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Équations différentielles linéaires

I

Quelques recettes

Les équations différentielles les plus simples peuvent être réso-
lues facilement en appliquant les formules ci-dessous.

I.1 Équations du premier ordre

1. On considère l’équation différentielle linéaire

(1) ∀ t ∈ I, x′(t) = a(t)x(t) + b(t)

où I est un intervalle de R ; où les données a et b sont des fonc-
tions continues de I dans K = R ou C et l’inconnue x est une
fonction dérivable de I dansK.
1.1 Pour tout k ∈ N, si a et b sont de classe C k sur I, alors x
est de classe C k+1.
1.2 ✍ L’équation homogène associée à (1) est l’équation différen-
tielle suivante.

(2) ∀ t ∈ I, x′(t)− a(t)x(t) = 0.

2. Problème de Cauchy
Une condition initiale est un couple (t0, x0) ∈ I ×K. Le pro-
blème de Cauchy associé à cette condition initiale consiste à trou-
ver une solution x : I → K de l’équation (1) qui vérifie en outre
la contrainte suivante.

(3) x(t0) = x0

3. Principe de superposition
3.1 Si x1 et x2 sont deux solutions du problème de Cauchy
associées à la même condition initiale (t0, x0), alors la différence
x = (x1 − x2) est une solution de l’équation homogène (2) telle
que x(t0) = 0.
3.2 Si x1 et x2 sont deux fonctions dérivables sur I telles que
x′1(t) = a(t)x1(t) + b1(t) et x′2(t) = a(t)x2(t) + b2(t) pour tout
t ∈ I, alors la combinaison linéaire x = λx1 + x2 vérifie

∀ t ∈ I, x′(t) = a(t)x(t) +
[

λb1(t) + b2(t)
]

.

3.3 Si a est une fonction à valeurs réelles et si x est une solution
de (1), alors y = Re(x) et z = Im(x) vérifient

∀ t ∈ I,
{

y′(t) = a(t)y(t) + Re
[

b(t)
]

z′(t) = a(t)z(t) + Im
[

b(t)
]

.

Expression des solutions

4. ➙ Pour toute condition initiale (t0, x0) ∈ I ×K, il existe une,
et une seule, fonction dérivable x : I → K qui vérifie le problème de
Cauchy associé à (t0, x0).
Cette solution s’exprime par la formule suivante :

(4) ∀ t ∈ I, x(t) = eA(t)
[

x0 +
∫ t

t0

e−A(s)b(s) ds

]

où A : I → K est la primitive de a qui s’annule en t = t0.

5. ➙ Si la fonction a est constante, la solution de l’équation différen-
tielle (1) qui vérifie la condition initiale (t0, x0) ∈ I ×K s’exprime par
la formule suivante :

(5) ∀ t ∈ I, x(t) = x0ea(t−t0) + eat
∫ t

t0

e−asb(s) ds.

6. Méthode générale : Variation de la constante
En pratique :
6.1 On résout l’équation homogène (2) dont les solutions sont
de la forme

K exp
[

A(t)
]

où K est une constante.
6.2 On trouve une solution particulière de l’équation com-
plète (1) en la cherchant sous la forme

K(t) exp
[

A(t)
]

où K est une fonction de classe C 1.
6.3 Éventuellement, on détermine la constante d’intégration
au moyen de la condition initiale.

7. Cas particulier : Équation à coefficient constant
On suppose que la fonction a est constante (soit a(t) = a pour
tout t ∈ I) et qu’il existe une fonction polynomiale P de degré d
et un scalaire µ ∈ C tels que

∀ t ∈ I, b(t) = P(t)eµt.

7.1 Si µ 6= a, alors il existe une fonction polynomiale Q de
degré d telle que la fonction x définie par

∀ t ∈ I, x(t) = Q(t)eµt

soit une solution de (1).
7.2 Si µ = a, alors il existe une fonction polynomiale Q de
degré d telle que la fonction x définie par

∀ t ∈ I, x(t) = tQ(t)eµt

soit une solution de (1).
7.3 Dans les deux cas, les (d + 1) coefficients inconnus de Q
peuvent être déduits de l’équation complète en substituant l’ex-
pression générale de la solution à x(t) dans l’équation (1) et en
identifiant membre à membre les termes selon leur degré : on est
ramené à la résolution d’un système linéaire de (d+ 1) équations.

8. Singularités
L’équation différentielle

(6) ∀ t ∈ I, α(t)x′(t) + β(t)x(t) = γ(t)

peut être mise sous la forme (1) en divisant par α(t).
Les réels t ∈ I pour lesquels α(t) est nul sont des singularités.
Pour résoudre l’équation (6), on applique d’abord le théorème [4]
sur des sous-intervalles de I exempts de singularité avant d’étu-
dier comment les solutions ainsi trouvées peuvent se raccorder
au voisinage de chaque singularité. →[28]-[32]

I.2 Équations du second ordre

9. On considère l’équation différentielle linéaire

(7) ∀ t ∈ I, ax′′(t) + bx′(t) + cx(t) = g(t)

où I est un intervalle deR ; où les coefficients a 6= 0, b, c et λ sont
des constantes appartenant àK = R ou C ; où g est une fonction
de C ∞(I,K) et l’inconnue x est une fonction deux fois dérivable
de I dansK.
9.1 Les solutions de l’équation (7) sont de classe C ∞.
9.2 ✍ L’équation caractéristique associée à l’équation (7) est

(8) aX2 + bX + c = 0

10. Méthode : Résolution de l’équation homogène
Les solutions de l’équation homogène

(9) ∀ t ∈ I, ax′′(t) + bx′(t) + cx(t) = 0

se déduisent de l’équation caractéristique.
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10.1 Si l’équation caractéristique (8) admet deux racines dis-
tinctes λ et µ dansK, alors les solutions de l’équation homogène
(9) sont de la forme

[

t 7→ Aeλt + Beµt
]

où A et B sont des constantes appartenant àK.
10.2 Si l’équation caractéristique (8) admet une racine double
λ dans K, alors les solutions de l’équation homogène (9) sont de
la forme

[

t 7→ (A + Bt)eλt
]

où A et B sont des constantes appartenant àK.
10.3 Si les coefficients a, b et c sont réels et si l’équation caracté-
ristique (8) admet deux racines complexes conjuguées distinctes
α ± iβ, alors les solutions à valeurs réelles de (9) sont de la forme

[

t 7→ eαt(λ cos βt + µ sin βt)
]

où λ et µ sont des constantes réelles.
11. Principe de superposition
11.1 La différence de deux solutions de l’équation complète (7)
est une solution de l’équation homogène (9).
11.2 La somme d’une solution de l’équation

ax′′(t) + bx′(t) + cx(t) = g1(t)

et d’une solution de l’équation

ax′′(t) + bx′(t) + cx(t) = g2(t)

est une solution de l’équation

ax′′(t) + bx′(t) + cx(t) = g1(t) + g2(t).

12. Méthode : Résolution d’équations complètes simples
L’équation homogène (9) décrit les oscillations libres d’un sys-
tème isolé. L’équation complète (7) décrit les oscillations entre-
tenues : le second membre est conçu comme une excitation exté-
rieure au système étudié.
12.1 Excitation polynomiale
On suppose que le second membre de l’équation complète a une
expression de la forme

g(t) = P(t)eλ0t

où P est une fonction polynomiale. Alors l’équation (7) admet
une solution particulière d’expression

x(t) = tmQ(t)eλ0t,

où Q est une fonction polynomiale de même degré que P et où
l’entier m ∈ {0, 1, 2} est la multiplicité de λ0 comme racine de
l’équation caractéristique (8).
12.2 Il y a résonance lorsque m > 1 : l’amplitude d’une solu-
tion particulière tend à devenir infiniment plus grande que l’am-
plitude du second membre.
13. Méthode : Résolution par les complexes
Si les constantes a, b, c, α, β, ϕ0 et les coefficients de la fonction
polynomiale P sont réels, alors f : I → R est une solution sur I
de

ax′′ + bx′ + cx = P(t)eαt cos(βt + ϕ0)

si, et seulement si, f = Re(g) où g : I → C est une solution sur
I de

ax′′ + bx′ + cx = P(t)eiϕ0 e(α+iβ)t.

Entraînement

14. Questions pour réfléchir
1. Exprimer la solution du problème de Cauchy associé à la

condition initiale (t0, x0) au moyen d’une primitive quelconque de
a.

2. On suppose que I = ]−α, α[. Si a et b sont développables
en série entière sur I, les solutions x sont-elles nécessairement dé-
veloppables en série entière sur I ?

3.a Le coefficient réel a est appelé constante de temps des
solutions de l’équation différentielle x′(t) + ax(t) = 0. Expliquer.

3.b Comment interpréter qualitativement ce coefficient a s’il est
complexe ?

4. Le comportement qualitatif des solutions de l’équation ho-
mogène (9) dépend essentiellement de la partie réelle des racines de
l’équation caractéristique (8).

5. Suite de [10.3] – Les solutions à valeurs réelles sont de la
forme

[

t 7→ A cos(βt + ϕ)eαt
]

où A et ϕ sont des constantes réelles.
6. Condition sur a, b et c pour que les solutions de l’équation

homogène (9) restent bornées au voisinage de +∞ ? tendent vers 0
au voisinage de +∞ ?

7. Suite de [12] – Le coefficient réel b est compris comme un
facteur d’amortissement : expliquer. Envisager le cas où b = 0. Le
cas {a > 0, b < 0} est-il physiquement réaliste ?

8. On suppose que les coefficients a, b, c, α, β et K de l’équa-
tion

ax′′ + bx′ + cx = Keαt cos(βt)

sont réels. Expression des solutions à valeurs réelles lorsque l’équa-
tion caractéristique admet

8.a deux racines complexes conjuguées distinctes α0 ± iβ0 ;
8.b une racine double λ ∈ R.

Équations du premier ordre

15.1 Une fonction f est une solution de x′ + 2tx = 2te−t2
sur

R si, et seulement si, il existe A ∈ R tel que

∀ t ∈ R, f (t) = (t2 + A)e−t2
.

15.2 Une fonction f est une solution de x′ − x = et sin 2t surR
si, et seulement si, il existe A ∈ R tel que

∀ t ∈ R, f (t) = et A − cos 2t

2
.

15.3 Une fonction f est une solution de l’équation différen-
tielle

x′(t)− t

t2 − 1
x(t) = 2t

sur I = ]1,+∞[ si, et seulement si, il existe A ∈ R tel que

∀ t ∈ I, f (t) = 2(t2 − 1) + A
√

t2 − 1.

15.4 Une fonction f est une solution de x′ + x tan t = sin 2t sur
I = ]−π/2, π/2[ si, et seulement si, il existe A ∈ R tel que

∀ t ∈ I, f (t) = −2 cos2 t + A cos t.

15.5 Une fonction f est une solution surR de

x′ + 2x = t2 e−2t + 2 e3t + t + 1

si, et seulement si, il existe A ∈ R tel que

∀ t ∈ R, f (t) =
2
5

e3t +
t

2
+

1
4
+

( t3

3
+ A

)

e−2t.

16. La fonction f définie par

f (t) =
+∞

∑
n=0

n!
1 · 3 · 5 · · · (2n + 1)

t2n+1

est une solution particulière de l’équation différentielle

(t2 − 2)x′(t) + tx(t) = −2

donc

f (t) =
2 Arcsin t/√2√

2 − t2

pour tout t ∈ R tel que 2t2 < 1.

17.2
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17. Exemples de problèmes de Cauchy
17.1 La solution de x′ − (t + 1)(x + 1) = 0 telle que x(0) = 1
a pour expression x(t) = 2 exp(t + t2/2)− 1.
17.2 La solution de (1 + t2)x′ − (t + 1)x = 0 qui vérifie la
condition x(0) = −1 est x(t) = −

√
1 + t2 exp(Arctan t).

17.3 La fonction f ∈ C 0(R) telle que

∀ t ∈ R, f (t) = 1 +
∫ t

0
s f (s) ds

a pour expression f (t) = exp(t2/2).
17.4 Une fonction f : R→ R dérivable en 0 qui vérifie l’équa-
tion fonctionnelle

∀ (x, y) ∈ R2, f (x + y) = ex f (y) + ey f (x)

est dérivable surR et vérifie

f (0) = 0 et ∀ x ∈ R2, f ′(x)− f (x) = f ′(0)ex.

17.5 La solution de l’équation

∀ t ∈ ]−1, 1[ , (1 − t)x′(t) + tx(t) = 1

qui vérifie x(0) = 0 a pour expression

x(t) = (1 − t)et
∫ t

0

e−s

(1 − s)2 ds.

18. Comportement à l’infini
18.1 La solution de x′ + x = e2t qui tend vers 0 au voisinage
de −∞ a pour expression e2t/3.
18.2 Toutes les solutions de x′ + x = e−t tendent vers 0 au
voisinage de +∞.
18.3 Si f est une solution de x′ − x = cos t surR, alors

lim
t→−∞

f (t) +
cos t − sin t

2
= 0.

Équations du second ordre

19.1 La fonction f est une solution de x′′ − x′ = t2 sur R si, et
seulement si, il existe deux réels K1 et K2 tels que

∀ t ∈ R, f (t) = −t3/3 − t2 − 2t + K1 + K2et.

19.2 La fonction f est une solution réelle de x′′ + x′ + x = 0
surR si, et seulement si, il existe deux réels K1 et K2 tels que

∀ t ∈ R, f (t) =
(

K1 cos

√
3t

2
+ K2 sin

√
3t

2

)

e−
t/2.

19.3 Les solutions de x′′ − 3x′ + 2x = t e−t + sin(3t) ont pour
expression

(6t + 5)e−t

36
+

9 cos 3t − 7 sin 3t

130
+ K1et + K2e2t

où K1 et K2 sont deux constantes réelles.
19.4 La fonction f est une solution de x′′ + x = cos t sur R si,
et seulement si, il existe deux réels K1 et K2 tels que

∀ t ∈ R, f (t) = (t/2 + K1) sin t + K2 cos t.

19.5 La fonction f est une solution de x′′ + x = t2 e−t surR si,
et seulement si, il existe deux réels K1 et K2 tels que

∀ t ∈ R, f (t) =
(1 + t)2e−t

2
+ K1 cos t + K2 sin t.

19.6 La fonction f est solution de x′′ − 2x′ + x = t2 e2t sur R
si, et seulement si, il existe deux réels K1 et K2 tels que

∀ t ∈ R, f (t) = (6 − 4t + t2)e2t + (K1 + K2t)et.

19.7 La fonction f est solution de x′′ + 2x′ + x = t2 e−t sur R
si, et seulement si, il existe deux réels K1 et K2 tels que

∀ t ∈ R, f (t) =
t4e−t

12
+ (K1 + K2t)e−t.

20.1 Une fonction paire g vérifie g′′(t) + g(t) = cos t si, et
seulement si, il existe un réel A tel que

∀ t ∈ R, g(t) = A cos t + t/2 sin t.

Une fonction impaire h vérifie h′′(t)− h(t) = 0 si, et seulement
si, il existe un réel B tel que

∀ t ∈ R, h(t) = B sh t.

Une fonction f ∈ C
2(R) vérifie

∀ t ∈ R, f ′′(t) + f (−t) = cos t

si, et seulement si, il existe deux réels A et B tels que

∀ t ∈ R, f (t) = A cos t + B sh t + t/2 sin t.

20.2 Une fonction f ∈ C 2(R) vérifie

∀ t ∈ R, f ′′(t) + f (−t) = e2t

si, et seulement si, il existe deux réels A et B tels que

∀ t ∈ R, f (t) = A cos t + B sh t + 1/5 ch 2t + 1/3 sh 2t.

Problèmes qualitatifs

21. Solutions bornées
Si la fonction continue a est intégrable surR+, alors les solutions
de x′(t) + a(t)x(t) = 0 sont bornées surR+.
22. Signe des solutions
Soit q, une fonction continue, positive, non identiquement nulle
surR.

1. Les solutions de x′′(t) + q(t)x(t) = 0 qui sont négatives
(resp. positives) surR sont convexes (resp. concaves).

2. Chaque solution s’annule au moins une fois. →[124.1]
23. Soient ω et T, deux nombres réels strictement positifs.
23.1 Conditions aux limites de Dirichlet
L’équation différentielle

(10) x′′(t) + ω2x(t) = 0

a une solution non identiquement nulle telle que x(0) = 0 et que
x(T) = 0 si, et seulement si, il existe k ∈ N∗ tel que ωT = kπ.
Étudier l’existence de solutions telles que x(0) = a et x(0) = b.
23.2 Conditions aux limites de Neumann
L’équation (10) admet une solution non identiquement nulle telle
que x′(0) = x′(T) = 0 si, et seulement si, il existe k ∈ N∗ tel que
ωT = kπ.
Étudier l’existence de solutions telles que x′(0) = a et x′(0) = b.
23.3 Solutions périodiques
L’équation (10) possède une solution périodique de période T si,
et seulement si, il existe k ∈ N∗ tel que ωT = 2kπ.

17.3
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24. Solutions développables en séries entières
24.1 L’équation différentielle d’Airy

∀ t ∈ R, x′′(t) + tx(t) = 0

admet une, et une seule, solution développable en série entière f
telle que f (0) = 0 et f ′(0) = 1.
24.2 On considère une fonction développable en série entière :

∀ t ∈ ]−R, R[ , v(t) =
+∞

∑
n=0

antn

avec R > 0. L’équation différentielle

∀ t ∈ ]−R, R[ , t2x′′(t) + tx′(t)− x(t) = v(t)

admet une solution développable en série entière

x(t) =
+∞

∑
n=0

bntn

si, et seulement si, a1 = 0 et dans ce cas,

∀ n 6= 1, bn =
an

n2 − 1
.

25. Études asymptotiques
25.1 Soient m, α et g, trois réels strictement positifs. Quelle que
soit la solution h de l’équation

mx′′ + α x′ = −mg,

la dérivée h′ admet une limite finie au voisinage de +∞. Inter-
prétation physique?
25.2 Les solutions de l’équation différentielle x′ − x = ℓn t ont
pour expression

Aet − et
∫ +∞

t
e−s

ℓn s ds.

Aucune de ces solutions n’est bornée au voisinage de +∞. Elles
sont toutes prolongeables en une fonction continue sur R+ qui
n’est pas dérivable en 0.
25.3 La seule solution bornée de x′ − tx = t sin t2 a pour ex-
pression −(2 cos t2 + sin t2)/5.
25.4 Toutes les solutions de (1 + t2)x′ = x Arctan t sont paires
et bornées.
25.5 Si une fonction f ∈ C

1(R,R) vérifie

lim
t→+∞

f ′(t) + f (t) = ℓ,

alors il existe une fonction continue g qui tend vers ℓ au voisinage
de +∞ telle que

∀ t ∈ R, f (t) = f (0)e−t + e−t
∫ t

0
esg(s) ds

et la fonction f tend vers ℓ au voisinage de +∞.

Problèmes de raccordements

26. Une fonction f est une solution de l’équation

x′(t) + x(t) = t+

si, et seulement si, il existe deux réels K1 et K2 tels que

∀ t < 0, f (t) = K1e−t et ∀ t > 0, f (t) = (t − 1) + K2e−t.

L’ensemble des solutions de classe C 1 surR est une droite affine ;
il n’y a pas de solution de classe C 2 surR.
27. Soient a et b, deux réels. La fonction f définie par

∀ t > 0, f (t) =
−a

8
e−2t − at + b

4
et par

∀ t 6 0, f (t) =
−a

8
e2t +

at − b

4

est une solution de classe C 2 de l’équation

∀ t ∈ R, x′′(t)− 4x(t) = a|t|+ b.

C’est la seule solution qui admette des asymptotes aux voisi-
nages de +∞ et de −∞.

28. Une fonction f est une solution de t2x′ − 2tx = −t4 si, et
seulement si, il existe deux réels K1 et K2 tels que

∀ t < 0, f (t) = K1t2 − t3 et ∀ t > 0, f (t) = K2t2 − t3.

L’ensemble des solutions de classe C 1 sur R est un plan affine ;
l’ensemble des solutions de classe C 2 surR est une droite affine.
29. Soit P0, une fonction polynomiale :

∀ t ∈ R, P0(t) = a0 + a1t + · · ·+ adtd.

L’équation différentielle tx′(t)− x(t) = P0(t) admet une solution
f de classe C

1 sur R si, et seulement si, a1 = 0. Dans ce cas, il
existe une constante K ∈ R telle que

∀ t ∈ R, f (t) = −a0 + Kt +
d

∑
k=2

ak

k − 1
tk.

30. La seule solution de classe C 1 sur R de l’équation diffé-
rentielle tx′(t) + x(t) = Arctan t a pour expression

∀ t ∈ R∗, f (t) = Arctan t − ℓn(1 + t2)

2t
.

Cette fonction f est de classe C
∞ surR.

31. Une fonction f est une solution de t2x′(t)− x(t) = 0 de
classe C 1 surR si, et seulement si, il existe K ∈ R tel que

∀ t 6 0, f (t) = 0 et ∀ t > 0, f (t) = K exp(−1/t).

32. L’ensemble des solutions de classe C 1 surR de l’équation
différentielle tx′(t)− αx(t) = 0 est un espace vectoriel. La dimen-
sion de cet espace est nulle pour α < 1 ; égale à 1 pour α = 1 et
égale à 2 pour α > 2.
33.1 La seule solution de tx′(t) + x(t) = 1 de classe C 1 sur R
est la fonction constante égale à 1.
33.2 Une fonction f est une solution de classe C 1 sur R de
l’équation

tx′(t)− 2x(t) = t4

si, et seulement si, il existe deux réels K1 et K2 tels que

∀ t < 0, f (t) = K1t2 +
t4

2
et ∀ t > 0, f (t) = K2t2 +

t4

2
.

33.3 La fonction f est une solution de l’équation différentielle

t(1 + t2)x′(t)− (t2 − 1)x(t) = −2t

si, et seulement si, il existe deux réels K1 et K2 tels que
{

∀ t < 0, f (t) = 1
t + K1

1+t2

t ,

∀ t > 0, f (t) = 1
t + K2

1+t2

t .

33.4 L’équation différentielle tx′(t)− x(t) = t n’a pas de solu-
tion de classe C 1 surR.
34.1 Une fonction f est une solution de classe C 1 sur R de
l’équation différentielle x′(t) sh t − x(t) ch t = 1 si, et seulement
si, il existe K ∈ R tel que

∀ t ∈ R, f (t) = − ch t + K sh t.

34.2 L’équation (et − 1)x′(t)− etx(t) = 1 n’a pas de solution
de classe C

1 surR.
34.3 Une fonction f est une solution de classe C

1 sur R de
l’équation différentielle x′(t) sin t − x(t) cos t = −1 si, et seule-
ment si, il existe K ∈ R tel que

∀ t ∈ R, f (t) = cos t + K sin t.

17.4
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34.4 Une fonction f est une solution de classe C 1 sur R de
l’équation différentielle x′(t) sin3 t − 2x(t) cos t = 0 si, et seule-
ment si, il existe une suite (Kn)n∈N telle que

∀ n ∈ N, ∀ t ∈ ]nπ, (n + 1)π[ , f (t) = Kn exp
−1

sin2 t
.

Quelle que soit la suite (Kn)n∈N, la fonction f est de classe C ∞

surR.
35. On considère les intervalles

I1 = ]−∞,−1[ , I2 = ]−1, 0[ , I3 = ]0, 1[ , I4 = ]1,+∞[ .

Une fonction f est une solution de t(t2 − 1)x′(t) + 2x(t) = t2 si,
et seulement si, il existe quatre réels K1, K2, K3 et K4 tels que

∀ 1 6 n 6 4, ∀ t ∈ In, f (t) =
Kn + ℓn|t|

t2 − 1
t2.

Il existe une seule solution de classe C
∞ sur R∗

+. Il existe une
seule solution de classe C

1 sur R ; cette solution n’est pas de
classe C 2 surR.

II

Équations du premier ordre

36. Toute équation différentielle linéaire peut se ramener à
une équation différentielle linéaire du premier ordre en choisis-
sant convenablement l’espace des phases. La théorie se limitera
donc à l’étude des équations du premier ordre.

II.1 Réductions au premier ordre

37. Le système différentiel
{

x′(t) = ax(t) + by(t)
y′(t) = cx(t) + dy(t)

se ramène à une équation du premier ordre

X′(t) = AX(t)

avec X ∈ C 1(I,R2) et A ∈ M2(R).
38. Sur tout intervalle I qui ne contient aucun zéro de la fonc-
tion a, l’équation différentielle du second ordre

a(t)x′′(t) + b(t)x′(t) + c(t)x(t) = g(t)

se ramène à une équation du premier ordre

X′(t) = A(t)X(t) + B(t)

avec X ∈ C 1(I,R2), A ∈ C 0(I,M2(R)) et B ∈ C 0(I,R2).
39. L’équation différentielle du troisième ordre

x(3)(t) + ax′′(t) + bx′(t) + cx(t) = f (t)

se ramène à une équation du premier ordre

X′(t) = AX(t) + B(t)

avec X ∈ C 1(I,R3), A ∈ M3(R) et B ∈ C 0(I,R3).
40. Le système différentiel du second ordre

{

x′′(t) = ax(t) + by(t)
y′′(t) = cx(t) + dy(t)

se ramène à une équation du premier ordre

X′(t) = AX(t)

avec X ∈ C 1(I,R4) et A ∈ M4(R).

II.2 Les trois points de vue

Systèmes du premier ordre

41. Une équation différentielle du premier ordre dans un es-
pace des phases de dimension n apparaît d’abord comme un sys-
tème différentiel de n équations en n inconnues.



















x′1(t) = a1,1(t)x1(t) + · · · + a1,n(t)xn(t) + b1(t)

x′2(t) = a2,1(t)x1(t) + · · · + a2,n(t)xn(t) + b2(t)
...

x′n(t) = an,1(t)x1(t) + · · · + an,n(t)xn(t) + bn(t)

Les variations de chacune des inconnues dépendent des valeurs
prises par les autres inconnues : il y a couplage.
42. Un système est découplé lorsque les équations qui le com-
posent sont indépendantes les unes des autres : il est alors de la
forme suivante.



















x′1(t) = a1,1(t)x1(t) + b1(t)

x′2(t) = a2,2(t)x2(t) + b2(t)
...

x′n(t) = an,n(t)xn(t) + bn(t)

La résolution d’un tel système se ramène à la résolution des n
équations différentielles qui le composent.
43. Les systèmes couplés triangulaires peuvent être résolus
assez facilement. Il suffit de considérer le système



















x′1 = a1,1x1 + a1,2x2 + · · · + a1,nxn + b1

x′2 = a2,2x2 + · · · + a2,nxn + b2
...

x′n = an,nxn + bn

sous la forme suivante


























x′n − an,nxn = bn

x′n−1 − an−1,n−1xn−1 = an−1,nxn + bn−1
...

x′2 − a2,2x2 = a2,3x3 + · · ·+ a2,nxn + b2

x′1 − a1,1x1 = a1,2x2 + · · ·+ a1,nxn + b1

pour qu’il apparaisse comme la conjonction de n équations dif-
férentielles simples (au sens où ne figure qu’une seule fonction
inconnue dans chaque équation).

Écriture matricielle

44. On peut aussi écrire un système différentiel du premier
ordre sous la forme matricielle suivante.

∀ t ∈ I, X′
t = AtXt + Bt

La fonction matricielle

t 7→ At =
(

aij(t)
)

16i,j6n
∈ Mn(K)

est dite matrice du système. La fonction vectorielle

t 7→ Bt = 〈 b1(t), b2(t), . . . , bn(t) 〉 ∈ Mn,1(K)

est dite second membre du système. L’inconnue est la fonction
vectorielle

t 7→ Xt = 〈 x1(t), x2(t), . . . , xn(t) 〉 ∈ Mn,1(K)

dont la dérivée a pour expression

X′
t = 〈 x′1(t), x′2(t), . . . , x′n(t) 〉.
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45. Changements de base
Soit P ∈ GLn(K), une matrice inversible (indépendante de t).
Pour tout t ∈ I, on pose

Yt = P−1Xt et ∆t = P−1 AtP.

45.1 La fonction vectorielle Y ainsi définie est dérivable sur I
et

∀ t ∈ I, Y′
t = P−1X′

t

de telle sorte que l’équation matricielle

∀ t ∈ I, X′
t = AtXt + Bt

est équivalente à l’équation matricielle

∀ t ∈ I, Y′
t = ∆tYt + P−1Bt.

45.2 En pratique, il faut chercher P de telle sorte que la fonc-
tion matricielle ∆ soit la plus simple possible. Dans le meilleur
des cas, ∆t est diagonale pour tout t ∈ I (ce qui signifie que les
matrices (At)t∈I sont co-diagonalisables) et on est ramené à la
résolution d’un système découplé.
45.3 Variante
S’il est impossible de trouver une matrice de passage indépen-
dante de t, on peut chercher un vecteur propre de la transposée
de At indépendant de t. On peut ainsi transformer une équation
du second ordre en deux équations du premier ordre à résoudre
successivement. → [46.6], [46.7]
46. Exemples
46.1 Le couple de fonctions (x, y) est une solution du système
différentiel

{

x′(t) = (2 − t)x(t) + (t − 1)y(t)
y′(t) = (2 − 2t)x(t) + (2t − 1)y(t)

si, et seulement si, il existe deux réels K1 et K2 tels que

∀ t ∈ R,
(

x(t)
y(t)

)

=

(

1 1
1 2

)(

K1 exp(t)
K2 exp(t2/2)

)

.

46.2 Le couple de fonctions (x, y) est une solution du système
différentiel

{

x′ = (t + 3)x + 2y
y′ = −4x + (t − 3)y

si, et seulement si, il existe deux réels K1 et K2 tels que

∀ t ∈ R,
(

x(t)
y(t)

)

= exp(t2/2)

(

−1 1
1 −2

)(

K1et

K2e−t

)

.

46.3 Le couple de fonctions (x, y) est une solution du système
{

x′ = 4x − 2y
y′ = x + y

si, et seulement si, il existe deux réels K1 et K2 tels que →[102]

∀ t ∈ R,
(

x(t)
y(t)

)

=

(

1 2
1 1

)(

K1e2t

K2e3t

)

.

46.4 Le triplet de fonctions (x, y, z) est une solution du sys-
tème différentiel







x′ = y + z
y′ = x
z′ = x + y + z

si, et seulement si, il existe trois réels K1, K2 et K3 tels que

∀ t ∈ R,





x(t)
y(t)
z(t)



 =





2 1 0
1 −1 1
3 0 −1









K1e2t

K2e−t

K3



 .

46.5 Le triplet de fonctions (x, y, z) est une solution du sys-
tème







x′ = 2x − y + 2z
y′ = 10x − 5y + 7z
z′ = 4x − 2y + 2z

si, et seulement si, il existe trois réels K1, K2 et K3 tels que →[95.4]

∀ t ∈ R,





x(t)
y(t)
z(t)



 =





1 −2 1
−1 −4 0
−2 0 −2









K1e−t

K2 + K3t
K3



 .

46.6 Suite de [45.3] – Une fonction f ∈ C ∞(R) est une solution
de l’équation différentielle

(11) (1 + et)x′′(t) + x′(t)− etx(t) = 0

si, et seulement si, la fonction g = f ′ + f est une solution de

(1 + et)y′(t)− ety(t) = 0.

Une fonction f est solution de (11) si, et seulement si, il existe
deux réels K1 et K2 tels que

∀ t ∈ R, f (t) = K1e−t + K2(1 + et)(1 + e−t).

46.7 Suite de [45.3] – L’équation différentielle

(12) (t + 1)x′′(t)− (t + 2)x′(t) + x(t) = 0

se traduit par

d
dt

(

x(t)
x′(t)

)

=
1

1 + t

(

0 1 + t
−1 2 + t

)(

x(t)
x′(t)

)

.

La méthode du [45.2] ne peut s’appliquer ici. En remarquant que

(1 −1)
(

0 1 + t
−1 2 + t

)

= (1 −1) ,

on est amené à résoudre

x(t)− x′(t) = (1 −1)
(

x(t)
x′(t)

)

= y(t)

où y est une solution de →[61.2]

y′(t) =
1

1 + t
y(t).

Écriture vectorielle

47. Nous présenterons la théorie générale en adoptant le
point de vue vectoriel suivant. Nous noterons uz, au lieu de u(z),
l’image du vecteur z par l’application linéaire u.
47.1 ✍ Soient E, un espace vectoriel (réel ou complexe) de dimension
finie, dit espace des phases et I, un intervalle deR.
Une équation différentielle linéaire du premier ordre est une
équation de la forme

(13) ∀ t ∈ I, x′(t) = a(t)x(t) + b(t)

où les données sont deux applications continues

a : I → L(E) et b : I → E

et l’inconnue est une application x : I → E de classe C
1.

47.2 Pour tout k ∈ N, si les données a et b sont des fonctions de
classe C k sur I et si ϕ est une solution de l’équation différentielle

∀ t ∈ I, x′(t) = a(t)x(t) + b(t),

alors ϕ est de classe C k+1 sur I.
47.3 ✍ L’équation homogène associée à l’équation différentielle (13)
est l’équation différentielle

(14) ∀ t ∈ I, x′(t) = a(t)x(t).

Par comparaison avec l’équation homogène (14), l’équation (13) est dite
équation complète.
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II.3 Problèmes de Cauchy

48. Une condition initiale est un couple constitué d’un ins-
tant t0 dans l’intervalle I et d’une position x0 dans l’espace des
phases E.
48.1 ✍ Une solution ϕ ∈ C 1(I, E) de l’équation (13) vérifie la
condition initiale (t0, x0) ∈ I × E lorsque ϕ(t0) = x0.
48.2 ✍ Un problème de Cauchy est la donnée conjointe d’une équa-
tion différentielle et d’une condition initiale.
48.3 On ne peut poser, et résoudre, un problème de Cauchy
sans avoir au préalable identifé l’espace des phases.

49. Le théorème [50], que nous admettrons, est au fondement
de l’étude des équations différentielles linéaires. Pour cette rai-
son, l’équation (13) est dite sous forme résoluble.

50. ➙ Théorème de Cauchy–Lipschitz, version linéaire
Soient E, un espace vectoriel de dimension finie ; I, un intervalle de R
(de longueur strictement positive) ; a : I → L(E) et b : I → E, deux
applications continues.
Pour toute condition initiale (t0, x0) ∈ I × E, il existe une, et une

seule, application ϕ ∈ C
1(I, E) telle que ϕ(t0) = x0 et que

∀ t ∈ I, ϕ′(t) = a(t)ϕ(t) + b(t).

51. Exemples
51.1 Quels que soient 0 < t0 < π et x0 ∈ R, l’équation

x′(t) sin t − x(t) cos t = 0

admet une, et une seule, solution de classe C
1 sur I = ]0, π[ telle

que x(t0) = x0.
51.2 Quels que soient 0 < t0 < π et x0 ∈ R, l’équation

x′(t) sin t + x(t) cos t = 0

admet une, et une seule, solution de classe C 1 sur I = ]0, π[ telle
que x(t0) = x0.
51.3 Quels que soient (t0, x0, v0) ∈ R3, l’équation →[38]

(1 + t2)x′′(t) + 2(1 − t)x′(t) + x(t) = 0

admet une, et une seule, solution de classe C 2 sur I = R.

52. Trajectoires
Le théorème de Cauchy-Lipschitz [50] peut être interprété géo-
métriquement.
52.1 ✍ Le graphe de toute solution ϕ de l’équation différentielle (13) est
une courbe tracée dans l’espace I × E, appelée trajectoire de l’équation
différentielle.
52.2 Sous les hypothèses du théorème de Cauchy-Lipschitz,
par tout point (t0, x0) de I × E passe une trajectoire, et une seule.

x0

t0

E = R

I = R

En particulier, si les trajectoires de deux solutions d’une équation
différentielle linéaire ont un point commun, alors ces deux solu-
tions sont égales.
52.3 ⊲ Si ϕ et ψ sont deux solutions de la même équation différentielle
(13) et s’il existe un instant t1 ∈ I tel que ϕ(t1) = ψ(t1), alors

∀ t ∈ I, ϕ(t) = ψ(t).

52.4 ⊲ Si ϕ est une solution de l’équation homogène (14) et s’il existe
t1 ∈ I tel que ϕ(t1) = 0E, alors ϕ est identiquement nulle sur I.
52.5 ⊲ On suppose que E = R. Si ϕ et ψ sont deux solutions de la
même équation (13) telles que ϕ(t0) < ψ(t0), alors

∀ t ∈ I, ϕ(t) < ψ(t).

53. Singularités
Le théorème de Cauchy-Lipschitz [50] ne peut pas être appliqué à
l’équation (6) pour une condition initiale (t0, x0) ∈ I × E telle que
α(t0) = 0. Selon les cas, le problème de Cauchy associé à cette
condition initiale peut admettre une seule solution, une infinité
de solutions ou pas de solution du tout.
53.1 Équations ayant une infinité de solutions de classe C 1

pour une seule condition initiale de la forme (t0, x0) = (0, x0)
mais n’admettant aucune solution pour toute autre condition ini-
tiale de cette forme : [28], [29], [31], [33.2], [33.3], [34.1], [34.3],
[34.4], [51.1].

E = R

I = R

53.2 Équations admettant une unique solution de classe C 1

pour une seule condition initiale de la forme (t0, x0) = (0, x0) et
n’admettant aucune solution pour toute autre condition initiale
de cette forme : [30], [33.1], [35], [51.2].

E = R

I = R

53.3 L’ensemble des solutions développables en série entière
surR de l’équation →[38]

(15) ∀ t ∈ R, tx′′(t)− x′(t)− 4t3x(t) = 0

est le plan engendré par f (t) = exp(t2) et g(t) = exp(−t2).
Quel que soit (t0, x0, v0) ∈ R∗

+ ×R×R, le problème de Cauchy
associé à la condition initiale (t0, x0, v0) admet une unique solu-
tion de classe C 2 surR. Étudier le cas t0 = 0. →[72]
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II.4 Équations scalaires

54. ✍ Une équation différentielle linéaire scalaire d’ordre n ∈ N∗
est de la forme

(16) ∀ t ∈ I,
n

∑
k=0

ak(t)x
(k)(t) = b(t)

où les fonctions a0, . . ., an et b sont continues de I dansK.

55. Forme résoluble et singularités
Pour appliquer la théorie de Cauchy–Lipschitz, on transforme
l’équation scalaire (16) en une équation vectorielle du premier
ordre sous forme résoluble :

X′
t = AtXt + Bt

en posant

Xt =











x(t)
x′(t)

...
x(n−1)(t)











, Bt =















0
...
0

b(t)

an(t)















ainsi que

At =





























0

❊

❊

❊

❊

❊

❊

❊

❊

❊

❊

❊

❊

❊

❊

❊

1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

0

0

0 0 1

−a0(t)

an(t)

−an−1(t)

an(t)





























ce qui n’a de sens que si an ne s’annule pas sur I.
55.1 ✍ Les instants t ∈ I tels que an(t) = 0 sont les singularités de
l’équation scalaire (16).
55.2 Soit J ⊂ I, un intervalle exempt de singularités. Pour tout
(t0, u0, u1, . . . , un−1) ∈ J ×Kn, l’équation scalaire (16) admet une,
et une seule, solution de classe C n sur J telle que x(t0) = u0,
x′(t0) = u1, . . .x(n−1)(t0) = un−1.

Entraînement

56. Questions pour réfléchir
1. Suite de [46.4] – Les fonctions x, y et z sont constantes

si, et seulement si, x(0) = y(0) + z(0) = 0.
2. Condition pour que l’équation (13) admette : au moins une

solution constante ; au plus une solution constante.
3. Poser un problème de Cauchy pour l’équation différentielle

x′′(t) + λx′(t) + ω2x(t) = 0.
4. Suite de [52.2] – Les fonctions sin et cos sont deux solu-

tions distinctes de l’équation x′′ + x = 0 alors les graphes de sin et
cos ont des points communs : expliquer. Quelles sont les trajectoires
de l’équation x′′ + x = 0 ?

5. Si ϕ est une solution de l’équation scalaire (16) associée
à la condition initiale (t0, u0, u1, . . . , un−1) ∈ J ×Kn, que vaut
ϕ(n)(t0) ?

57. Étude qualitative locale
L’équation différentielle

tx′′(t) + (t − 4)x′(t)− 3x(t) = 0

admet une, et une seule, solution f de classe C
∞ surR∗

+ telle que
f (1) = 2 et f ′(1) = −2. Pour h voisin de 0,

f (1 + h) = 2 − 2h − 2
3

h3 + O(h3).

Quel que soit x0 ∈ R, il existe une infinité de solutions g dévelop-
pables en série entière surR telle que g(0) = x0. Chacune d’elles
vérifie g′(0) = −3x0/4.

III

Équations homogènes

58. Suite de [47] – On s’intéresse ici à l’ensemble, noté SH ,
des solutions de l’équation homogène (14) en supposant que la
dimension de l’espace des phases E est égale à n.
Tous les théorèmes qui suivent découlent du théorème de
Cauchy-Lipschitz [50] et supposent donc qu’il n’y a pas de sin-
gularité sur l’intervalle I.

Espace des solutions et systèmes fondamentaux

59.1 ⊲ L’ensemble SH est un sous-espace vectoriel de C 1(I, E).
59.2 ⊲ Pour tout t0 ∈ I, l’application [ f 7→ f (t0)] est un isomor-
phisme de SH sur E.
59.3 ➙ Suite de [47] – L’ensemble SH des solutions de l’équation ho-
mogène (14) est un espace vectoriel dont la dimension est égale à la
dimension de l’espace des phases E.
59.4 ✍ Un système fondamental de solutions de l’équation différen-
tielle homogène (14) est une base de l’espace SH des solutions de cette
équation.

60. ➙ Suite de [47] – On suppose que dim E = n et on considère des
solutions ϕ1, . . ., ϕn de l’équation homogène (14).
60.1 Si la famille de fonctions (ϕ1, . . . , ϕn) est un système fonda-

mental de solutions, alors la famille de vecteurs
(

ϕ1(t), . . . , ϕn(t)
)

est
une base de l’espace des phases E pour tout t ∈ I.
60.2 Réciproquement, s’il existe un instant t0 ∈ I tel que

E = Vect
(

ϕ1(t0), . . . , ϕn(t0)
)

,

alors (ϕ1, . . . , ϕn) est un système fondamental de solutions.

61. Exemples
61.1 L’équation différentielle

(t + 1)2x′′(t)− 2(t + 1)x′(t) + 2x(t) = 0

admet un système fondamental de solutions polynomiales sur
les intervalles ]−∞,−1[ et ]−1,+∞[. L’ensemble des solutions de
classe C 2 sur R est un plan vectoriel. Comment la singularité en
t = −1 se traduit-elle sur l’espace des solutions?
61.2 Suite de [46.7] – La fonction f ∈ C 2(R) est une solution
de l’équation (12) si, et seulement si, il existe deux constantes K1
et K2 telles que

∀ t ∈ R, f (t) = K1(2 + t) + K2et.

Comment la singularité en t = −1 se traduit-elle sur l’espace des
solutions?

Wronskien

62. Suite de [58] – Une base B de E étant donnée, on cherche
un moyen simple de savoir si n fonctions f1, f2, . . ., fn de SH
forment un système fondamental de solutions de l’équation ho-
mogène (14).
62.1 ✍ Le wronskien relatif à B de la famille ( f1, . . . , fn) est l’ap-
plication de I dansK définie par

WB( f1, . . . , fn)(t) = detB
(

f1(t), . . . , fn(t)
)

.

62.2 ⊲ Si B et C sont deux bases de E, alors les applications WB et
WC sont proportionnelles.

63. ➙ Suite de [58] – Soient ( f1, . . . , fn), une famille de vecteurs de
SH et W, son wronskien relatif à une base B de E. Les propositions
suivantes sont équivalentes.
63.1 La famille ( f1, . . . , fn) est une base de SH .
63.2 Pour tout t ∈ I, le wronskien W(t) est non nul.
63.3 Il existe t0 ∈ I tel que W(t0) 6= 0.
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64. Exemple de l’oscillateur harmonique
L’équation différentielle x′′ + ω2x = 0 équivaut au système dif-
férentiel

d
dt

(

x(t)
x′(t)

)

=

(

0 1
−ω2 0

)(

x(t)
x′(t)

)

.

L’espace des phases est isomorphe àR2 et un système fondamen-
tal de solutions est constitué par

f1(t) =

(

cos ωt
−ω sin ωt

)

et f2(t) =

(

sin ωt
ω cos ωt

)

.

Le wronskien de cette famille est constant. →[82]
65. Calcul du wronskien
On peut calculer l’expression générale des wronskiens d’une
équation différentielle sans résoudre cette équation.
65.1 Soient B, une base de E et u ∈ L(E). On pose

Φ(v1, . . . , vn) =
n

∑
k=1

detB
(

v1, . . . , u(vk), . . . , vn
)

pour toute famille (v1, . . . , vn) de vecteurs de E.
1. L’application Φ est une forme n-linéaire alternée sur E :

elle est proportionnelle à detB.
2. Si (v1, . . . , vn) = B, alors Φ(v1, . . . , vn) = tr(u).

65.2 ➙ Suite de [58] – Soient ( f1, . . . , fn), une famille de solutions sur
I de l’équation différentielle homogène (14) et W, son wronskien relatif
à une base B de E. Quels que soient t0 et t dans l’intervalle I,

W(t) = W(t0) exp
(

∫ t

t0

tr
[

a(s)
]

ds

)

.

66. Application pratique
On suppose que l’espace des phases E est un plan et qu’une so-
lution f non nulle de l’équation homogène (14) sur l’intervalle I
est connue.
66.1 Pour toute solution g de l’équation (14), le wronskien
W( f , g) est proportionnel à la fonction W0 définie par

∀ t ∈ I, W0(t) = exp
(

∫ t

t0

tr
[

a(s)
]

ds

)

.

où t0 ∈ I est arbitrairement choisi.
66.2 Réciproquement, toute solution g de l’équation linéaire
du premier ordre

∀ t ∈ I, f (t)x′(t)− f ′(t)x(t) = W0(t)

est une solution de (14) et le couple ( f , g) est alors un système
fondamental de solutions de (14).
Une solution particulière g est de la forme g(t) = K(t) f (t) avec

∀ t ∈ I, K′(t) =
W0(t)

f 2(t)
.

67. Méthode de variation de la constante
Soient α et β, deux fonctions continues de I dans R. On suppose
connue une solution f de l’équation homogène

(17) ∀ t ∈ I, x′′(t) + α(t)x′(t) + β(t)x(t) = 0

et que f (t) 6= 0 pour tout t ∈ I.
67.1 Le wronskien W de deux solutions f et g est proportion-
nel à

W0(t) = exp
(

−
∫ t

t0

α(s) ds
)

.

67.2 Si K est une constante réelle, alors toute fonction de la
forme g(t) = K f (t) est une solution de (17).
Si K est une fonction de classe C 2, alors la fonction g définie par
g(t) = K(t) f (t) est une solution de (17) sur I si, et seulement si,
sa dérivée K′ est une solution de l’équation

(18) ∀ t ∈ I, f (t)y′(t) +
[

α(t) f (t) + 2 f ′(t)
]

y(t) = 0.

Entraînement

68. Questions pour réfléchir
1. Soient ϕ1, . . ., ϕn, des solutions de (14) et t1 < t2, deux

instants de I. Comparer le rang de
(

ϕ1(t1), . . . , ϕn(t1)
)

et de
(

ϕ1(t2), . . . , ϕn(t2)
)

.

2. Dans quelle mesure peut-on parler du wronskien d’une
équation différentielle linéaire ?

3. On suppose que f et g = [t 7→ K(t) f (t)] sont des solutions
de (17).

3.a Le wronskien de f et g est égal à −K′(t) f 2(t).
3.b Relier l’équation différentielle y′(t) + α(t)y(t) = 0 vérifiée

par le wronskien [67.1] à l’équation différentielle (18) vérifiée par K.

69. Utilisation du wronskien
Les équations différentielles suivantes ont toutes des solutions
polynomiales. Connaissant un telle solution, on pourra faire va-
rier la constante [67] au lieu de passer par le calcul du wronskien.
69.1 Le wronskien de l’équation

(1 + t2)x′′(t)− 2x(t) = 0

est constant ; ses solutions sont les fonctions de la forme

K1(1 + t2) + K2
[

t + (1 + t2)Arctan t
]

.

69.2 Le wronskien de l’équation

(1 + t2)x′′(t)− 2tx′(t)− 2
1 − t2

1 + t2 x(t) = 0

est proportionnel à (1 + t2) ; les solutions sont les fonctions de la
forme

(1 + t2)(K1 + K2 Arctan t).

69.3 Le wronskien de

t2x′′(t) + tx′(t)− x(t) = 1

est proportionnel à 1/t et les solutions sur R∗
+ de l’équation sont

les fonctions de la forme K1t + K2/t − 1.
69.4 Le wronskien de

t3x′′(t) + tx′(t)− x(t) = 0

est proportionnel à exp(1/t) et les solutions sur R∗
+ ou sur R∗

−
sont les fonctions de la forme t(K1 + K2e1/t).
Les conditions initiales de la forme (t0 = 0, x0 = 0, v0) admettent
une infinité de solutions de classe C ∞ surR.
Il n’existe aucune solution de classe C 2 sur R associée à une
condition initiale de la forme (t0 = 0, x0 6= 0, v0).
69.5 Le wronskien de

(1 + t2)x′′(t) + tx′(t)− x(t) = 0

est proportionnel à 1/
√

1 + t2 et les solutions de l’équation sont
les fonctions de la forme

K1t + K2

√

1 + t2.

70. Solutions développables en série entière
Les équations différentielles suivantes ont des solutions dévelop-
pables en série entière au voisinage de 0.
70.1 Le wronskien de

(1 + t2)x′′(t) + 4tx′(t) + 2x(t) = 0

est proportionnel à 1/(1 + t2)2 et les solutions de l’équation sont
les fonctions de la forme

K1 + K2t

1 + t2 .
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70.2 Le wronskien de

t(1 − t)x′′(t) + (1 − 3t)x′(t)− x(t) = 0

est proportionnel à 1/[t(1 − t)2] et les solutions de l’équation sur
]0, 1[ sont les fonctions de la forme

K1 + K2 ℓn t

1 − t
.

L’équation a des solutions non nulles de classe C 2 sur R∗
+, mais

pas surR.
70.3 La wronskien de l’équation

tx′′(t) + (1 − t)x′(t)− x(t) = 0

est proportionnel à et/t. Les solutions sur ]0,+∞[ sont les fonc-
tions de la forme →[45.3]

et

(

K1 + K2

∫ +∞

t

e−s

s
ds

)

.

Les solutions de classe C 2 surR sont les solutions développables
en série entière.
Il existe une, et une seule, solution sur R qui vérifie la condition
initiale (t0 = 0; x0, v0) si, et seulement si, v0 = x0.
71. On étudie les solutions de l’équation différentielle

∀ t ∈ R+, x′′(t) + q(t)x(t) = 0

où q est une fonction continue et intégrable surR+.
1. Si f est une solution bornée sur R+, alors f ′′ est inté-

grable surR+ et f ′ tend vers 0 au voisinage de +∞.
2. Si f et g sont deux solutions bornées, alors leur wronskien

W(t) = f (t)g′(t)− f ′(t)g(t)

tend vers 0 au voisinage de +∞.
3. Il existe des solutions qui ne sont pas bornées surR+.

Changements de variables et d’inconnues

72. Suite de [53.3] –
1. Si la fonction f est solution de (15) sur R∗

+, alors la fonc-
tion g définie par g(t) = f (−t) est solution de (15) surR∗

−.
2. La fonction f est une solution de (15) sur R∗

+ si, et seule-
ment si, la fonction h définie par h(t2) = f (t), c’est-à-dire h(u) =
f (
√

u), est une solution de y′′(u)− y(u) = 0 surR∗
+.

3. La fonction f ∈ C
2(R) est une solution de (15) sur R si,

et seulement si, il existe deux réels K1 et K2 tels que

∀ t ∈ R, f (t) = K1 ch(t2) + K2 sh(t2).

73. Une fonction f de classe C 2 est une solution de l’équation
différentielle

∀ t > 0, t2x′′(t)− 2x(t) =
3
t

si, et seulement si, la fonction g définie par g(t) = t f ′(t) + f (t)
est une solution de l’équation différentielle

∀ t > 0, ty′(t)− 2y(t) =
3
t

.

Les solutions f sont les fonctions de la forme

f (t) =
K1

t
+ K2t2 − ℓn t

t
.

74. Une fonction f de classe C
2 sur un intervalle I ⊂ R∗ est

une solution de l’équation

tx′′(t) + 2x′(t)− tx(t) = 0

si, et seulement si, la fonction g définie par g(t) = t f (t) est une
solution sur I de y′′(t)− y(t) = 0.
Les solutions développables en série entière sont proportion-
nelles surR∗ à sh t/t.
Il existe une, et une seule, solution de classe C 2 surR qui vérifie
la condition initiale (t0 = 0, x0, v0) si, et seulement si, v0 = 0.

75. Équations de Bessel
Soit λ ∈ R. La fonction définie par x(t) = tλz(t) est solution de

(Bλ) ∀ t > 0, t2x′′(t) + tx′(t) + (t2 − λ2)x(t) = 0

si, et seulement si,

(B′
λ) ∀ t > 0, tz′′(t) + (2λ + 1)z′(t) + tz(t) = 0.

Si λ = −1/2, les solutions de (Bλ) sont les fonctions de la forme

x(t) = K1
cos t√

t
+ K2

sin t√
t

.

Si λ = 1/2, les solutions de (B′
λ) sont les fonctions de la forme

z(t) = K1
cos t

t
+ K2

sin t

t
.

76. Une fonction f de classe C 2 est solution surR∗
+ de

t2x′′(t) + 3tx′(t) + 4x(t) = t + 4

si, et seulement si, la fonction g définie par g(s) = f (es) est une
solution surR de

y′′(s) + 2y′(s) + 4y(s) = es + 4.

Les solutions f sont les fonctions de la forme

K1
cos(

√
3 ℓn t)

t
+ K2

sin(
√

3 ℓn t)

t
+

(

1 +
t

7

)

.

77. La fonction f est une solution surR de l’équation

(1 + t2)2x′′(t) + 2(t − 1)(1 + t2)x′(t) + x(t) = 0

si, et seulement si, la fonction g définie par g(θ) = f (tan θ) est
une solution de

∀ θ ∈ ]−π/2, π/2[ , y′′(θ)− 2y′(θ) + y(θ) = 0.

Les solutions f sont les fonctions de la forme

eArctan t(K1 + K2 Arctan t).

78. La fonction f est une solution de l’équation

∀ t ∈ ]−1, 1[ , (1 − t2)x′′(t)− tx′(t) + 4x(t) = Arccos t

si, et seulement si, la fonction g définie par g(θ) = f (cos θ) est
une solution de

∀ θ ∈ ]0, π[ , y′′(θ) + 4y(θ) = θ.

Les solutions f sont les fonctions de la forme

K1 sin(2 Arccos t) + K2 cos(2 Arccos t) +
1
4

Arccos t,

c’est-à-dire

2K1t
√

1 − t2 + K2(2t2 − 1) +
1
4

Arccos t.
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IV RÉSOLUTION DE L’ÉQUATION COMPLÈTE

IV

Résolution de l’équation complète

79. ➙ Principe de superposition
L’ensemble S des solutions de l’équation complète (13) est un sous-

espace affine de C 1(I, E) dirigé par l’espace SH des solutions de l’équa-
tion homogène (14).
80. Méthode de variation des constantes
Nous supposons que l’espace vectoriel SH des solutions de
l’équation homogène (14) est connu. Il nous reste à trouver une
solution particulière de l’équation complète.
80.1 Soient B = (u1, . . . , un), une base de E et x ∈ E. Il existe
une, et une seule, famille de scalaires (αk)16k6n telle que

x =
n

∑
k=1

αk · uk

et les formules de Cramer donnent une expression explicite des
coordonnées α1, . . ., αn.
80.2 Soient f1, . . ., fn, des applications de classe C 1 de I dans
E telles que la famille

(

f1(t), . . . , fn(t)
)

soit une base de E pour
tout t ∈ I. Alors, pour toute application f ∈ C 1(I, E), il existe
une, et une seule, famille (α1, . . . , αn) d’applications de classe C 1

de I dansK telle que

∀ t ∈ I, f (t) =
n

∑
k=1

αk(t) fk(t).

80.3 ➙ Soit ( f1, . . . , fn), une base de SH . Toute solution de l’équation
complète (13) a une expression de la forme

f (t) =
n

∑
k=1

αk(t) fk(t)

où les fonctions α1, . . ., αn appartiennent à C 1(I, E).

81. Matrices fondamentales
On considère ici les versions matricielles, relatives à une base B

(fixée) de l’espace des phases E, de l’équation différentielle (13) :

(19) ∀ t ∈ I, X′
t = AtXt + Bt

et de l’équation homogène (14) qui lui est associée :

(20) ∀ t ∈ I, X′
t = AtXt.

81.1 ✍ Une application matricielle [t 7→ Mt] est dite matrice fonda-
mentale lorsqu’il existe une base B de E et une base ( f1, . . . , fn) de
SH telle que

Mt = MatB

(

f1(t), . . . , fn(t)
)

pour tout t ∈ I.
81.2 Une matrice fondamentale M est dérivable sur I et

∀ t ∈ I, M′
t = At Mt.

81.3 L’application [t 7→ Xt ] est une solution de l’équation ho-
mogène (20) si, et seulement si, il existe une matrice fondamen-
tale M et une matrice colonne Λ ∈ Mn,1(K) telles que

∀ t ∈ I, Xt = MtΛ.

81.4 S’il existe une application [t 7→ Λt] de I dans Mn,1(K) de
classe C 1 et telle que

∀ t ∈ I, Xt = MtΛt,

alors l’application [t 7→ Xt] est une solution de l’équation com-
plète (19) si, et seulement si,

∀ t ∈ I, Λ′(t) = M−1
t Bt.

81.5 ➙ Si [t 7→ Mt] est une matrice fondamentale, alors la solution de
l’équation complète (19) qui vérifie la condition initiale (t0, X0) a pour
expression

Xt = Mt M−1
t0

X0 +
∫ t

t0

Mt M−1
s Bs ds

pour tout t ∈ I.

Exemples

82. Oscillations forcées [64]
Par variation des constantes à partir de la matrice fondamentale

Mt =

(

cos t sin t
− sin t cos t

)

,

les solutions de l’équation forcée x′′(t) + x(t) = ϕ(t) sont de la
forme :

K1 cos t + K2 sin t +
∫ t

t0

ϕ(s) sin(t − s) ds.

Expliciter la solution telle que x(0) = x′(0) = 0.
Expliciter l’intégrale pour ϕ(t) = tan t ; pour ϕ(t) = tan2 t.
83. L’équation différentielle

t2x′′(t)− 2tx′(t) + 2x(t) = t − 2

admet la matrice
(

t t2

1 2t

)

pour matrice fondamentale. Par variation des constantes, la solu-
tion générale sur I = ]0,+∞[ a pour expression :

−(1 + t ℓn t) + K1t + K2t2.

Entraînement

84. Questions pour réfléchir
1. Suite de [80] – Justifier le nom de la méthode.
2. Que dire du déterminant d’une matrice fondamentale ?

85. Suite de [72] –
1. L’équation

∀ t ∈ R, tx′′(t)− x′(t)− 4t3x(t) = 4t3

admet une solution particulière évidente : laquelle?
2. L’équation

∀ t ∈ R, tx′′(t)− x′(t)− 4t3x(t) = 4t5

admet une solution particulière polynomiale : laquelle?
3. Pour chacune des deux équations précédentes, préciser

quels sont les triplets (t0, x0, v0) ∈ R3 pour lesquels l’équation
différentielle admet une, et une seule, solution de classe C 2 sur
R telle que x(t0) = x0 et x′(t0) = v0.

86. Suite de [69.1] – Résoudre (1 + t2)x′′(t)− 2x(t) = t.
87. Suite de [69.2] – L’équation différentielle

(1 + t2)x′′(t)− 2tx′(t)− 2
1 − t2

1 + t2 x(t) = 1

admet 1
2 (1 + t2)Arctan2 t pour solution particulière.

88. Suite de [70.1] – L’équation différentielle

(1 + t2)x′′(t) + 4tx′(t) + 2x(t) =
1

1 + t2

admet
t Arctan t

1 + t2 − ℓn(1 + t2)

2(1 + t2)

pour solution particulière.

89. Si la fonction f est de classe C 1, monotone et bornée
surR+, alors les solutions [82] de l’équation

∀ t ∈ R+, x′′(t) + x(t) = f (t)

sont bornées surR+.
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90. Variation de la constante
On étudie une équation différentielle linéaire du second ordre
en supposant connue une solution particulière f de l’équation
homogène.
La méthode de variation de la constante [67] peut aussi servir à
calculer la solution générale de l’équation complète sous la forme
g(t) = K(t) f (t).
90.1 L’équation différentielle homogène

∀ t > 0, t2x′′(t) + tx′(t)− x(t) = 0

admet des solutions de la forme f (t) = tα.
La fonction g est solution de l’équation

∀ t > 0, t2x′′(t) + tx′(t)− x(t) = t

si, et seulement si, il existe deux réels A et B tels que

∀ t > 0, g(t) =
A

t
+ Bt +

1
2

t ℓn t.

En particulier, aucune solution n’est développable en série en-
tière au voisinage de l’origine [24.2].
90.2 Les solutions de l’équation homogène

∀ t ∈ R, t2x′′(t)− 2tx′(t) + 2x(t) = 0

sont polynomiales [83].
La fonction g est une solution de l’équation

∀ t ∈ R, t2x′′(t)− 2tx′(t) + 2x(t) = t3 cos t

si, et seulement si, il existe deux réels A et B tels que

∀ t ∈ R, g(t) = At + Bt2 − t cos t.

Comment la singularité en t = 0 se manifeste-t-elle?
90.3 L’équation différentielle homogène

∀ t ∈ ]−1, 1[ , (1 − t2)x′′(t)− 3tx′(t)− x(t) = 0

admet 1√
1−t2

pour solution particulière.
La fonction g est solution de l’équation

∀ t ∈ ]−1, 1[ , (1 − t2)x′′(t)− 3tx′(t)− x(t) =
t√

1 − t2

si, et seulement si, il existe deux réels A et B tels que

∀ t ∈ ]−1, 1[ , g(t) =
A + B Arcsin t − t√

1 − t2
.

91. Une équation intégrale
1. Si f est une fonction continue surR telle que

(21) ∀ t ∈ R, 3 Arctan t + t2 f (t) = 2t
∫ t

1
f (s) ds,

alors f est de classe C ∞ surR∗ et vérifie l’équation différentielle

(22) ∀ t ∈ R∗, t2x′′(t) + 2tx′(t)− 2x(t) =
6t

(1 + t2)2 .

En outre, f (1) = −3π/4 et f ′(1) = −3/2.
2. L’équation homogène associée à (22) admet

Mt =
1
t3

(

t4 t
t3 −2

)

pour matrice fondamentale. En posant

Λ′(t) = M−1
t

(

0
6

t(1+t2)2

)

,

on obtient une solution particulière de (22) :

g0(t) = −t ℓn(1 + t2) + t ℓn(t2) +
1
t
− Arctan t

t2 .

3. L’unique solution de (21) :

∀ t ∈ R∗, f (t) = g0(t) +
(

ℓn 2 − 1 − π/2
)

t

n’est pas dérivable en t = 0.

V

Cas des coefficients constants

92. L’expression [101] des solutions d’une équation différen-
tielle linéaire à coefficients constants en dimension n reprend, en
la généralisant, l’expression [5] des solutions d’une équation dif-
férentielle à coefficients constants en dimension 1 : on remplace
l’exponentielle d’un nombre réel ou complexe par l’exponentielle
d’une matrice carrée.

V.1 Exponentielle de matrice

93. Soit A ∈ Mn(K). On pose

‖A‖∞ = max
16i,j6n

|ai,j|.

93.1 Pour tout k ∈ N, on note [Ak]i,j, le coefficient de Ak situé
à l’intersection de la i-ème ligne et de la j-ème colonne. Alors

∀ 1 6 i, j 6 n, ∀ k ∈ N∗, |[Ak]i,j| 6 nk−1‖A‖k
∞

et la série de terme général [Ak]i,j/k! est absolument convergente.
93.2 ✍ L’exponentielle de la matrice A ∈ Mn(K) est la matrice
définie par

exp(A) =
+∞

∑
k=0

1
k!

Ak

au sens où le coefficient situé à l’intersection de la i-ème ligne et de la
j-ème colonne de exp(A) est égal à la somme

+∞

∑
k=0

[Ak]i,j
k!

.

93.3 Si A = Diag(a1, . . . , an), alors

exp(A) = Diag(ea1 , . . . , ean).

En particulier,

∀ t ∈ R, exp(tIn) = et · In.

93.4 ➙ Si B = Q−1AQ, alors exp(B) = Q−1 exp(A)Q.

94. L’exponentielle des matrices possède des propriétés ana-
logues à celles de l’exponentielle complexe. On reprend les nota-
tions de [93].
94.1 Soient 1 6 i, j 6 n. Le rayon de convergence de la série
entière

∑
1
k!

tk[Ak]i,j

est infini.
94.2 ➙ Dérivation
L’application [t 7→ exp(tA)] est de classe C 1 surR et

d[exp(tA)]

dt
= A exp(tA) = exp(tA)A.

94.3 ➙ Propriété de morphisme
Quels que soient les réels s et t,

exp(sA) exp(tA) = exp
[

(s + t)A
]

= exp(tA) exp(sA).

95. Exemples
95.1 Si A2 = In, alors

∀ t ∈ R, exp(tA) = ch t In + sh t A.

95.2 Si A2 = −In, alors

∀ t ∈ R, exp(tA) = cos t In + sin t A.
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95.3 Si A3 = A2, alors

∀ t ∈ R, exp(tA) = I + tA + (et − 1 − t)A2

= (I − A2) + t(A − A2) + et A2.

95.4 Si A3 = −A2, alors

∀ t ∈ R, exp(tA) = I + tA + (e−t − 1 + t)A2

= (I − A2) + t(A + A2) + e−t A2.

95.5 Si la matrice A ∈ M2(K) est triangulaire :

A =

(

λ 1
0 λ

)

,

alors

∀ t ∈ R, exp(tA) = eλt

(

1 t
0 1

)

.

95.6 Si la matrice A ∈ M2(K) est diagonalisable et semblable
à Diag(λ, µ), alors, quel que soit X0 ∈ M2,1(K), il existe deux
scalaires α et β tels que

∀ t ∈ R, exp(tA)X0 =

(

αeλt + βeµt

∗

)

.

V.2 Résolution d’une équation différentielle à
coefficients constants

96. On considère ici les équations différentielles qu’on peut
écrire matriciellement sous la forme

∀ t ∈ I, X′
t = AXt + Bt

où A est une matrice fixée de Mn(K) et [t 7→ Bt], une fonction
continue de I dans l’espace des phases E = Mn,1(K).

Résolution de l’équation homogène

97. ➙ Théorème de Cauchy linéaire
Quels que soient t0 ∈ I et U0 ∈ Mn,1(K), le problème de Cauchy

{

∀ t ∈ I, X′
t = AXt

Xt0 = U0

admet une, et une seule, solution. Cette solution a pour expression :

∀ t ∈ I, Xt = exp
[

(t − t0)A
]

U0.

98. ➙ Matrice fondamentale
Soit (U1, . . . , Un), une famille de vecteurs de l’espace des phases E. La
famille des applications

[t 7→ exp(tA)Uk] (1 6 k 6 n)

est un système fondamental de solutions de l’équation homogène

∀ t ∈ I, X′
t = AXt

si, et seulement si, la famille (U1, . . . , Un) est une base de E.

99. Soit B = (U1, . . . , Un) une base de E. La matrice fonda-
mentale

MatB

(

exp(tA)U1, . . . , exp(tA)Un
)

est égale à exp(tA).
100. ⊲ Wronskien [65.2]
Soient B et (U1, . . . , Un), deux bases de l’espace des phases. Le wrons-
kien relatif à B du système fondamental de solutions

(

[t 7→ exp(tA)Uk]
)

16k6n

est égal à

detB(U1, . . . , Un) exp
(

t tr(A)
)

.

Résolution de l’équation complète

101. ➙ L’expression de la solution de l’équation complète

∀ t ∈ I, X′
t = AXt + Bt

qui vérifie la condition initiale (t0, U0) est donnée par :

Xt = exp
[

(t − t0)A
]

U0 +
∫ t

t0

exp
[

(t − s)A
]

Bs ds

pour tout t ∈ I.

Applications

102. Suite de [46.3] –

exp
(

4t −2t
t t

)

= e2t

(

−1 2
−1 2

)

+ e3t

(

2 −2
1 −1

)

103.1 Pour tout t ∈ R,

exp
(

t 8t
2t t

)

=
1
4

e−3t

(

2 −4
−1 2

)

+
1
4

e5t

(

2 4
1 2

)

103.2 Une solution particulière du système différentiel
{

x′ = x + 8y + et

y′ = 2x + y + e−3t

est donnée par

∀ t ∈ R,
(

x(t)
y(t)

)

= − et

8

(

0
1

)

− e−3t

16

(

2
1

)

− te−3t

2

(

2
−1

)

.

103.3 Le couple de fonctions (x0, y0) est solution du système
homogène associé si, et seulement si, il existe deux réels K1 et K2
tels que

∀ t ∈ R,
(

x0(t)
y0(t)

)

=

(

2 2
1 −1

)(

K1e5t

K2e−3t

)

.

Entraînement

104. Questions pour réfléchir
1. Suite de [100] – Avec B = (U1, . . . , Un) à t = 1,

det(exp A) = exp(tr A).

2. Comparer [101] et [4].

105.1 Suite de [95.3] – Si

A =





7 4 11
−3 −1 −4
−3 −2 −5



 ,

alors, pour tout t ∈ R,

exp(tA) =





−3 −2 −6
6 4 9
0 0 1



+ t





3 2 5
3 2 5
−3 −2 −5





+ et





4 2 6
−6 −3 −9
0 0 0



 .

105.2 Pour tout t ∈ R,

exp





t t 0
0 t 0
0 0 −t



 =





et tet 0
0 et 0
0 0 e−t



 .
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105.3 On pose B = A − I3 où

A =





1 1 0
−1 2 1
1 0 1



 .

1. Pour tout t ∈ R, on a exp(tA) = et exp(tB).
2. Les projections associées à la décomposition

M3,1(R) = Ker(B − I3)⊕ Ker(B2 + I3)

sont

P1 =
1
2
(B2 + I3) et P2 =

1
2
(I3 − B2)

et, pour tout t ∈ R, →[95.2]

exp(tB) = etP1 + cos t P2 + sin t BP2.

106. L’espaceR3 est muni de sa structure euclidienne orientée
canonique.
106.1 Soient u ∈ R3, non nul, et a ∈ L(R3) définie par

∀ x ∈ R3, a(x) = u ∧ x.

Il existe une base orthonormée directe de R3 dans laquelle l’en-
domorphisme a est représenté par la matrice

A =





0 0 0
0 0 −k
0 k 0



 où k = ‖u‖.

106.2 Pour tout t ∈ R,

exp(tA) =





1 0 0
0 cos kt − sin kt
0 sin kt cos kt



 .

106.3 Interpréter le résultat précédent à l’aide de l’équation dif-
férentielle

∀ t ∈ R, x′(t) = u ∧ x(t).

107. Les matrices

A =





3 2 2
0 2 1
0 1 2



 et J =





1 0 0
0 3 1
0 0 3





sont semblables et, pour tout t ∈ R,

exp(tA) =
e3t

2





2 0 0
0 1 1
0 1 1



+ 2te3t





0 1 1
0 0 0
0 0 0





+
et

2





0 0 0
0 1 −1
0 −1 1



 .

Les plans stables par A sont [y − z = 0] et [y + z = 0].
La trajectoire de la solution de l’équation différentielle

∀ t ∈ R, X′(t) = AX(t)

telle que X′(0) = 〈 1, 1, 1 〉 est contenue dans le plan [y − z = 0].

108.1 Avec

A =





0 1 0
0 0 1
3 −7 5



 , B =





1 1 0
0 1 0
0 0 3



 , P =





1 −1 1
1 0 3
1 1 9





on a P−1AP = B et

∀ t ∈ R, exp(tB) =





et tet 0
0 et 0
0 0 e3t



 .

108.2 Une fonction x est une solution de l’équation différen-
tielle

∀ t ∈ R, x(3)(t)− 5x′′(t) + 7x′(t)− 3x(t) = 0

si, et seulement si, il existe trois réels α, β et γ tels que

∀ t ∈ R, x(t) = (α + βt)et + γe3t.

Questions, exercices & problèmes

Perfectionnement

109. Exemples et contre-exemples
1. Exemple d’équation différentielle linéaire et homogène

du premier ordre admettant une solution ϕ non identiquement
nulle sur I = ]a, b[ et qui tend vers 0E au voisinage de b.
110. Méthodes

1. Comment trouver efficacement les solutions polyno-
miales d’une équation différentielle?

2. Exemples de méthodes permettant de calculer une solu-
tion non nulle d’une équation différentielle linéaire du second
ordre.

3. Comment résoudre une équation différentielle de la
forme suivante?

ax′′(t) + bx′(t) + cx(t) =
+∞

∑
n=0

gn(t)

Approfondissement

111. On suppose que f est une fonction de classe C 2 sur R et
qu’elle vérifie l’équation différentielle

a(t)x′′(t) + b(t)x′(t) + c(t)x(t) = g(t)(E)

pour tout t < 0 et pour tout t > 0. La fonction f vérifie-t-elle
l’équation (E) pour tout t ∈ R?
112. On considère l’équation différentielle

(⋆) ∀ t ∈ R, x′′(t) + q(t)x(t) = 0

où q est une fonction continue deR dans R.
1. Si f est une solution non nulle de (⋆) sur [a, b], alors f

s’annule un nombre fini de fois sur [a, b].
2. Soient f et g, deux solutions non nulles de (⋆) sur R. On

suppose que deux réels a et b sont deux zéros consécutifs de f
(avec a < b). Alors la fonction g admet un, et un seul, zéro dans
[a, b[.
113. Solutions périodiques
On considère l’équation différentielle

(⋆) ∀ t ∈ R, x′(t) + x(t) = f (t)

où f : R→ R est une fonction continue.
1. La fonction g : R→ R définie par

∀ t ∈ R, g(t) =
∫ t

0
f (s)e−(t−s) ds

est une solution de (⋆).
2. Si l’équation différentielle (⋆) admet une solution pério-

dique, de période T > 0, alors la fonction f est périodique, de
période T.

3. On suppose que f est périodique, de période T > 0.
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3.a L’équation (⋆) admet au plus une solution périodique de
période T.

3.b L’équation (⋆) admet-elle une solution périodique?
114. Perturbation des coefficients
L’équation caractéristique admet le réel λ pour racine double si,
et seulement si, l’équation différentielle s’écrit :

x′′ − 2λx′ + λ2x = 0.

Pour tout ε > 0, la fonction définie par

∀ t ∈ R, fε(t) =
e(λ+ε)t − eλt

ε

est une solution de l’équation différentielle

x′′ − (2λ + ε)x′ + λ(λ + ε)x = 0.

Que dire de fε lorsque ε tend vers 0?
115. Si (x, y) est une solution du système différentiel

{

x′(t) = y(t)
y′(t) = −x(t) + 2y(t)

alors x est une solution de x′′(t)− 2x′(t) + x(t) = 0. Le couple
(x, y) est une solution si, et seulement si, il existe deux réels A et
B tels que

∀ t ∈ R, x(t) = et(A + Bt), y(t) = x(t) + Bet.

116. Soit f , une fonction continue et intégrable surR. La fonc-
tion F définie par

∀ t ∈ R, F(t) = −et
∫ +∞

t
e−s f (s) ds

est l’unique solution bornée surR de l’équation différentielle

∀ t ∈ R, x′(t)− x(t) = f (t).

La fonction F tend vers 0 aux voisinages de −∞ et de +∞. Elle
est intégrable surR et

∫ +∞

−∞
F(t) dt = −

∫ +∞

−∞
f (t) dt.

117. Séries de Fourier
On suppose que la série ∑ an est absolument convergente.

1. Si ω est un réel strictement positif non entier, alors l’équa-
tion

∀ t ∈ R, x′′(t) + ω2x(t) =
+∞

∑
n=0

an cos nt

admet pour solution la fonction f définie par

∀ t ∈ R, f (t) =
+∞

∑
n=0

an

ω2 − n2 cos nt.

2. Étudier le cas où ω ∈ N∗.
118.

1. Il existe une fonction continue λ : R → R telle que
l’équation différentielle

(23) ∀ t ∈ R, y′′(t) + λ(t)y′(t) + y(t) = 0

admette f (t) = t/ ch t pour solution. Les solutions de (23) sont
alors de la forme

K1 + K2t

ch t
.

119. Parité d’un système fondamental
On considère l’équation différentielle

(24) ∀ t ∈ R, x′′(t) + a(t)x′(t) + b(t)x(t) = 0

où a et b sont des fonctions continues deR dans R.
119.1 On suppose que a est impaire et que b est paire.

1. Si f est une solution qui n’est ni paire, ni impaire, alors
g = [t 7→ f (−t)] est une solution de (24).

2.a Le wronskien de (24) est une fonction paire.
2.b Si l’équation (24) admet une solution paire (resp. impaire)

non identiquement nulle, alors elle admet aussi une solution im-
paire (resp. paire) non identiquement nulle.

3. Toute solution de l’équation (24) est combinaison linéaire
d’une solution paire et d’une solution impaire.
119.2 Si l’équation (24) admet une matrice fondamentale de la
forme

Mt =

(

f (t) g(t)
f ′(t) g′(t)

)

où f est une solution paire et g, une solution impaire, alors

∀ t ∈ R,
(

b(t)− b(−t) a(t) + a(−t)
)

Mt =
(

0 0
)

donc a est impaire et b est paire.
120. L’équation

tx′(t)− x(t) =
t

1 + t2

présente une singularité en t = 0. Sur les deux intervalles ]−∞, 0[
et ]0,+∞[, les solutions s’expriment sous la forme

t
[

λ + ℓn|t| − 1
2
ℓn(1 + t2)

]

.

Il n’y a pas de solution surR.
121. Changements de variable
121.1 Soit α, un nombre réel. Si x est une fonction de classe C 2

telle que

(Eα) ∀ t ∈ I = ]−1, 1[ , (1 − t2)x′′(t)− αtx′(t) + αx(t) = 0,

on définit une fonction y en posant

∀ t ∈ I, x(t) = y
(

ϕ(t)
)

où ϕ est une bijection de classe C 1 de I sur un intervalle J.
Pour quelle valeur de α la fonction y est-elle solution d’une équa-
tion différentielle à coefficients constants?
Résoudre l’équation (Eα) dans ce cas.
121.2 Toute fonction f de classe C 2 surR∗

+ telle que

∀ t > 0, f ′(t) = f (1/t)

est une solution de l’équation différentielle

∀ t > 0, t2x′′(t) + x(t) = 0.

La fonction g définie par

∀ s ∈ R, g(s) = f (es)

est solution d’une équation différentielle linéaire du second ordre
à coefficients constants et g(0) = g′(0). Il existe donc une
constante A telle que

∀ t > 0, f (t) = A
√

t
[
√

3 cos

√
3 ℓn t

2
+ sin

√
3 ℓn t

2
]

.
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122. L’équation homogène associée à

(⋆) ∀ t ∈ R, (1 + t) x′′(t)− 2 x′(t) + (1 − t) x(t) = t e−t

admet exp pour solution particulière. à quelle condition sur k ∈
C 2(R) la fonction x(t) = k(t) et est-elle une solution de l’équa-
tion (⋆)?
Les solutions de (⋆) sont les fonctions de la forme

(1 + t

2

)

e−t − K1 (2t2 + 6t + 5) e−t + K2 et.

Étudier la singularité en t = −1.

123. Une fonction x est une solution de classe C 2 de l’équation
différentielle

∀ t ∈ R, t2x′′(t)− 2tx′(t) + 2x(t) = t3 cos t

si, et seulement si, il existe deux réels A et B tels que

∀ t ∈ R, x(t) = At + Bt2 + t(1 − cos t).

En particulier, toutes les solutions sont développables en série
entière. Étudier la singularité en t = 0.

Pour aller plus loin

124.1 Suite de [22] – Soit f , une solution non identiquement
nulle de l’équation différentielle

∀ t ∈ R, x′′(t) + etx(t) = 0.

1. Soient a et b, deux nombres réels tels que a < b et g, une
solution de

∀ t ∈ R, x′′(t) + eax(t) = 0.

1.a S’il existe deux nombres réels a 6 α < β 6 b tels que
g(α) = g(β) = 0 et que les deux fonctions f et g restent stricte-
ment positives sur ]α, β[, alors la fonction W définie par

∀ t ∈ R, W(t) = y(t)z′(t)− y′(t)z(t)

est croissante sur [α, β] tandis que W(α) > 0 et W(β) < 0.
1.b Entre deux zéros consécutifs de g se trouve au moins un

zéro de f .
2. Pour tout réel τ, la fonction f s’annule au moins une fois

dans l’intervalle [τ, τ + π exp(−τ/2)].
124.2 On étudie les solutions réelles de l’équation différentielle

(⋆) ∀ t ∈ I, x′′(t) + a1(t)x
′(t) + a0(t)x(t) = 0

où a0 et a1 sont des fonctions continues de l’intervalle ouvert I
dansR.

3. Soit f ∈ C 2(I,R), une solution de (⋆). S’il existe t0 ∈
I tel que f (t0) = 0, alors f est identiquement nulle sur I si, et
seulement si, f ′(t0) = 0.

4. Soit f ∈ C 2(I,R), une solution non identiquement nulle
de l’équation homogène (⋆).

4.a S’il existe t0 ∈ I tel que f (t0) = 0, alors il existe r > 0 tel
que f (t) 6= 0 pour tout t ∈ ]t0 − r, t0 + r[.

4.b Pour tout segment [a, b] ⊂ I, la fonction f ne s’annule
qu’un nombre fini de fois sur [a, b]. Il est donc légitime de parler
des zéros consécutifs de f .

5. On considère maintenant un système fondamental ( f , g)
de solutions de (⋆). Le wronskien de ce système est noté W.

5.a Les fonctions f et g ne s’annulent jamais au même instant.
5.b Si t1 et t2 sont deux zéros consécutifs de f et si f est stric-

tement positive sur ]t1, t2[, alors f ′(t1) et f ′(t2) sont de signes
opposés et g s’annule au moins une fois entre t1 et t2.

5.c Par symétrie, la fonction g s’annule une fois, et une seule,
entre deux zéros consécutifs de f .

5.d On suppose que f s’annule exactement n fois sur l’inter-
valle I. Combien de fois la fonction g s’annule-t-elle?

124.3 Une fonction f de classe C 2 sur I = ]0,+∞[ est une solu-
tion de l’équation différentielle homogène

∀ u > 0, y′′(u) +
2
u

y′(u) +
1
u4 y(u) = 0

si, et seulement si, il existe deux réels A et B tels que

∀ u > 0, y(u) = A sin
1
u
+ B cos

1
u

.

(Considérer x(t) = y(1/t).)
Pour (A, B) 6= (0, 0), cette fonction f n’est pas identiquement
nulle mais elle admet une infinité de zéros au voisinage de 0. Cela
ne contredit pas l’étude précédente car 0 /∈ I.
125. Matrice résolvante
125.1✍ Soit [t 7→ Mt], une matrice fondamentale. La matrice résol-
vante Rs,t est définie par

Rs,t = Ms M−1
t

pour tous s et t dans I.
1. Exprimer la matrice résolvante relative à une base C de E

en fonction de la matrice résolvante relative à une base B de E et
de la matrice de passage P de B à C .

2. Comparer les matrices résolvantes associées à deux ma-
trices fondamentales [t 7→ Mt] et [t 7→ Nt] d’une même équation
homogène.

3. Expression de la matrice résolvante de l’équation homo-
gène X′

t = AXt.
126. L’équation différentielle

(‡) y′(t)− 2ty(t) + 2ty2(t) = 0

admet exactement deux solutions constantes surR.
Si la fonction y est une solution de (‡) qui ne s’annule pas sur
l’intervalle I, alors la fonction x = 1/y vérifie

∀ t ∈ I, x′(t) + 2tx(t) = 2t

donc il existe une constante A telle que

∀ t ∈ I, y(t) =
1

1 + Ae−t2 .

Le principe de superposition peut-il s’appliquer à (‡)?
127. Système différentiel à coefficients non constants
On étudie un système différentiel de la forme

X′
t = B(t)Xt

où la fonction [t 7→ B(t)] est continue de I dans Mn(K).
127.1 Soit [t 7→ A(t)], une application de classe C 1 de I dans
Mn(K). L’application

f = [t 7→ exp A(t)]

est de classe C
1 sur I et si de plus

(⋆) ∀ t ∈ I, A(t)A′(t) = A′(t)A(t),

alors
f ′(t) = [exp A(t)]A′(t) = A′(t) exp A(t)

pour tout t ∈ I.
127.2 Analyse de la condition nécessaire
On cherche maintenant des conditions simples pour que la condi-
tion (⋆) soit vérifiée.

1. S’il existe P ∈ GLn(R) telle que D(t) = P−1A(t)P soit
diagonale pour tout t ∈ I, alors la condition (⋆) est vérifiée.

2. Il suffit aussi que

∀ (s, t) ∈ I × I, A(s)A(t) = A(t)A(s)

pour que (⋆) soit vérifiée.
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3. La condition

∀ (s, t) ∈ I × I, A′(s)A′(t) = A′(t)A′(s)

est vérifiée dès que la dérivée A′ est constante (cas d’un sys-
tème différentiel à coefficients constants). Cette condition suffit-
elle pour que (⋆) soit vérifiée?

128. Lemme de Gronwall
128.1 Démonstration du lemme
Soient f et g, deux fonctions continues et positives, définies sur
un même intervalle I. On suppose qu’il existe un instant t0 ∈ I et
une constante k ∈ R+ tels que

∀ t ∈ I, f (t) 6 k +
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∫ t

t0

g(s) f (s) ds
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1. L’hypothèse précédente est vérifiée lorsque f est de classe
C 1 sur I = [a, b] et que

∀ t ∈ I, f ′(t) 6 g(t) f (t).

2. La fonction u définie par

∀ t > t0, u(t) = k +
∫ t

t0

g(s) f (s) ds

et par

∀ t 6 t0, u(t) = k −
∫ t

t0

g(s) f (s) ds

est continue sur I et de classe C
1 sur I privé de t0.

3. La fonction v définie sur I par

∀ t > t0, v(t) = u(t) exp
[

−
∫ t

t0

g(s) ds

]

et par

∀ t 6 t0, v(t) = u(t) exp
[

∫ t

t0

g(s) ds

]

est de classe C 1 sur I privé de t0, décroissante sur I ∩ [t0,+∞[ et
croissante sur I ∩ ]−∞, t0].

4.

∀ t ∈ I, f (t) 6 k exp
∣
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∫ t
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g(s) ds
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128.2 Applications
5. Soient a, une fonction de classe C 1 surR+ et f , une solu-

tion de l’équation différentielle

∀ t ∈ R+, x′′(t) +
[

1 + a(t)
]

x(t) = 0.

Alors [82] la fonction g définie par

∀ t ∈ R+, g(t) = f (t) +
∫ t

0
sin(t − s)a(s) f (s) ds

vérifie x′′ + x = 0 et il existe une constante C > 0 telle que

∀ t ∈ R+,
∣

∣ f (t)
∣

∣ 6 C exp
∫ t

0

∣

∣a(s)
∣

∣ ds.

6. Soit E, un espace vectoriel normé de dimension finie. On
considère deux applications continues a : I → L(E) et b : I → E
ainsi que deux solutions ϕ : I → E et ψ : I → E de l’équation

∀ t ∈ I, x′(t) = a(t)x(t) + b(t).

On admet qu’il existe une fonction continue K telle que

∀ s ∈ I, ∀ x ∈ E,
∥

∥a(s)x
∥

∥

E
6 K(s)‖x‖E.

Alors, pour tout t ∈ I,

∥

∥ϕ(t)− ψ(t)
∥

∥

E
6

∥

∥ϕ(t0)− ψ(t0)
∥

∥

E
exp
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∫ t

t0

K(s) ds
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Que déduire du lemme de Gronwall si ϕ(t0) = ψ(t0)?
7. Soit (un)n∈N, une suite de vecteurs de E qui converge

vers x0. Pour tout n ∈ N, on suppose que le problème de Cau-
chy :

x(t0) = un et ∀ t ∈ I, x′(t) = a(t)x(t)

admet une solution notée ϕn.
La suite de fonctions (ϕn)n∈N converge uniformément sur tout
segment de I vers une fonction ϕ continue sur I et telle que

∀ t ∈ I, ϕ(t) = x0 +
∫ t

t0

a(s)ϕ(s) ds.

129. Résolution d’une équation non linéaire
On veut résoudre l’équation différentielle

(⋆) x′′(t) + x(t) = σx2(t)

sur le segment [0, b] avec la condition initiale

(†)
(

x(0), x′(0)
)

= (α, 0)

en supposant que σ > 0 et que σb + |α| < 1.
129.1 À cet effet, on pose

∀ t ∈ R+, x0(t) = α cos t

et, pour tout n ∈ N∗, on note xn , la solution de l’équation diffé-
rentielle

∀ t ∈ R+, x′′(t) + x(t) = σx2
n−1(t)

qui vérifie la condition initiale (†).
129.2 Soit f : R+ → R, une fonction continue. La solution de
l’équation différentielle

∀ t ∈ R+, x′′(t) + x(t) = f (t)

qui vérifie la condition initiale (x(0), x′(0)) = (0, 0) s’exprime
sous la forme suivante :

∀ t ∈ R+, x(t) =
∫ t

0
f (s) sin(t − s) ds.

129.3 En exprimant xn(t) en fonction de xn−1(t), on montre que

∀ t ∈ [0, b],
∣

∣xn(t)
∣

∣ < 1.

129.4 Avec un(t) = xn(t)− xn−1(t), on a

∀ t ∈ R+,
∣

∣un(t)
∣

∣ 6
(2σ)ntn

n!
.

La suite de fonctions (xn)n∈N converge donc simplement surR+
et la limite g de cette suite de fonctions est une solution du pro-
blème de Cauchy (⋆, †).
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