique. On considére une
forme quadratique g, représentée par la matrice B € S, (RR) dans
la base canonique.

1. Il existe une matrice diagonale D; et une matrice P telles
que

P/ .Py=1, et B=P.D.P.

2.a Il existe un, et un seul, endomorphisme auto-adjoint u de
R" tel que
q(x) = (xfu(x)).

2b Lamatrice de u relative a la base canonique est A~!B.
2.c Il existe une matrice diagonale D, et une matrice P; telles
que

VxeR",

Py .Py=A et B=P, .Dy.P,.

En outre, A~1.B = Py 1.D2.P2. Discuter 'unicité des matrices P,
et Dz.

2.d Labase (e1,...,€,) de R" représentée par la matrice P{l
dans la base canonique est orthonormée pour (-|-) et

Vi#j, (elu(e)) =0

127.2  Exemples
L'espace R? est muni du produit scalaire canonique (- |-).
3. Les formes quadratiques définies par

_ 2 q1(x) = x% +2xy + 542
vx=(vy) R {qz(x) = x2 + 2xy + 3y?

sont définies positives.
4. Lamatrice

11\ '/ 1\ (1
15 1 3/ \0 1
est semblable a Diag(1,1/2).

5. Ilexiste une base (g1, €) de R?, orthonormée pour (- |- ),
telle que

n(x) = 38— V5) (e1]x)*+ B3+ V5) (e2]x)?

pour tout x € R2. Par suite,

min 1 (x)

=3-15 et max 91(x) =3+5.
x#0 (x\x) X

0 (x]x)

6. Onnote (-|-),le produit scalaire associé a q;.
6.a Lesvecteursu = (1,0) etv = (—1/2,1/2) forment une base
de R? qui est orthonormée pour (- |-).
6.b La forme quadratique définie par
Vx=(xy) € R?, go(x) = x>+ 2xy + 31>
est représentée par la matrice Diag(1,1/2) dans la base (u,v),
donc

1
VXE R, qa(x) = (u]x)?+ 3 (0]x)?

et 1
min 92(x) = - et

72(x)
max =1
x£0 q1(x) 2

x£0 q1(x)
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128.  L'application g : R — R définie par
n ) n+p )
g(x) =Y x— ) xi

k=1 k=n+1

(avec 1 < n < n+ p < d) est une forme quadratique sur RA.

128.1 Sa matrice dans la base canonique (eq,...,¢4) de R7 est
égale a
Diag(1,...,1,—-1,...,—-1,0,...,0).
[ G .
n p d—(n+p)
128.2  Tout sous-espace G dont la dimension est strictement su-

périeure a n rencontre le sous-espace

Fy= Vect(e,,H, .. .,ed),

ausens oudim(FyNG) > 1.
128.3 Si F est un sous-espace tel que la restriction de q a F soit
définie positive :

VxeF\{0}, g(x)>0

alors dim F < n.

129. L’espace RY étant muni de sa structure euclidienne ca-
nonique, on note S!(F), la sphere unité de chaque sous-espace
vectoriel F ¢ R :

d 1 x € F
VxeRY, xeS(P)@{HxH:l.

On considere une famille croissante de nombre réels :
a4 <ap << dy.

1. Lapplication g : R? — R définie par
d
VyeRY, g(x)=Y a2}
k=1

est une forme quadratique sur RA.
2.

min

xeSH(RA) (X) -

(x) = max

x8!(R)

3. Onnote V,, I'ensemble des sous-espaces vectoriels de R¥
de dimension 1 < n < d.

3a —[128]
VFeVy ap< sup q(x)<ay
xeS1(F)
3b Pourtoutl <n<d,
min sup q(x) =4, et max sup g(x)=ay.

FeG, x€SY(F) FeG, xeSY(F)

130.  Signature d’une forme quadratique

On se donne des formes linéaires fi,..., fp,g1,..., 8y linéaire-
ment indépendantes dans E et des scalaires réels strictement po-
sitifs aq,...,ap, B1,..., Bg- On considere la forme quadratique Q
définie par

4 q
2 2
VxeE, Q(x) =) ax[fi(x)]" = ) Brlgk(x)]".
k=1 k=1

1. Il existe un sous-espace F de dimension p tel que la res-
triction de Q a F soit une forme quadratique définie positive.

2. SidimF > p,alorsil existe x € F,nonnul, tel que Q(x) <
0.

3. Soit A, la matrice de Q relative a une base %. Alors l’en-
tier p (resp. l'entier q) est le nombre de valeurs propres stricte-
ment positives (resp. strictement négatives) de A.
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4. Relier le couple (p,q) aurang de Q.

5.  Que dire du couple (p,q) lorsque Q est positive? définie
positive ? négative ? définie négative? dégénérée?
Le couple (p, q) est la signature de la forme quadratique Q.
131.  Formes symplectiques
Soit E, un espace vectoriel réel de dimension finie 7.
131.14 On appelle forme symplectique sur E toute application bili-
néaire w : E x E — R antisymétrique :

Vx,y€E wxy) =—-w(yx)

et non dégénérée :

[VyeE, w(xy)=0 = x=0g.

1312 Soit # = (ex)1<k<n, une base de E. Une forme symplec-
tique w sur E est représentée dans la base % par la matrice

Q= (wleje € My (R).

j))lgi,jgn
1. Quels que soient les vecteurs x et y de E,
T
w(xy) =X .QY

ot les colonnes X et Y représentent respectivement x et y dans la
base A.

2. Lamatrice () est antisymétrique et inversible, donc la di-
mension 7 est paire.
131.3  Pour toute partie F C E, I'ensemble

F“={x€E:VyeF, w(xy) =0}

est un sous-espace vectoriel de E.
131.4 On supposeici que E = R2 et on considere la matrice

_ (0 -1
a-(] )
(On identifiera chaque vecteur de R? a la colonne qui le repré-
sente dans la base canonique de R?.)

3. Lapplication w = [(x,y) — xT.Q.y] est une forme sym-
plectique sur R2.
4. Pour toute droite vectorielle D C R?,

DY = D.

131.5 Plus généralement, quelle que soit la forme symplectique
w sur E, toute droite vectorielle D C E est contenue dans le sous-
espace D%.



