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Equations différentielles linéaires

I

Quelques recettes

Les équations différentielles les plus simples peuvent étre réso-
lues facilement en appliquant les formules ci-dessous.

1.1 Equations du premier ordre

1. On considere 1'équation différentielle linéaire

1) Vtel, x'(t)=a(t)x(t) +b(t)

ou I est un intervalle de R ; o1 les données a et b sont des fonc-
tions continues de I dans K = R ou C et 'inconnue x est une
fonction dérivable de I dans K.

1.1 Pour tout k € N, si a et b sont de classe ©* sur I, alors x
est de classe ¢k 1.

1.2 # ['équation homogene associée a (1) est I'équation différen-
tielle suivante.

) Viel, x(t)—a(t)x(t) =0.

2. Probléme de Cauchy

Une condition initiale est un couple (ty,xy) € I x K. Le pro-
bléme de Cauchy associé a cette condition initiale consiste a trou-
ver une solution x : I — K de I'équation (1) qui vérifie en outre
la contrainte suivante.

® x(to) = xo
3. Principe de superposition
3.1 Si x1 et xp sont deux solutions du probleme de Cauchy

associées a la méme condition initiale (¢, xo), alors la différence
x = (x1 — xp) est une solution de 1'équation homogene (2) telle
que x(tg) = 0.
3.2 Si x1 et xp sont deux fonctions dérivables sur I telles que
xp(t) = a(t)xy(t) + by () et x5 (t) = a(t)xa2(t) + ba(t) pour tout
t € I, alors la combinaison linéaire x = Axy + x, vérifie

Viel, x'(t)=a(t)x(t)+ [Abi(t) + ba(t)].
3.3 Sia est une fonction a valeurs réelles et si x est une solution
de (1), alors y = PRe(x) et z = IJm(x) vérifient

v (1) = a(t)y(t) + Re[b(t)]
el {Z/(f) a(t)z(t) + Tm[b(t)].

Expression des solutions

4. = DPour toute condition initiale (ty, x9) € I x K, il existe une,
et une seule, fonction dérivable x : I — K qui vérifie le probleme de
Cauchy associé a (to, xg).

Cette solution s’exprime par la formule suivante :

t
4) Viel, x(t)=eAl) {xo + [ e AB)p(s) ds}
to
ot A : I — Kest la primitive de a qui s’annule en t = f.
5. = Sila fonction a est constante, la solution de I'équation différen-
tielle (1) qui vérifie la condition initiale (to, xo) € I x K s’exprime par
la formule suivante :

t
) Viel, x(t)=xpettt) 4ot / e *b(s) ds.

Jto

6. Méthode générale : Variation de la constante
En pratique :
6.1 Onrésout I'équation homogene (2) dont les solutions sont
de la forme
K exp[A(t)]
ol K est une constante.
6.2 On trouve une solution particuliere de 1'équation com-
plete (1) en la cherchant sous la forme

K(t)exp[A(H)]

ol K est une fonction de classe &1
6.3 Eventuellement, on détermine la constante d’intégration
au moyen de la condition initiale.

7. Cas particulier : Equation a coefficient constant

On suppose que la fonction a est constante (soit a(f) = a pour
tout t € I) et qu’il existe une fonction polynomiale P de degré d
et un scalaire u € C tels que

Vtel, b(t)=P(t)e.

7.1 Si u # a, alors il existe une fonction polynomiale Q de
degré d telle que la fonction x définie par

Viel, x(t)=Q(t)eM
soit une solution de (1).
7.2 Si p = a, alors il existe une fonction polynomiale Q de

degré d telle que la fonction x définie par

Viel, x(t)=tQ(t)e!
soit une solution de (1).
7.3 Dans les deux cas, les (d + 1) coefficients inconnus de Q

peuvent étre déduits de 1’équation complete en substituant 1’ex-
pression générale de la solution a x(t) dans l'équation (1) et en
identifiant membre & membre les termes selon leur degré : on est
ramené a la résolution d’un systéme linéaire de (d + 1) équations.

8. Singularités
L'équation différentielle
©) Viel a(t)(0)+B(Hx() = ()

peut étre mise sous la forme (1) en divisant par a(t).

Les réels t € I pour lesquels a(t) est nul sont des singularités.
Pour résoudre I'équation (6), on applique d’abord le théoreme [4]
sur des sous-intervalles de I exempts de singularité avant d’étu-
dier comment les solutions ainsi trouvées peuvent se raccorder
au voisinage de chaque singularité. —[28]-[32]

1.2 Equations du second ordre
9. On considére 1’équation différentielle linéaire
7) Viel, ax'(t)+bx'(t) +cx(t) = g(t)

ot I est un intervalle de IR ; ot les coefficients a # 0, b, c et A sont
des constantes appartenant a IK = R ou C; o1 g est une fonction
de ¢ (I, K) et l'inconnue x est une fonction deux fois dérivable
de I dans K.

9.1 Les solutions de 1’équation (7) sont de classe €.
9.2 & [’équation caractéristique associée a I'équation (7) est
(8) aX>4+bX+c=0

10. Meéthode : Résolution de I'équation homogene
Les solutions de ’équation homogene

) Vtel, ax"(t)+bx'(t) +cx(t) =0

se déduisent de 1’équation caractéristique.
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10.1  Sil’équation caractéristique (8) admet deux racines dis-
tinctes A et u dans IK, alors les solutions de 1'équation homogene
(9) sont de la forme

[t AeM + Bel]

ou A et B sont des constantes appartenant a IK.

10.2  Sil’équation caractéristique (8) admet une racine double
A dans K, alors les solutions de I'équation homogene (9) sont de
la forme

[t — (A+ Bt)eM]

ou A et B sont des constantes appartenant a IK.

10.3  Siles coefficients a, b et c sont réels et sil’équation caracté-
ristique (8) admet deux racines complexes conjuguées distinctes
« + 1B, alors les solutions a valeurs réelles de (9) sont de la forme

[t — e (A cos Bt + psin Bt)]

ol A et u sont des constantes réelles.

11. Principe de superposition

111 Ladifférence de deux solutions del’équation compléte (7)
est une solution de 1’équation homogene (9).

112  La somme d’'une solution de I'équation

ax" () + bx'(t) + cx(t) = g1 ()
et d’une solution de I'équation

ax”" (t) +bx'(t) + cx(t) = go(t)
est une solution de I’équation

ax” (t) +bx' (t) + cx(t) = g1(8) + g2(8).

12. Méthode : Résolution d’équations compleétes simples
L'équation homogene (9) décrit les oscillations libres d'un sys-
teme isolé. L'équation complete (7) décrit les oscillations entre-
tenues : le second membre est congu comme une excitation exté-
rieure au systeme étudié.

121 Excitation polynomiale

On suppose que le second membre de I'équation compleéte a une
expression de la forme

g(t) = P(1)e™

ou P est une fonction polynomiale. Alors I’équation (7) admet
une solution particuliere d’expression

x(t) = £"Q(t)e,

ot Q est une fonction polynomiale de méme degré que P et o1
I'entier m € {0,1,2} est la multiplicité de Ay comme racine de
I’équation caractéristique (8).

122 Ily a résonance lorsque m > 1 : 'amplitude d’une solu-
tion particuliere tend a devenir infiniment plus grande que I'am-
plitude du second membre.

13. Méthode : Résolution par les complexes
Si les constantes a, b, ¢, a, B, @ et les coefficients de la fonction
polynomiale P sont réels, alors f : I — R est une solution sur I
de
ax'" + bx’ 4 cx = P(t)e* cos(Bt + o)

si, et seulement si, f = MRe(g) ot g : I — C est une solution sur
Ide ) )

ax" +bx' + cx = P(t)e/Poel* P,

Entrainement

14. Questions pour réfléchir

1.  Exprimer la solution du probléme de Cauchy associé a la
condition initiale (f(, xo) au moyen d'une primitive quelconque de
a.

2. On suppose que I = |—a,a[. Si a et b sont développables
en série entiére sur I, les solutions x sont-elles nécessairement dé-
veloppables en série entiére sur [ 7

17.2

3.a Le coefficient réel a est appelé constante de temps des
solutions de I'équation différentielle x'(t) 4+ ax(t) = 0. Expliquer.

3.b  Comment interpréter qualitativement ce coefficient a s'il est
complexe ?

4. Le comportement qualitatif des solutions de I'équation ho-
mogeéne (9) dépend essentiellement de la partie réelle des racines de
I'équation caractéristique (8).

5.  Suite de [10.3] — Les solutions a valeurs réelles sont de la
forme

[t — Acos(Bt + ¢)e*!]

ol A et ¢ sont des constantes réelles.

6.  Condition sur a, b et ¢ pour que les solutions de I'équation
homogeéne (9) restent bornées au voisinage de 400 ? tendent vers 0
au voisinage de +o0 7

7. Suite de [12] — Le coefficient réel b est compris comme un
facteur d'amortissement : expliquer. Envisager le cas ou b = 0. Le
cas {a > 0,b < 0} est-il physiquement réaliste ?

8. On suppose que les coefficients a, b, ¢, «, B et K de I'équa-
tion

ax" + bx’ 4 cx = Ke™ cos(pBt)
sont réels. Expression des solutions a valeurs réelles lorsque |'équa-
tion caractéristique admet

8.a deux racines complexes conjuguées distinctes ag £ if ;

8.b une racine double A € R.

Equations du premier ordre

151  Une fonction f est une solution de x’ + 2tx = 2te=" sur
R si, et seulement si, il existe A € R tel que

VEER, f(t)=(E+Ae ",

152 Une fonction f est une solution de x’ — x = el sin2t sur R
si, et seulement si, il existe A € R tel que

A — cos 2t
VieR, f(t)= ef%.
15.3  Une fonction f est une solution de l'équation différen-
tielle ;
/ —

sur [ = |1, 400 si, et seulement si, il existe A € R tel que

Viel, f(t)=2(—1)+AVE -1

154  Une fonction f est une solution de x’ + x tan t = sin 2t sur
I = |7/, /5] si, et seulement si, il existe A € R tel que

Vtel, f(t)=—2cos’t+ Acost.

15.5  Une fonction f est une solution sur R de

X4 2x =t 426 4141
si, et seulement si, il existe A € R tel que

2 t1 3
VieR, f(t):ge3t+§+z+(§+A)e’2t.

16. La fonction f définie par
+oc0

f(t):g1-3-5---.(2n+1) S

est une solution particuliere de 1’équation différentielle
(£ —2)x' (1) + tx(t) = =2

donc 2 Arcsin/
resin
flr) = 2SN
V2 —12

pour tout t € R tel que 2> < 1.



I QUELQUES RECETTES

17. Exemples de problémes de Cauchy

171 Lasolutionde x’ — (t+1)(x + 1) = 0 telle que x(0) = 1
a pour expression x(t) = 2exp(t + /) — 1.

172 La solution de (1 + t?)x' — (t+ 1)x = 0 qui vérifie la
condition x(0) = —1 est x(t) = —v/1 + tZexp(Arctant).

173  Lafonction f € €°(R) telle que

t
ViCR, f(t):l—i-/o sf(s) ds

a pour expression f(t) = exp(¥/2).
17.4  Unefonction f : R — R dérivable en 0 qui vérifie I'équa-
tion fonctionnelle

V(xy) €R? flx+y) =efly) +elf(x)

est dérivable sur R et vérifie

f(0)=0 et YxeR2 f'(x)—f(x)=f"(0)e"

17.5  Lasolution de I'équation

Vie]-1,1[, (1—t)x'(t)+tx(t) =1

qui vérifie x(0) = 0 a pour expression

—S

() = (1— t)et/t (16_75)2 ds.

0

18. Comportement a I'infini
181  La solution de x’ + x = ¢?! qui tend vers 0 au voisinage
de —o0 a pour expression ¢ /3.
18.2  Toutes les solutions de x' + x = e~ ! tendent vers 0 au
voisinage de +co.
18.3  Si f est une solution de x’ — x = cost sur R, alors

lim f(t) I cost —sint —0

t——o0 2

Equations du second ordre

191  La fonction f est une solution de x”/ — x’ = t? sur R si, et
seulement si, il existe deux réels Kj et Kj tels que

VteR, f(t)=—t3/3—1*—2t+ K+ Kpel.

19.2  La fonction f est une solution réelle de x”" +x" +x = 0
sur R si, et seulement si, il existe deux réels Kj et Kj tels que

@>e’f/2.

t
VieR, f(t)= (chos§+K2Sin 7

19.3  Les solutions de x”" — 3x’ 4+ 2x = te~! + sin(3t) ont pour
expression

(6t +5)e~t n 9 cos 3t — 7 sin 3t

¢ 2t
36 130 + Kje' + Kpe

ol Kj et K, sont deux constantes réelles.
19.4  La fonction f est une solution de x”/ + x = cost sur R si,
et seulement si, il existe deux réels Kj et Kj tels que

VteR, f(t)=(!/2+Kj)sint+ Kycost.

19.5  La fonction f est une solution de x”/ + x = t? ¢! sur R si,
et seulement si, il existe deux réels K; et K tels que

(1+t)%et

VteR, f(t)= >

+ K cost+ Kjpsint.

19.6  La fonction f est solution de x”/ — 2x’ + x = t?¢? sur R,
si, et seulement si, il existe deux réels Kj et Kj tels que

VieR, f(t)=(6—4t+t)e* + (Ki + Kat)et.

197  La fonction f est solution de x”/ 4+ 2x' + x = t? ¢~ sur R,
si, et seulement si, il existe deux réels Kj et Kj tels que
et

VteR, f(t)= + (Kqy + Kat)e ™.

12

20.1  Une fonction paire g vérifie ¢’ (t) + g(t) = cost si, et

seulement si, il existe un réel A tel que
VteR, g(t)=Acost+t/sint.

Une fonction impaire h vérifie '/ (t) — h(t) = 0 si, et seulement
si, il existe un réel B tel que

VteR, h(t)=Bsht

Une fonction f € €2(R) vérifie
VteR, f'(t)+ f(—t)=cost
si, et seulement si, il existe deux réels A et B tels que
ViteR, f(t)=Acost+ Bsht+t/rsint.

20.2  Une fonction f € €?(R) vérifie

VteR, f'(t)+f(—t)=¢e*
si, et seulement si, il existe deux réels A et B tels que

VteR, f(t)=Acost+ Bsht+1/5ch2t+1/3sh2t.

Problémes qualitatifs

21. Solutions bornées
Si la fonction continue a est intégrable sur R, alors les solutions
de x/(t) + a(t)x(t) = 0 sont bornées sur R..
22. Signe des solutions
Soit g, une fonction continue, positive, non identiquement nulle
sur R.

1. Les solutions de x”'(t) + q(t)x(t) = 0 qui sont négatives
(resp. positives) sur R sont convexes (resp. concaves).

2. Chaque solution s’annule au moins une fois. =~ —[124.1]

23. Soient w et T, deux nombres réels strictement positifs.
23.1  Conditions aux limites de Dirichlet

L'équation différentielle

(10) X (1) + w?x(t) = 0

a une solution non identiquement nulle telle que x(0) = 0 et que
x(T) = 0si, et seulement si, il existe k € N* tel que wT = krt.

Etudier I'existence de solutions telles que x(0) = a et x(0) = b.
23.2  Conditions aux limites de Neumann

L'équation (10) admet une solution non identiquement nulle telle
que x'(0) = x'(T) = 0si, et seulement si, il existe k € N* tel que
wT = km.

Etudier I'existence de solutions telles que x'(0) = a et x’(0) = b.
23.3  Solutions périodiques

L’équation (10) possede une solution périodique de période T si,
et seulement si, il existe k € N* tel que wT = 2krt.

173
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24. Solutions développables en séries entieres
241  L'équation différentielle d’Airy
X (t) +tx(t) =0

admet une, et une seule, solution développable en série entiere f
telle que f(0) =0et f/(0) = 1.
242 On considere une fonction développable en série entiere :

VteR,

—+00
Vte]-R,R[, o(t)= ) ant"
n=0

avec R > 0. L’équation différentielle
Vite]|-R,R[, 2x"(t)+tx'(t) — x(t) = v(t)

admet une solution développable en série entiere
—+00
x(t) =Y but"
n=0

si, et seulement si, a; = 0 et dans ce cas,
an

1, by= .
vn#/ n 7’1271

25. Etudes asymptotiques
25.1  Soientm, a et g, trois réels strictement positifs. Quelle que
soit la solution /1 de I’équation

mx" +ax' = —mg,
la dérivée i’ admet une limite finie au voisinage de +oco. Inter-
prétation physique?
25.2  Les solutions de I'équation différentielle x’ — x = /nt ont
pour expression

00
Aet — ¢t / e *fnsds.
t

Aucune de ces solutions n’est bornée au voisinage de +co. Elles
sont toutes prolongeables en une fonction continue sur R qui
n’est pas dérivable en 0.

25.3 La seule solution bornée de x’ — tx = tsint? a pour ex-
pression — (2 cos t* + sin t?) /5.

254  Toutes les solutions de (1 + ?)x’ = x Arctan f sont paires
et bornées.
255 Siune fonction f € ¢! (R, R) vérifie

Jim £+ f(5) =,

alors il existe une fonction continue g qui tend vers ¢ au voisinage
de +oo telle que

t
VteR, f(t)=f(0)e! +eft/0 e’q(s)ds

et la fonction f tend vers £ au voisinage de +oo.

Problémes de raccordements
26. Une fonction f est une solution de I'équation
() Fx(t)=tT
si, et seulement si, il existe deux réels Kj et Kj tels que
f(t)=Ket et Yt>0, f(t)=(t—1)+Kye "

L’ensemble des solutions de classe ¢! sur R est une droite affine;
iln’y a pas de solution de classe €2 sur R.

Vi<,

27. Soient a et b, deux réels. La fonction f définie par
—a 5 at+b
> = -
V=0, f() g ¢ 2
et par
—a 5 at—b
< = —
V<0, f(#) g ¢ + 1
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est une solution de classe ¢ de I'équation
VteR, x'(t)—4x(t) =alt|+b.
C’est la seule solution qui admette des asymptotes aux voisi-

nages de +co et de —oo.

28. Une fonction f est une solution de P2y —2tx = —t* i, et

seulement si, il existe deux réels Kj et Kj tels que
Vi<0, f()=Kit? -t et Vt>0, f(t)=Kot> 1.

L'ensemble des solutions de classe ¢! sur R est un plan affine;
I’ensemble des solutions de classe ¢ sur R est une droite affine.
29. Soit Py, une fonction polynomiale :

VieR, Py(t)=ag+art+---+agt.

L’équation différentielle tx'(t) — x(t) = Py(t) admet une solution

f de classe ¢! sur R si, et seulement si, a; = 0. Dans ce cas, il
existe une constante K € IR telle que

d
- _ Ak
VteR, f(t)= a0+Kt+k§:2k_1t :
30. La seule solution de classe ¢! sur R de I'équation diffé-
rentielle tx'(t) + x(t) = Arctan t a pour expression
m(1+ ¢
ViteR*, f(t)=Arctant— %
Cette fonction f est de classe ¥ sur R.
31 Une fonction f est une solution de #2x/(t) — x(t) = 0 de

classe € sur IR si, et seulement si, il existe K € R tel que

V<0, f(£)=0 et Vi>0, f(t)=Kexp(-1/).

32. L’ensemble des solutions de classe %! sur R de I'équation
différentielle tx' () — ax(t) = 0 est un espace vectoriel. La dimen-
sion de cet espace est nulle pour « < 1; égalea 1 pour v = 1 et
égale a 2 pour a > 2.

33.1  Laseule solution de tx'(t) + x(t) = 1 de classe ¢! sur R
est la fonction constante égale a 1.

33.2  Une fonction f est une solution de classe ¢! sur R de
I’équation

tx'(t) —2x(t) = t4
si, et seulement si, il existe deux réels Kj et Kj tels que

4 4
V<O, f(t):Klter% et V>0, f(t):KthJr%.

33.3  Lafonction f est une solution de 1’équation différentielle

t1+ £2)x' (1) — (£ = 1)x(t) = —2¢

si, et seulement si, il existe deux réels Kj et Kj tels que

V<0, f(f) = 14 K 1EE,
V>0, f(f) = L+ Kt

334  Léquation différentielle tx’(t) — x(t) = t n’a pas de solu-
tion de classe ¢! sur R.

341  Une fonction f est une solution de classe ! sur R de
I'équation différentielle x’(t) sht — x(t) cht = 1 si, et seulement
si, il existe K € IR tel que

VteR, f(t)=—cht+Ksht.

342  L'équation (¢! — 1)x/(t) —e'x(t) = 1 n’a pas de solution
de classe ¢! sur R.

343  Une fonction f est une solution de classe ¢! sur R de
I'équation différentielle x'(#) sint — x(t) cost = —1 si, et seule-
ment si, il existe K € R tel que

VteR, f(t)=cost+ Ksint.
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344  Une fonction f est une solution de classe ¢! sur R de
I'équation différentielle x’(t) sin® t — 2x(t) cost = 0 si, et seule-
ment si, il existe une suite (K, ),cN telle que

VneN, Vte|nr (n+1)rn[, f(t)=Kyexp

sin?
Quelle que soit la suite (Ky),en, la fonction f est de classe €
sur R.

35. On considere les intervalles

11:}—00,—1[, 12:}—1,0[, 132]0,1[, 14:}1,4-00[.

Une fonction f est une solution de (> — 1)x'(t) + 2x(t) = t2 si,
et seulement si, il existe quatre réels K1, Ky, K3 et Ky tels que

Ky + Inlt

Vi<n<4 Vtel,
Il existe une seule solution de classe @ sur R . Il existe une

seule solution de classe ¢! sur R; cette solution n’est pas de
classe €2 sur R.

I

Equations du premier ordre

36. Toute équation différentielle linéaire peut se ramener a
une équation différentielle linéaire du premier ordre en choisis-
sant convenablement l'espace des phases. La théorie se limitera
donc a I'étude des équations du premier ordre.

II.1 Réductions au premier ordre

37. Le systeme différentiel

{x/(t) = ax(t) + by(t)
y'(t) = cx(t) + dy(t)

se ramene a une équation du premier ordre
X' () = AX(t)

avec X € €1 (I, R?*) et A € M (R).

38. Sur tout intervalle I qui ne contient aucun zéro de la fonc-
tion a4, I’équation différentielle du second ordre

a(t)x" (t) +b(£)x' (t) +c(t)x(t) = g(t)
se ramene a une équation du premier ordre
X'(t) = A(t)X(t) + B(t)

avec X € ¢1(I,R?), A € €°(1, M (R)) et B € €°(I, R?).
39. L'équation différentielle du troisieme ordre

() + ax(£) 4 bx' (t) + cx(t) = f(t)
se ramene a une équation du premier ordre
X'(t) = AX(t) + B(t)

avec X € ¢1(I,R3), A € M3(R) et B € €°(I, R3).
40. Le systeme différentiel du second ordre

{x”(t) = ax(t) + by(t)
y'(t) = cx(t) + dy(t)

se ramene a une équation du premier ordre
X'(t) = AX(t)

avec X € €1(I,R*) et A € My (R).

II.2 Les trois points de vue
Systémes du premier ordre

41. Une équation différentielle du premier ordre dans un es-
pace des phases de dimension n apparait d’abord comme un sys-
téme différentiel de n équations en n inconnues.

X () = apa(Bxi(t) + -+ + agu(H)xn(t) + bi(t)
%(t) = a1 ()x1(t) + -+ + agu(H)xn(t) + ba(t)

x;(t) : an,l(t)xl(t) + o+ an,n(t)xn(t) + bn(f)

Les variations de chacune des inconnues dépendent des valeurs
prises par les autres inconnues : il y a couplage.

42, Un systeme est découplé lorsque les équations qui le com-
posent sont indépendantes les unes des autres : il est alors de la
forme suivante.

~—

(1) = a1 (H)x1(t) + by(t
= app(t)xp(t) + bo(t)

Xy (t) = ann(t)xn(t) + bu(t)
La résolution d'un tel systéme se ramene a la résolution des n
équations différentielles qui le composent.

43. Les systemes couplés triangulaires peuvent étre résolus
assez facilement. Il suffit de considérer le systeme

.Xll = a1,1X1 + a12X2 + -+ a1,nXn + b1
xé = appXy + - 4 Ay pXp + by
x;; = AnnXn + by

sous la forme suivante

/
Xy — AunXp = by
’
Xy 1~ An-1n-1%n-1 = Ay 1,n¥n + by 1

Xy —appXy = Ap3X3+ -+ Xy + by

X] —a11%1 = 12X + -+ a1,,X0 + by

pour qu’il apparaisse comme la conjonction de n équations dif-
férentielles simples (au sens ol ne figure qu’une seule fonction
inconnue dans chaque équation).

Ecriture matricielle

44. On peut aussi écrire un systéme différentiel du premier
ordre sous la forme matricielle suivante.

Vtel, X; = A X} + B
La fonction matricielle

t— At = (lili]'(f)) € mn(]K)

1<i,j<n
est dite matrice du systéme. La fonction vectorielle
t By = (bq(t),ba(t),...,bu(t) ) € M, 1(K)

est dite second membre du systéme. L'inconnue est la fonction
vectorielle

Fs Xp = (x(6), x2(8), ..., xn(E) ) € My 1 (K)

dont la dérivée a pour expression

Xp = (2} (1), (1), xu(t) )-
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45. Changements de base
Soit P € GL,(IK), une matrice inversible (indépendante de t).
Pour tout t € I, on pose

Y, =P !X, et Ay=P AP
45.1  La fonction vectorielle Y ainsi définie est dérivable sur [

et
Vtel, Y/ =P'X]

de telle sorte que 1’'équation matricielle

Vtel, X;=AXi+B:

est équivalente a I'équation matricielle

Viel, Y/ =AY;+P !B,.

45.2  En pratique, il faut chercher P de telle sorte que la fonc-
tion matricielle A soit la plus simple possible. Dans le meilleur
des cas, A; est diagonale pour tout t € I (ce qui signifie que les
matrices (A¢)se sont co-diagonalisables) et on est ramené a la
résolution d’un systeme découplé.

453  Variante

S’il est impossible de trouver une matrice de passage indépen-
dante de f, on peut chercher un vecteur propre de la transposée
de A; indépendant de t. On peut ainsi transformer une équation
du second ordre en deux équations du premier ordre a résoudre
successivement. — [46.6], [46.7]

46. Exemples
46.1  Le couple de fonctions (x, y) est une solution du systeme
différentiel

{X’(f) = @-0x(t) + (t=1)y(H)
y'(t) = 2-2t)x(t) + (2t =1y(t)

si, et seulement si, il existe deux réels Kj et Kj tels que

aen ()= 2) (o)

46.2  Le couple de fonctions (x, y) est une solution du systeme
différentiel

¥ = (t+3)x + 2y

y' = —dx+ (t-3)y

si, et seulement si, il existe deux réels Kj et Kj tels que

ViteER, (;8) = exp(*/2) <_11 32) (Klil:,tt> :

46.3  Le couple de fonctions (x, y) est une solution du systeme
¥ =4x — 2y
vy = x+ vy

si, et seulement si, il existe deux réels Kj et Kj tels que ~ —[102]

rem ()= G 7) ()

46.4  Le triplet de fonctions (x,y,z) est une solution du sys-
teme différentiel

¥ = y+z

yo=x

si, et seulement si, il existe trois réels K1, K, et K3 tels que
x(t) 2 1 0 Kqe?t
VteR, yt) | =11 -1 1 Kye t|.
z(t) 3 0 -1 K3

17.6

46.5
téeme

Le triplet de fonctions (x,y,z) est une solution du sys-
Y= 2x — y+ 2z
y =10x — 5y + 7z
Z = 4x — 2y + 2z

si, et seulement si, il existe trois réels K1, K; et K3 tels que —[95.4]

x(t) 1 -2 1 Kie™t
VieR, |yit)]=[-1 -4 o0 Ky + K3t
z(t) -2 0 -2 K3

46.6  Suite de [45.3] — Une fonction f € ¥*°(IR) est une solution
de I'équation différentielle

(1 +eHx" (1) +x'(t) —efx(t) =0
si, et seulement si, la fonction ¢ = f’ 4 f est une solution de

(1+e)y/(t) —e'y(t) = 0.

Une fonction f est solution de (11) si, et seulement si, il existe
deux réels K; et Kj tels que

VtER, f(t)=Ke '+K(1+e)(1+eh).
Suite de [45.3] — L'équation différentielle
(t+1)x"(t) — (t+2)x'(t) + x(t) =0

(11)

46.7
(12)
se traduit par
i(x(t)):L(O 1+t) (x(t))
dr \x'(t) 1+t \—1 2+¢t)\xX(t))"

La méthode du [45.2] ne peut s’appliquer ici. En remarquant que

a -n(% 3i)-a -,

on est amené a résoudre

w0 -0 =a -1 (3 =v0

ol1 y est une solution de —[61.2]
1
/
t) = ——yl(t
y ) =10
Ecriture vectorielle
47. Nous présenterons la théorie générale en adoptant le

point de vue vectoriel suivant. Nous noterons uz, au lieu de u(z),
I'image du vecteur z par I'application linéaire u.

47.1 #» Soient E, un espace vectoriel (réel ou complexe) de dimension
finie, dit espace des phases et I, un intervalle de R.

Une équation différentielle linéaire du premier ordre est une
équation de la forme

(13) Vtel, x'(t)=a(t)x(t) +b(t)

ot les données sont deux applications continues
a:I—L(E) e b:I—=E

et I'inconnue est une application x : I — E de classe €.
472 Pourtoutk € N, siles données a et b sont des fonctions de
classe € sur I et si ¢ est une solution de I'équation différentielle

Vtel, x(t)=a(t)x(t)+b(t),

alors ¢ est de classe €1 sur I.
47.3 # ['équation homogene associée a I"équation différentielle (13)
est I'équation différentielle

(14) Viel, x(t)=a(t)x(t).

Par comparaison avec I'équation homogene (14), I'équation (13) est dite
équation complete.
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I1.3 Problémes de Cauchy

48. Une condition initiale est un couple constitué dun ins-
tant ¢y dans l'intervalle I et d’une position xy dans 1’espace des
phases E.

48.1 # Une solution ¢ € €' (I,E) de I'équation (13) vérifie la
condition initiale (to, xo) € I x E lorsque ¢(tog) = xo.

48.2 #v Un probleme de Cauchy est la donnée conjointe d’une équa-
tion différentielle et d’une condition initiale.

48.3  On ne peut poser, et résoudre, un probleme de Cauchy
sans avoir au préalable identifé I’espace des phases.

49. Le théoreme [50], que nous admettrons, est au fondement
de l'étude des équations différentielles linéaires. Pour cette rai-
son, I’équation (13) est dite sous forme résoluble.

50. = Théoreme de Cauchy-Lipschitz, version linéaire
Soient E, un espace vectoriel de dimension finie; I, un intervalle de R
(de longueur strictement positive); a : I — L(E)etb : I — E, deux
applications continues.
Pour toute condition initiale (ty,xg) € I x E, il existe une, et une
seule, application ¢ € €(I,E) telle que ¢(to) = xq et que

Vtel, ¢'(t)=a(t)e(t)+b(t).
51. Exemples
511 Quels que soient 0 < ty < et xy € R, I'équation

x'(t)sint — x(t) cost =0

admet une, et une seule, solution de classe ¢! sur [ = 10, 7t[ telle
que x(tg) = xo.
51.2  Quels que soient 0 < ty < 7T et xy € R, 1’équation

¥ (t)sint + x(t) cost =0

admet une, et une seule, solution de classe ¢! sur I = 10, 7t[ telle
que x(tg) = xo.
513 Quels que soient (tg, xo,vg) € R?, 'équation —[38]

(1+2)x"(8) +2(1 = )2/ (1) + x(t) = 0

admet une, et une seule, solution de classe €2 sur [ = R.

52. Trajectoires

Le théoreme de Cauchy-Lipschitz [50] peut étre interprété géo-
métriquement.

52.1 # Le graphe de toute solution ¢ de I'équation différentielle (13) est
une courbe tracée dans I'espace I x E, appelée trajectoire de I'équation
différentielle.

52.2  Sous les hypotheses du théoreme de Cauchy-Lipschitz,
par tout point (¢, xg) de I x E passe une trajectoire, et une seule.

En particulier, si les trajectoires de deux solutions d"une équation
différentielle linéaire ont un point commun, alors ces deux solu-
tions sont égales.

52.3 > Si @ et i sont deux solutions de la méme équation différentielle
(13) et s’il existe un instant t1 € I tel que ¢(t1) = (1), alors

Viel, o) = ()

52.4 > Si ¢ est une solution de I'équation homogene (14) et s'il existe
ty € Itel que p(t1) = Og, alors ¢ est identiquement nulle sur I.

52.5 > On suppose que E = R. Si ¢ et ¢ sont deux solutions de la
méme équation (13) telles que (tg) < (to), alors

Viel o(t) <ypt).

53. Singularités

Le théoreme de Cauchy-Lipschitz [50] ne peut pas étre appliqué a
I’équation (6) pour une condition initiale (g, x9) € I x E telle que
a(tg) = 0. Selon les cas, le probleme de Cauchy associé a cette
condition initiale peut admettre une seule solution, une infinité
de solutions ou pas de solution du tout.

531  Equations ayant une infinité de solutions de classe ¢
pour une seule condition initiale de la forme (ty, xo) = (0,xp)
mais n’admettant aucune solution pour toute autre condition ini-
tiale de cette forme : [28], [29], [31], [33.2], [33.3], [34.1], [34.3],
[34.4], [51.1].

532  Equations admettant une unique solution de classe
pour une seule condition initiale de la forme (g, xg) = (0, xo) et
n’admettant aucune solution pour toute autre condition initiale
de cette forme : [30], [33.1], [35], [51.2].

-

I=R

7

L’ensemble des solutions développables en série entiére
—[38]

SN

53.3
sur R de I"équation

(15) VieR, t(t)—x'(t)—4x(t) =0

est le plan engendré par f(t) = exp(t?) et g(t) = exp(—1?).

Quel que soit (tg, X9, vp) € R x R x R, le probleme de Cauchy
associé a la condition initiale (f, xo, vo) admet une unique solu-
tion de classe €2 sur R. Etudier le cas ty = 0. —[72]
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I1.4 Equations scalaires

54. # Une équation différentielle linéaire scalaire d’ordre n € IN*
est de la forme

n

viel Y a(t)x® () =b(t)
k=0

(16)
oit les fonctions ay, ..., a, et b sont continues de I dans IK.

55. Forme résoluble et singularités

Pour appliquer la théorie de Cauchy-Lipschitz, on transforme
I’équation scalaire (16) en une équation vectorielle du premier
ordre sous forme résoluble :

X} = AX; + By

en posant
x(t) 0
x'(t) '
Xy = p By = 0
e b(t)
! 1)(t) an(t)
ainsi que
- \ !
0 0 1
—aot) —an-1(t)
an(t) an(t)

ce qui na de sens que si 4, ne s’annule pas sur I.

55.1 # Les instants t € I tels que a, (t) = 0 sont les singularités de
I"équation scalaire (16).

55.2  Soit ] C I, un intervalle exempt de singularités. Pour tout
(to, g, u1,. .., uy_1) € ] x K", 1'équation scalaire (16) admet une,
et une seule, solution de classe ¢ sur | telle que x(tg) = uyo,
X/(to) =uy,.. .X(nil)(fo) = Uy_1.

Entrainement

56. Questions pour réfléchir

1. Suite de [46.4] — Les fonctions x, y et z sont constantes
si, et seulement si, x(0) = y(0) +z(0) = 0.

2. Condition pour que I'équation (13) admette : au moins une
solution constante; au plus une solution constante.

3. Poser un probléme de Cauchy pour I'équation différentielle
x (1) + Ax(t) + w?x(t) = 0.

4.  Suite de [52.2] — Les fonctions sin et cos sont deux solu-
tions distinctes de I'équation x’' +x = 0 alors les graphes de sin et
cos ont des points communs : expliquer. Quelles sont les trajectoires
de I'équation x”" +x =07?

5. Si ¢ est une solution de |'équation scalaire (16) associée
3 la condition initiale (to,uq,uq,...,u,—1) € J x K", que vaut

ol (t0) ?

57.  Etude qualitative locale
L'équation différentielle

tx"(£) 4+ (£ — 4)x"(t) = 3x(t) =0

admet une, et une seule, solution f de classe > sur R’ telle que
f(1) =2et f/(1) = —2. Pour h voisin de 0,

FO+h) =2—2h— §h3 +o(1).

Quel que soit xy € R, il existe une infinité de solutions g dévelop-
pables en série entiere sur R telle que g(0) = x(. Chacune d’elles
vérifie ¢’ (0) = —3x( /4.

17.8

III

Equations homogénes

58. Suite de [47] — On s’intéresse ici a ’ensemble, noté Sy,
des solutions de I"équation homogene (14) en supposant que la
dimension de 'espace des phases E est égale a n.

Tous les théoremes qui suivent découlent du théoreme de
Cauchy-Lipschitz [50] et supposent donc qu’il n'y a pas de sin-
gularité sur 'intervalle I.

Espace des solutions et systemes fondamentaux

59.1 > L'ensemble Sy est un sous-espace vectoriel de €1 (I, E).

59.2 > Pour tout tg € I, 'application [f — f(ty)] est un isomor-
phisme de Sy sur E.

59.3 = Suite de [47] — L'ensemble Sy des solutions de I'équation ho-
mogene (14) est un espace vectoriel dont la dimension est égale a la
dimension de ’espace des phases E.

59.4 # Un systeme fondamental de solutions de I'équation différen-
tielle homogene (14) est une base de I'espace Sy des solutions de cette
équation.

60. = Suite de [47] — On suppose que dim E = n et on considere des
solutions @1, ..., n de I'équation homogene (14).

60.1  Si la famille de fonctions (@1, ..., ¢n) est un systeme fonda-
mental de solutions, alors la famille de vecteurs (¢q(t),..., @u(t)) est
une base de I'espace des phases E pour tout t € I.

60.2  Réciproquement, s'il existe un instant ty € I tel que
E = Vect(¢1(to), .-, ¢n(to)),
alors (@1, ..., ¢n) est un systeme fondamental de solutions.

61. Exemples
611  L'équation différentielle

(t+1)22"(8) — 2(t+ 1)x'(t) +2x(t) = 0

admet un systeme fondamental de solutions polynomiales sur
les intervalles | —oo, —1[ et | —1, +c0]. L'ensemble des solutions de
classe €2 sur R est un plan vectoriel. Comment la singularité en
t = —1 se traduit-elle sur I"espace des solutions?

612 Suite de [46.7] — La fonction f € %?(IR) est une solution
de I'équation (12) si, et seulement si, il existe deux constantes K
et K; telles que

VteR, f(t)=Ki(2+1t)+Kae

Comment la singularité en t = —1 se traduit-elle sur 1'espace des
solutions ?

Wronskien

62. Suite de [58] — Une base & de E étant donnée, on cherche
un moyen simple de savoir si n fonctions fi, f», ..., fu de Sg
forment un systeme fondamental de solutions de I'équation ho-
mogeéne (14).

62.1 # Le wronskien relatif a Z de la famille (f1, ..
plication de I dans K définie par

W (fr,- -, fu) (t) = detg (fi(t), ..., fu(t)).

62.2 > Si B et € sont deux bases de E, alors les applications Wz et
Wee sont proportionnelles.

63. = Suite de [58] — Soient (f1,..., fn), une famille de vecteurs de
Sy et W, son wronskien relatif a une base 9 de E. Les propositions
suivantes sont équivalentes.

., fn) est l'ap-

63.1  Lafamille (f1,..., fn) est une base de Sy.
63.2  Pour tout t € I, le wronskien W (t) est non nul.
63.3  Ilexiste ty € I tel que W(ty) # 0.



III EQUATIONS HOMOGENES

64. Exemple de I'oscillateur harmonique
L’équation différentielle x”" + w?x = 0 équivaut au systeme dif-

férentiel
Ty - (% D).

L’espace des phases est isomorphe a R? et un systéme fondamen-
tal de solutions est constitué par

_ cos wt [ sinwt
ft) = (fwsinwt> et fot)= (a)cosa)t) :
Le wronskien de cette famille est constant. —[82]

65. Calcul du wronskien

On peut calculer 1'expression générale des wronskiens d'une
équation différentielle sans résoudre cette équation.

65.1  Soient %, une base de E et u € L(E). On pose

n
D(vy,...,0n) = Zdet@(vl,...,u(vk),...,vn)
k=1

pour toute famille (vy,...,v,) de vecteurs de E.

1. L’application ® est une forme n-linéaire alternée sur E :
elle est proportionnelle a det .

2. Si(vy,...,00) = %, alors (vy,...,v,) = tr(u).
65.2 = Suite de [58] — Soient (f1, ..., fn), une famille de solutions sur
I de I'équation différentielle homogene (14) et W, son wronskien relatif
a une base % de E. Quels que soient t( et t dans l'intervalle I,

W(t) = W(to) exp (/t: tr[a(s)] ds).

66. Application pratique

On suppose que I'espace des phases E est un plan et qu'une so-
lution f non nulle de I'équation homogene (14) sur l'intervalle I
est connue.

66.1  Pour toute solution ¢ de I'équation (14), le wronskien
W(f,g) est proportionnel a la fonction W définie par

Vel Wy(t) =exp (/ttr[a(s)] ds).

to

ol fy € I est arbitrairement choisi.
66.2  Réciproquement, toute solution g de I’équation linéaire
du premier ordre

Viel f()x'(t) - f(H)x(t) = Wo(t)

est une solution de (14) et le couple (f,g) est alors un systéeme
fondamental de solutions de (14).
Une solution particuliere g est de la forme g(t) = K(¢) f(t) avec

Wo(t
Viel, K(t)= 20( ).
f2()
67. Méthode de variation de la constante

Soient « et B, deux fonctions continues de I dans R. On suppose
connue une solution f de I'équation homogene

() +a(t)x (1) + B(t)x(t) =0
etque f(t) # 0 pour tout ¢ € I.

17) Viel,

67.1  Le wronskien W de deux solutions f et g est proportion-
nel a ,
Wo(t) = exp(—/ a(s) ds).
to
67.2 Si K est une constante réelle, alors toute fonction de la

forme g(t) = Kf(¢) est une solution de (17).
Si K est une fonction de classe €2, alors la fonction g définie par
g(t) = K(t)f(t) est une solution de (17) sur I si, et seulement si,
sa dérivée K’ est une solution de I’équation

18 Vtel f(y'(H)+ [x()f(t) +2f (1)]y(t) =0.

Entrainement

68. Questions pour réfléchir
1. Soient @1, ..., @y, des solutions de (14) et t; < fp, deux
instants de I. Comparer le rang de

(p1(t1), -, pu(t1)) (@1(t2), -, u(t2)).

2. Dans quelle mesure peut-on parler du wronskien d'une
équation différentielle linéaire ?

3. Onsuppose que f et g = [t — K(t)f(t)] sont des solutions
de (17).

3.2 Le wronskien de f et g est égal a —K'(t)f2(t).

3.b  Relier I'équation différentielle y'(t) + a(t)y(t) = 0 vérifiee
par le wronskien [67.1] a I'équation différentielle (18) vérifiée par K.

et de

69. Utilisation du wronskien

Les équations différentielles suivantes ont toutes des solutions
polynomiales. Connaissant un telle solution, on pourra faire va-
rier la constante [67] au lieu de passer par le calcul du wronskien.
69.1  Le wronskien de I'équation

(14 2)x" () —2x(t) =0
est constant; ses solutions sont les fonctions de la forme
Ki(1+ ) + Ka [t + (1 + t?) Arctan t].
69.2

Le wronskien de I'équation

1—2

2\ I /
(T4 )x"(t) — 2tx (t)—21+tLZ

x(t) =0

est proportionnel a (1 + #2); les solutions sont les fonctions de la
forme
(14 #2)(Kq + Kp Arctan t).

69.3 Le wronskien de

22 (1) + 1 () — x(t) =1

est proportionnel a 1/; et les solutions sur R, de I’équation sont
les fonctions de la forme K;t + K2/ — 1.
69.4  Le wronskien de

Bx"(t) + tx' (1) — x(t) =0

est proportionnel a exp(1/;) et les solutions sur R ou sur R

sont les fonctions de la forme ¢(K; + Kael/t).

Les conditions initiales de la forme (ty = 0, xg = 0,vp) admettent
une infinité de solutions de classe ¥ sur RR.

Il n’existe aucune solution de classe €2 sur R associée a une
condition initiale de la forme (tg = 0,xg # 0,vp).

69.5 Le wronskien de

(14 £2)x" (t) + tx' (t) — x(t) = 0

est proportionnel a 1/v/1 + {2 et les solutions de l’équation sont
les fonctions de la forme

Kt + Kp\/1 + £2.

70. Solutions développables en série entiere

Les équations différentielles suivantes ont des solutions dévelop-
pables en série entiere au voisinage de 0.

70.1  Le wronskien de

(14 £2)x"(t) + 4tx'(£) + 2x(t) = 0

est proportionnel a 1/ (1 + t2)2 et les solutions de 1’équation sont
les fonctions de la forme

Ki + Kyt
1+ 2
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Le wronskien de

tA1—=1)x" () + (1 =3)x'(t) —x(t) =0
est proportionnel a 1/[t(1 — t)?] et les solutions de 1’équation sur
10, 1[ sont les fonctions de la forme

Ky + Ky Int
1—t¢

70.2

L’équation a des solutions non nulles de classe ¢ sur R’ , mais
pas sur IR.
70.3  La wronskien de I’équation

tx"(t) + (1= t)x'(t) —x(t) =0

est proportionnel a ef /t. Les solutions sur 0, +co[ sont les fonc-

tions de la forme —[45.3]
“+00 ,—S
ef<K1 +K2/ %ds).
t

Les solutions de classe ¢ sur R sont les solutions développables
en série entiere.

Il existe une, et une seule, solution sur R qui vérifie la condition
initiale (tg = 0; xg, vg) si, et seulement si, vy = xq.

71. On étudie les solutions de I'équation différentielle

VteRy, x"(t)+q(t)x(t)=0

ol g est une fonction continue et intégrable sur R...

1. Si f est une solution bornée sur R, alors f” est inté-
grable sur R et f/ tend vers 0 au voisinage de +oo.

2. Sif et g sont deux solutions bornées, alors leur wronskien

W(t) = f(1)g'(t) — f'(H)g(t)
tend vers 0 au voisinage de +co.
3. Il existe des solutions qui ne sont pas bornées sur R.y.

Changements de variables et d'inconnues

72. Suite de [53.3] —

1. Sila fonction f est solution de (15) sur IR, alors la fonc-
tion g définie par ¢(t) = f(—t) est solution de (15) sur R* .

2. Lafonction f est une solution de (15) sur R si, et seule-
ment si, la fonction 1 définie par h(t?) = f(t), c’est-a-dire h(u) =
f(y/u), est une solution de y"' (1) — y(u) = 0 sur RY.

3. Lafonction f € €?(R) est une solution de (15) sur R si,
et seulement si, il existe deux réels Kj et Kj tels que

VteR, f(t)=K;ch(t?)+ Kosh(t?).

73. Une fonction f de classe %2 est une solution de 1’équation
différentielle

| @

Vi>0, £2x(t) —2x(t) =

P

si, et seulement si, la fonction g définie par g
est une solution de 1’équation différentielle

b = (1) + (1)

()~ 2y(0) = °.

Les solutions f sont les fonctions de la forme

Vi>0,

K Int
flt) ="+ Kot — =
t t
74. Une fonction f de classe ¢ sur un intervalle I C R* est

une solution de I'équation

tx' () +2x(t) — tx(t) = 0
si, et seulement si, la fonction g définie par g(t) = tf(t) est une
solution sur I de y” () — y(t) = 0.
Les solutions développables en série entiere sont proportion-
nelles sur R* asht/t.

Il existe une, et une seule, solution de classe 42 sur R qui vérifie
la condition initiale (ty = 0, xq, vg) si, et seulement si, vy = 0.
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75.  Equations de Bessel
Soit A € R. La fonction définie par x(t) = t}z(t) est solution de

(By)  Vt>0, 2x(t)+ (1) + (2 = A%)x(t) =0

si, et seulement si,

(BY) V>0, tZ'(t)+ A+ 1)Z(t) +tz(t) = 0.

Si A = —1/», les solutions de (B, ) sont les fonctions de la forme

cost sin t
x(t) =K —— + Kh——.
(t) VAR Y

Si A = 1/, 1es solutions de (B ) sont les fonctions de la forme

cos't sint
z(H) =K1 — + K,——.
t t
76. Une fonction f de classe %2 est solution sur R de

22" () + 3t (£) +-4x(t) =t +4

si, et seulement si, la fonction g définie par g(s) = f(e°) est une
solution sur R de

y"(5) +2/(5) + 4y(s) = & + 4.

Les solutions f sont les fonctions de la forme

K & 1+ 2).

7

(\/fﬁnt) +Kzsin(\/fﬁnt‘) n ( t)

77. La fonction f est une solution sur R de I'équation
(14 22" () +2(t = 1) (1 + )’ (1) + x(t) =0

si, et seulement si, la fonction ¢ définie par g(0) = f(tanf) est
une solution de
VO €]-/,7hl, y'(0) -2 (0) +y(6) =0.

Les solutions f sont les fonctions de la forme

pArctant ( Kj + K; Arctan t)'

78. La fonction f est une solution de ’équation

Vie]-1,1[, (1—)x"(t)—tx'(t) +4x(t) = Arccost

si, et seulement si, la fonction ¢ définie par g(6) = f(cosf) est
une solution de

voe)o,n[, y'(6)+4y(6) =06.

Les solutions f sont les fonctions de la forme
. 1
K sin(2 Arccos t) 4+ Kp cos(2 Arccos t) + i Arccost,
c’est-a-dire

1
2K tV/1 — 12 + Ko (262 — 1) + i Arccos t.



IV  RESOLUTION DE L’EQUATION COMPLETE

v

Résolution de I'équation compléte

79. = Principe de superposition

L'ensemble S des solutions de I'équation complete (13) est un sous-
espace affine de ¢ (1, E) dirigé par I'espace Sy des solutions de I'équa-
tion homogene (14).

80. Méthode de variation des constantes

Nous supposons que 1’espace vectoriel Sy des solutions de
I'équation homogene (14) est connu. Il nous reste a trouver une
solution particuliere de I’équation complete.

80.1  Soient Z = (uq,...,uy), une base de E et x € E. Il existe
une, et une seule, famille de scalaires («;)1 <<, telle que

n
x=) - u
k=1

et les formules de Cramer donnent une expression explicite des
coordonnées a, ..., &y.

80.2  Soient fi, ..., fu, des applications de classe &1 de I dans
E telles que la famille (f1(t),..., fu(t)) soit une base de E pour
tout t € I. Alors, pour toute application f € ¢!(I,E), il existe
une, et une seule, famille (a1, ..., a,) d’applications de classe ¢ 1
de I dans K telle que

n

Vel f(t)= ) a(t)f(t).

k=1

80.3 = Soit (f1,..., fn), une base de Syy. Toute solution de I'équation
complete (13) a une expression de la forme

n

F8) =) a(t) fi(t)

k=1

ot les fonctions ay, ..., &y appartiennent i &1 (LE).

81. Matrices fondamentales
On considere ici les versions matricielles, relatives a une base %
(fixée) de I'espace des phases E, de 1’équation différentielle (13) :

(19) Vtel, X,=AX;+B;
et de I'équation homogene (14) qui lui est associée :
(20) Viel X, =AX.

81.1 # Une application matricielle [t — M| est dite matrice fonda-
mentale lorsqu’il existe une base % de E et une base (fy,..., fn) de

Sy telle que
M = Mats (f1(1), ., fult))
pour tout t € I.

81.2  Une matrice fondamentale M est dérivable sur I et
Vtel, M;ZAtMt
813  Lapplication [t — X;] est une solution de 1'équation ho-

mogene (20) si, et seulement si, il existe une matrice fondamen-
tale M et une matrice colonne A € M, 1(IK) telles que

Vtel X;=MA.

814  S'il existe une application [t — A;] de I dans 91,1 (K) de
classe ¢ et telle que

Vtel, Xi= M\,

alors l'application [t — X;] est une solution de l’équation com-
plete (19) si, et seulement si,

vtel, A(t)=M;B.

81.5 = Si [t — My]| est une matrice fondamentale, alors la solution de
I'équation complete (19) qui vérifie la condition initiale (to, Xo) a pour
expression

t
Xt:MtM;OlXO—&—/t M;M; 1B ds
0

pour tout t € I.

Exemples

82. Oscillations forcées [64]
Par variation des constantes a partir de la matrice fondamentale

cost sin t
M, = ( cos t) ’

—sint
les solutions de 1’équation forcée x”/(t) + x(t) = ¢(t) sont de la
forme:

t
Kjcost+ Kpsint + / ¢(s)sin(t — s) ds.
to

Expliciter la solution telle que x(0) = x’(0) = 0.
Expliciter I'intégrale pour ¢(t) = tant; pour ¢(t) = tan®t.
83. L'équation différentielle

2x" (1) — 2tx' (£) 4+ 2x(t) = £ — 2

P2
1 2t

pour matrice fondamentale. Par variation des constantes, la solu-
tion générale sur I = ]0, +oo[ a pour expression :

admet la matrice

—(14tfnt) + Kit + Kat?.

Entrainement

84. Questions pour réfléchir
1. Suite de [80] — Justifier le nom de la méthode.
2. Que dire du déterminant d'une matrice fondamentale?

85. Suite de [72] -
1. L'équation

VieR, tx'(t)—x'(t) —4x(t) = 443

admet une solution particuliere évidente : laquelle?
2. L’équation

VieR, tx(t) —x'(t) —4x(t) = 48

admet une solution particuliére polynomiale : laquelle ?

3. Pour chacune des deux équations précédentes, préciser
quels sont les triplets (to, xg,v9) € R3 pour lesquels 'équation
différentielle admet une, et une seule, solution de classe €2 sur
R telle que x(tg) = xq et X' (ty) = vp.

86. Suite de [69.1] — Résoudre (1 + #2)x/(t) — 2x(t) = t.
87. Suite de [69.2] — L'équation différentielle

1—42
142

(14 2)x" () — 2t/ () — 2 x(t) =1

admet § (1 + ?) Arctan? t pour solution particuliere.
88. Suite de [70.1] — L'équation différentielle

1
(14 £2)x" (£) + 4tx' (£) + 2x(t) = sl
admet
tArctant In(1+ £2)
1+#2 2(1+2)
pour solution particuliere.
89. Si la fonction f est de classe ¢!, monotone et bornée

sur R, alors les solutions [82] de I'équation

Vte Ry, x"(t)+x(t)=f(t)

sont bornées sur R

17.11



EQUATIONS DIFFERENTIELLES LINEAIRES

90. Variation de la constante

On étudie une équation différentielle linéaire du second ordre
en supposant connue une solution particuliere f de I’équation
homogene.

La méthode de variation de la constante [67] peut aussi servir a
calculer la solution générale de 1’équation complete sous la forme

g(t) = K(t)f (D).

90.1  L'équation différentielle homogene
V>0, £2x"(8)+tx(H) —x(t) =0

admet des solutions de la forme f(t) = t*.
La fonction g est solution de I’équation

V>0, £2x(8) ' (t) —x(t) =t

si, et seulement si, il existe deux réels A et B tels que

Vi>0, gt =2 4Bttt

En particulier, aucune solution n’est développable en série en-
tiere au voisinage de I'origine [24.2].
90.2  Les solutions de I'équation homogene

VieR, 2x"(t)—2tx'(t) +2x(t) =0

sont polynomiales [83].
La fonction g est une solution de 1’équation

VieR, 2x"(t)—2tx'(t) +2x(t)
si, et seulement si, il existe deux réels A et B tels que
VteR, g(t)

Comment la singularité en t = 0 se manifeste-t-elle?

=t cost

= At + Bt2 — tcost.

90.3  L'équation différentielle homogene
Vie]-1,1[, (1—£)x"(t) —3tx'(t) —x(t) =0
admet \/117_t2 pour solution particuliere.
La fonction g est solution de I’équation
Vie]-1,1], (1—2)x"(t) 3t (t) — x(f) = ——

V1—1#2
si, et seulement si, il existe deux réels A et B tels que
A+ BArcsint —t

Viel]-1,1], g(t)= Vg

91. Une équation intégrale
1. Si f est une fonction continue sur IR telle que

t
@1)  VteR, 3Arctant+ 2f(t) :2t/1 £(s)ds,

alors f est de classe € sur R* et vérifie I’équation différentielle

6t

@2) Arer

Ve R, £2x(t) 4+ 2tx' (1) — 2x(t) =

Enoutre, f(1) = —37/set f'(1) = —3/>.
2. L'équation homogene associée a (22) admet

1 /4 ¢
Mf_ﬁ(ﬁ —2)

pour matrice fondamentale. En posant

0
A’t:M*( )
(t) ¢ W

on obtient une solution particuliere de (22) :

go(t) = —tn(1+ ) + tin(2) + % B Arcttzant.

3. L'unique solution de (21) :

Vte R, f(t)=go(t)
n’est pas dérivableen t = 0.

+ (fnZ— 1-— ”/z)t
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Cas des coefficients constants

92. L’expression [101] des solutions d'une équation différen-
tielle linéaire a coefficients constants en dimension 1 reprend, en
la généralisant, I’expression [5] des solutions d"une équation dif-
férentielle a coefficients constants en dimension 1 : on remplace
I’exponentielle d"un nombre réel ou complexe par I’'exponentielle
d’une matrice carrée.

V.1 Exponentielle de matrice

93. Soit A € M, (K). On pose
1Al = max laijl

93.1  Pour tout k € N, on note [Ak} ijr le coefficient de A¥ situé

a l'intersection de la i-eme ligne et de la j-eme colonne. Alors
VI<ij<n VheN, [[AY] <Al

et la série de terme général [4lij/x est absolument convergente.
93.2 # ['exponentielle de la matrice A € M, (K) est la matrice
définie par

k

exp(A Z A

au sens oit le coefficient situé a l'intersection de la i-éme ligne et de la
j-eme colonne de exp(A) est égal a la somme

[Ak
93.3  Si A = Diag(ay,...,a,), alors
exp(A) = Diag(e™,...,e").
En particulier,
VtER, exp(tl,) =e Iy

93.4 = Si B = Q 'AQ, alors exp(B) = Q exp(A)Q.
94. L’exponentielle des matrices possede des propriétés ana-

logues a celles de I'exponentielle complexe. On reprend les nota-
tions de [93].

941  Soient 1 < i,j < n. Le rayon de convergence de la série
entiere 1
ki ok
Yo tlAT
est infini.

94.2 = Dérivation
L'application [t — exp(tA)] est de classe €' sur R, et

d[exp(tA)]

at = Aexp(tA) = exp(tA)A

94.3 = Propriété de morphisme
Quels que soient les réels s et t,

exp(sA)exp(tA) = exp[(s +t)A] = exp(tA) exp(sA).

95. Exemples

95.1 Si A% = I, alors

VteR, exp(tA)=chtl,+shtA.
952 Si A2 = —1,, alors

VteR, exp(tA)=costl,+sintA.



V CAS DES COEFFICIENTS CONSTANTS

953  Si A3 = A?, alors
VieR, exp(tA)=T+tA+ (e —1—1)A?
= (I—A%) +t(A— A?) + 'A%
954  Si A3 = —A?, alors
VieR, exp(tA)=I+tA+ (e —1+1)A%
= (I—A%) +HA+ A?) e A2
95.5  Silamatrice A € My (K) est triangulaire :
L
alors
VieR, exp(tA)=eM <(1) i) .
95.6  Sila matrice A € M, (KK) est diagonalisable et semblable

a Diag(A, ), alors, quel que soit Xy € 9 1(IK), il existe deux
scalaires « et 8 tels que

At t
VteR, exp(tA)Xp= (oce :ﬁe” ) .

V.2 Résolution d’'une équation différentielle a
coefficients constants

96. On considere ici les équations différentielles qu’on peut
écrire matriciellement sous la forme
Vtel, X,=AX;+B;

olt A est une matrice fixée de 9, (K) et [f — B;], une fonction
continue de I dans I’espace des phases E = M, ; (K).

Résolution de I'équation homogene

97. = Théoréme de Cauchy linéaire
Quels que soient ty € I et Uy € M, 1(IK), le probleme de Cauchy

AXy

Viel, X|
Up

Xt

admet une, et une seule, solution. Cette solution a pour expression :

Vtel X; :exp[(t—to)A]Uo.

98. = Matrice fondamentale
Soit (Uy, ..., Uy), une famille de vecteurs de l'espace des phases E. La
famille des applications
[t —exp(tA)U;] (1<k<n)
est un systeme fondamental de solutions de I'équation homogene

Viel, X =AX

si, et seulement si, la famille (U, ..

99. Soit # = (Uy, ..
mentale

., Uy) est une base de E.
., Uy) une base de E. La matrice fonda-

Matgg (exp(tA)Uy, ..., exp(tA)Uy)

est égale a exp(tA).

100. > Wronskien [65.2]
Soient Bet (Uy, ..., Uy), deux bases de l'espace des phases. Le wrons-
kien relatif a 2 du systeme fondamental de solutions

([t - exp(tA)Uk]>

1<k<n

est égal a
detg(Uy, ..., Uy) exp(ttr(A)).

Résolution de I'équation compleéte

101. = L'expression de la solution de I'équation complete

Vtel, X;=AXi+B:

qui vérifie la condition initiale (to, Uy) est donnée par :
t
X¢ = exp[(t —to) AUy + / exp|[(t —s)A]Bsds
to
pour tout t € 1.

Applications
102.  Suite de [46.3] —

4 -2t
P lr o+ )7

2 (—1 2 3 (2 —2
(50 3)
Pour toutt € R,

to8\ _1 3 (2 —4\ 15(2 4
exP(zt t)—f -1 2 )t 2

Une solution particuliere du systeme différentiel

103.1

103.2

= x+ 8y + ¢
Y =2x+ y+e ¥

x(t) el (0 e 3t/ te¥ (2
tER, SR 0 [y ) ,
vHER (y(f)) 8 (1) 16 \1 2 \ -1
103.3 Le couple de fonctions (xg, o) est solution du systeme
homogene associé si, et seulement si, il existe deux réels K; et Kp

tels que
x®) (2 2 Kqedt
vieR, (yo(f)) B (1 —1) (Kze’m '

Entrainement

104.  Questions pour réfléchir
1. Suite de [100] - Avec B = (U, ..

est donnée par

JUp)at=1,
det(exp A) = exp(tr A).
2. Comparer [101] et [4].
105.1  Suite de [95.3] — Si

7 4 11
A=|-3 -1 -4],
-3 -2 -5

alors, pour tout t € R,

-3 -2 -6 3 2 5
exp(tA)=6 4 9 |+t[{3 2 5
0 0 1 -3 -2 -5

4 2 6
+et| -6 -3 —9].
0 0 0
Pour toutt € R,

ot 0 ettt 0
exp|0 t 0 )]=0 ¢ 0].
0 0 —t 0 0 et

105.2

17.13



EQUATIONS DIFFERENTIELLES LINEAIRES

105.3 OnposeB = A — I3 ou1

1. Pourtoutt € R, onaexp(tA) = e exp(tB).
2. Les projections associées a la décomposition

M3 1 (R) = Ker(B — I3) ® Ker(B? + L)

sont

Py==(B>+13) et P,=—(I3—B?)

1
2

N =

et, pour tout t € R, —[95.2]

exp(tB) = e'P; 4 cost P, +sint BP;.

106. L'espace R3 est muni de sa structure euclidienne orientée
canonique.
106.1 Soient u € R3, non nul, et a € L(RR3) définie par

VxeR3, a(x)=uAx

Il existe une base orthonormée directe de R? dans laquelle 'en-
domorphisme a est représenté par la matrice

0 0 O
A=(0 0 —k| ou k=]ul
0 kK O

106.2 Pourtoutt € R,

1 0 0

exp(tA) = |0 coskt —sinkt|.

0 sinkt coskt
106.3 Interpréter le résultat précédent a I’aide de 1’équation dif-
férentielle

VteR, x'(t)=uAx(t).

107.  Les matrices

OO W
NN
N = DN
OO =
o WO
W=k O

1 -

sont semblables et, pour tout t € R,
01 1
+2te [0 0 0
0 00
4 (0 0 0
+=10 1 —-1].
2\o -1 1

Les plans stables par A sont [y —z = 0] et [y +z = 0].
La trajectoire de la solution de I'équation différentielle

_ o

Bt (20
exp(tA):7 8 %

VteR, X(t)=AX(t)

telle que X’(0) = (1,1,1) est contenue dans le plan [y — z = 0].
108.1

0 1 0 1 1 0 1 -1 1
A=1|0 0 1), B=(0 1 0}, P={1 0 3
3 -7 5 0 0 3 1 1 9

17.14

Avec

onaP 1AP = Bet
ettt 0
VteR, exp(tB)y=[0 ¢ 0.
0 0 ¢t

108.2
tielle

Une fonction x est une solution de I'équation différen-

vieR, xO)(t)—5x"(t)+7x(t) —3x(t) =0
si, et seulement si, il existe trois réels «, p et 7y tels que

VieR, x(t)=(a+pt)e +e.

Questions, exercices & problémes

Perfectionnement

109. Exemples et contre-exemples

1. Exemple d’équation différentielle linéaire et homogene
du premier ordre admettant une solution ¢ non identiquement
nulle sur I = ]a, b et qui tend vers Og au voisinage de b.

110. Méthodes

1. Comment trouver efficacement les solutions polyno-
miales d"une équation différentielle ?

2. Exemples de méthodes permettant de calculer une solu-
tion non nulle d"une équation différentielle linéaire du second
ordre.

3. Comment résoudre une équation différentielle de la
forme suivante ?

ax” (t) +bx'(t) +cx(t) = +Zologn(t)
n=0

Approfondissement

111.  On suppose que f est une fonction de classe ¢? sur R et
qu’elle vérifie I'équation différentielle

(E) a(t)x"(t) + b(t)x'(t) + c(t)x(t) = g(t)

pour tout t < 0 et pour tout t > 0. La fonction f vérifie-t-elle
I’équation (E) pour tout t € R?

112.  On considere I'équation différentielle

(%) VteR, x"(t)+q(t)x(t)=0
ol g est une fonction continue de R dans IR.

1. Si f est une solution non nulle de () sur [a,b], alors f
s’annule un nombre fini de fois sur [a, b].

2. Soient f et g, deux solutions non nulles de (x) sur R. On
suppose que deux réels a et b sont deux zéros consécutifs de f
(avec a < b). Alors la fonction ¢ admet un, et un seul, zéro dans
[2,0].

113.  Solutions périodiques
On considére 1’équation différentielle

X (t) +x(t) = f(t)

ot f : R — R est une fonction continue.
1. Lafonction g : R — R définie par

(*) VteR,

VteR, g(t)= /Otf(s)e’(t’s) ds

est une solution de (x).

2. Sil’équation différentielle (x) admet une solution pério-
dique, de période T > 0, alors la fonction f est périodique, de
période T.

3.  Onsuppose que f est périodique, de période T > 0.
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3.a L'équation (x) admet au plus une solution périodique de
période T.

3.b L’équation (x) admet-elle une solution périodique?
114.  Perturbation des coefficients
L'équation caractéristique admet le réel A pour racine double si,
et seulement si, I’équation différentielle s’écrit :

X —2Ax" + A%x = 0.

Pour tout € > 0, la fonction définie par
p(A+e)t _ oAt
VteR, f(t)= —

est une solution de 1’équation différentielle
X" — 2A+e)x" + A(A+e)x = 0.

Que dire de f; lorsque ¢ tend vers 0?

115.  Si(x,y) est une solution du systeme différentiel

)
—x(t) +2y(t)

alors x est une solution de x”(t) — 2x/(t) + x(t) = 0. Le couple

(x,y) est une solution si, et seulement si, il existe deux réels A et

B tels que
VteR,

x(t) =e'(A+Bt), y(t)=x(t)+ Be.

116.  Soit f, une fonction continue et intégrable sur R. La fonc-
tion F définie par

VteR, F(t)=—¢ /t+ooe’sf(s)ds

est 'unique solution bornée sur R de 1’équation différentielle

X(t) —x(t) = f(t).

La fonction F tend vers 0 aux voisinages de —co et de +oo. Elle
est intégrable sur R et

Jo == [

117.  Séries de Fourier
On suppose que la série ) a, est absolument convergente.

1. Siw est un réel strictement positif non entier, alors 1’équa-
tion

VteR,

—+00
VieR, x'(t)+w?x(t) = Y aycosnt
n=0

admet pour solution la fonction f définie par

—+o0

VteR, f(t)=),

n=0

an
) cos nt.
ws—n

2. Etudier le cas ott w € N*.

118.
1. Il existe une fonction continue A
I’équation différentielle

R — TR telle que

(23) VteR, y'(t)+ADY () +y(t) =0

admette f(t) = t/cht pour solution. Les solutions de (23) sont
alors de la forme
Ky + Kyt

cht

119.  Parité d’un systéme fondamental
On considere 1’équation différentielle

(24) VteR, x"(t)+a(t)x'(t)+b(t)x(t) =0

ol a et b sont des fonctions continues de R dans .

119.1  On suppose que a est impaire et que b est paire.

1. Si f est une solution qui n’est ni paire, ni impaire, alors
g = [t f(—t)] est une solution de (24).

2.a Le wronskien de (24) est une fonction paire.

2.b  Sil’équation (24) admet une solution paire (resp. impaire)
non identiquement nulle, alors elle admet aussi une solution im-
paire (resp. paire) non identiquement nulle.

3. Toute solution de 1’équation (24) est combinaison linéaire
d’une solution paire et d"une solution impaire.

119.2  Sil'équation (24) admet une matrice fondamentale de la

forme f(t) (t)
_ g
M: = (f’(f) g’(t))

oll f est une solution paire et g, une solution impaire, alors
(b(t) = b(=1)

donc a est impaire et b est paire.
120.

VteR, a(t)+a(—t)) My = (0 0)

L’équation

_
1+

ta' () — x(t)

présente une singularité en t = 0. Sur les deux intervalles | —oo, 0]
et ]0, +o0[, les solutions s’expriment sous la forme

t[/\+€n\t|—%£n(1+t2)].

IIn’y a pas de solution sur R.

121. Changements de variable

121.1  Soit &, un nombre réel. Si x est une fonction de classe 2
telle que

(Eo) Vtel=]-1,1], (1 —)x"(t)—atx'(t) +ax(t) =0,

on définit une fonction y en posant

x(t) = y(g(t))

oil ¢ est une bijection de classe ! de I sur un intervalle J.

Pour quelle valeur de & la fonction y est-elle solution d"une équa-
tion différentielle a coefficients constants ?

Résoudre I'équation (E,) dans ce cas.

1212 Toute fonction f de classe €2 sur R’ telle que

fi() = f/t)

est une solution de I'équation différentielle

Viel,

Vi>0,

V>0, £2x"(t)+x(t) =0,

La fonction g définie par
VseR, g(s)=f(e)

est solution d"une équation différentielle linéaire du second ordre
a coefficients constants et g(0) = g¢'(0). Il existe donc une
constante A telle que

VES0, f(t) = AVE[Vcos YR 4 g V3 I0E)
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122.  L'équation homogene associée a

(x) VteR, (A+t)x"(#t)—2xt)+1—t)x(t) =te!

admet exp pour solution particuliere. a quelle condition sur k €
%?(R) la fonction x(t) = k(t) e est-elle une solution de 1’équa-
tion (x)?

Les solutions de () sont les fonctions de la forme

14+t
(%) et — Ky (22 +6t+5) et +Kyel.
Etudier la singularité en t = —1.
123.  Une fonction x est une solution de classe 4 de 1’équation

différentielle

VieR, 2x"(t)—2tx'(t) +2x(t) = 3 cost

si, et seulement si, il existe deux réels A et B tels que

VieR, x(t)=At+Bt>+t(1—cost).

En particulier, toutes les solutions sont développables en série
entiere. Etudier la singularité en t = 0.

Pour aller plus loin

1241 Suite de [22] — Soit f, une solution non identiquement
nulle de I’équation différentielle

VteR, x"(t)+ex(t)=0.
1. Soient a et b, deux nombres réels tels que a < b et g, une

solution de
VteR, x"(t)+ex(t) =0.

1.a S'il existe deux nombres réels a < a < B < b tels que
g(w) = ¢(B) = 0 et que les deux fonctions f et g restent stricte-
ment positives sur |a, B[, alors la fonction W définie par

VteR, W) =yt () —y (H)z(t)

est croissante sur [«, ] tandis que W(«x) > 0et W(B) < 0.

1.b Entre deux zéros consécutifs de g se trouve au moins un
zéro de f.

2. Pour tout réel 7, la fonction f s’annule au moins une fois
dans l'intervalle [T, T + mexp(—1/2)].

124.2  On étudie les solutions réelles de 1’équation différentielle
(%) Viel, x"(t)+a ()x'(t) +ag(t)x(t) =0

ol ag et a1 sont des fonctions continues de l'intervalle ouvert [
dans R.

3. Soit f € ¥*(I,R), une solution de (x). S'il existe ty €
I tel que f(ty) = 0, alors f est identiquement nulle sur I si, et
seulement si, f’(tg) = 0.

4. Soit f € €%(I,R), une solution non identiquement nulle
de I’équation homogene ().

4.a Silexiste tg € I tel que f(ty) = 0, alors il existe r > 0 tel
que f(t) # 0 pour tout t € Jtg —r, o + r].

4.b Pour tout segment [a,b] C I, la fonction f ne s’annule
qu'un nombre fini de fois sur [, b]. Il est donc légitime de parler
des zéros consécutifs de f.

5. On considére maintenant un systéme fondamental (f, g)
de solutions de (x). Le wronskien de ce systéme est noté W.

5.a Les fonctions f et ¢ ne s’Tannulent jamais au méme instant.

5.b  Sity et tp sont deux zéros consécutifs de f et si f est stric-
tement positive sur |t1,t;[, alors f/(t;) et f’(t2) sont de signes
opposés et ¢ s’annule au moins une fois entre ¢ et t;.

5.c Par symétrie, la fonction g s’annule une fois, et une seule,
entre deux zéros consécutifs de f.

5.d On suppose que f s’annule exactement n fois sur l'inter-
valle I. Combien de fois la fonction g s’annule-t-elle?
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1243 Une fonction f de classe 42 sur I = ]0, +co| est une solu-
tion de 1’équation différentielle homogene

1 2 ! 1
Vu>0 vy (u)+;y (u)+my(u) =0
si, et seulement si, il existe deux réels A et B tels que
o1 1
Vu>0 yu) = Asm; +Bcosa.

(Considérer x(t) = y(1/¢).)

Pour (A,B) # (0,0), cette fonction f n’est pas identiquement
nulle mais elle admet une infinité de zéros au voisinage de 0. Cela
ne contredit pas 1’étude précédente car 0 & I.

125.  Matrice résolvante
125.140 Soit [t — M|, une matrice fondamentale. La matrice résol-
vante R ; est définie par

Ryp = MsM; !

pour tous s et t dans I.

1. Exprimer la matrice résolvante relative a une base ¢ de E
en fonction de la matrice résolvante relative a une base 4 de E et
de la matrice de passage P de ## a €.

2. Comparer les matrices résolvantes associées a deux ma-
trices fondamentales [t — M| et [t — N;| d’'une méme équation
homogene.

3. Expression de la matrice résolvante de I'équation homo-
gene X; = AX;.

126.

(1) Yy (1) — 2ty (t) + 287 (t) = 0

admet exactement deux solutions constantes sur IR.
Si la fonction y est une solution de (f) qui ne s’annule pas sur
I'intervalle I, alors la fonction x = 1/y vérifie

L'équation différentielle

Viel, x/(t)+2tx(t) =2t

donc il existe une constante A telle que

1

Vtel, =—.
1+ Aet

y(t)
Le principe de superposition peut-il s’appliquer a (1) ?
127.  Systeme différentiel a coefficients non constants
On étudie un systeme différentiel de la forme

X} = B(t)X;

ot la fonction [t — B(t)] est continue de I dans 91, (K).
127.1  Soit [t — A(t)], une application de classe ! de I dans
9, (K). L'application

f= [t exp A(H)]
est de classe ¢! sur I et si de plus

(%) Viel, A(H)A(t) = A(H)A(t),

alors
f'(t) = lexp A(H)]A'(t) = A'(t) exp A(t)
pour toutt € I.
127.2  Analyse de la condition nécessaire
On cherche maintenant des conditions simples pour que la condi-
tion (%) soit vérifiée.
1. Silexiste P € GL,(R) telle que D(t) = P~1A(t)P soit
diagonale pour tout ¢ € I, alors la condition (x) est vérifiée.
2. Il suffit aussi que
V(s,t) eI xI, A(s)A(t) = A(t)A(s)

pour que (*) soit vérifiée.
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3. Lacondition

V(s,t)yelIxI, A'(s)A'(t)=A(t)A'(s)

est vérifiée des que la dérivée A’ est constante (cas d'un sys-
teme différentiel a coefficients constants). Cette condition suffit-
elle pour que (x) soit vérifiée?

128. Lemme de Gronwall

128.1 Démonstration du lemme

Soient f et g, deux fonctions continues et positives, définies sur
un méme intervalle I. On suppose qu’il existe un instant ¢y € I et
une constante k € R, tels que

Viel, f(t)<k+‘/ttg(s)f(s)ds.

1. L’hypothese précédente est vérifiée lorsque f est de classe
¢l sur I = [a,b] et que
viel fi(t) <gbf(H)

2. Lafonction u définie par

t
Vit u(t):k+/t 2(s)f(s) ds

et par t
u(t) =k— [ g(s)f(s)ds

to

Vi<t

est continue sur I et de classe ¢ sur I privé de t.
3. Lafonction v définie sur I par

Vit 2=t

o(t) = u(t) exp [f /t: 2(s) ds}

et par

Vi<t

o(t) = u(t) exp [ / ' o(s) ds}

to

est de classe ¢! sur I privé de ty, décroissante sur I N [ty, +oo| et
croissante sur I N]—oo, to].

4.

t
Vtel, f(t)gkexp‘/g(s)ds
Jt

128.2  Applications

5. Soient a, une fonction de classe ' sur Ry et f, une solu-
tion de I’équation différentielle
Vte Ry, x'(H)+[1+a(t)]x(t) =0.

Alors [82] la fonction g définie par

Vie Ry, g(t)=f(t) +/Ot sin(t —s)a(s)f(s) ds

vérifie ' + x = 0 et il existe une constante C > 0 telle que

t
VEER,, |f(t)y<Cexp/0 la(s)| ds.

6. Soit E, un espace vectoriel normé de dimension finie. On
considere deux applications continuesa : [ — L(E)etb : [ = E
ainsi que deux solutions ¢ : I — Eet¢ : I — E de I"équation

Vtel, x'(t)=a(t)x(t) +b(t).
On admet qu'il existe une fonction continue K telle que

Vsel, VxeE, |a(s)x||p <K(s)llxE.

Alors, pour tout t € I,

o(t) = ()| < [|@(to) — ¥(to) ||z exp ‘ /t: K(s)ds

Que déduire du lemme de Gronwall si ¢(tg) = P(ty)?
7. Soit (#y)yen, une suite de vecteurs de E qui converge
vers xp. Pour tout n € IN, on suppose que le probléme de Cau-

chy :
x(tg) =un et Vtel, x(t)=a(t)x(t)

admet une solution notée ¢,;.
La suite de fonctions (¢,),eN converge uniformément sur tout
segment de I vers une fonction ¢ continue sur I et telle que

t
Viel o) = xo+/t a(s)g(s) ds.

129. Résolution d’une équation non linéaire
On veut résoudre I'équation différentielle

(*) x(t) + x(t) = ox’(t)
sur le segment [0, b] avec la condition initiale
() (x(0),x'(0)) = («,0)

en supposant que ¢ > 0 et que ob + |a| < 1.
129.1 A cet effet, on pose

VteR4, x(t) =wcost
et, pour tout n € IN*, on note x,;, la solution de 1’équation diffé-
rentielle )

Vte Ry, x"(t)+x(t) =o0x;_4(t)

qui vérifie la condition initiale ().

129.2  Soit f : Ry — R, une fonction continue. La solution de

I’équation différentielle
VteRy, x(t)+x(t) = f(t)

qui vérifie la condition initiale (x(0),x’(0)) = (0,0) s’exprime
sous la forme suivante :

t
VieR,, x(t):/o F(s)sin(t — s) ds.

129.3 Enexprimant x, () en fonction de x,,_1 (), on montre que
Vie[0b], |xa(t)] <1
129.4  Avec uy(t) = x4(t) — x,_1(t),ona
20)" "
VieRy, |u(t)] < Z2

n!

La suite de fonctions (x,),en converge donc simplement sur Ry
et la limite ¢ de cette suite de fonctions est une solution du pro-
bleme de Cauchy (%, 1).
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