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1 Introduction
On s’intéresse dans ce TP à l’acquisition de signaux physiques analogiques en signaux numériques et à leur traitement

éventuel. A un signal analogique à temps continu et à valeurs continues correspond un signal numérique dont la valeur évolue
par paliers et à temps discret tn = nTE .

On utilisera la carte d’acquisition qui intègre à la fois un CAN (convertisseur analogique numérique qui génère la suite de
valeurs numériques à partir du signal analogique) et un CNA (qui restitue un signal analogique à partir d’une suite de valeurs
numériques).
On s’intéresse à l’influence de la fréquence d’échantillonnage, c’est à dire au paramètre de discrétisation du temps.
Pour info, les lecteurs de CD adoptent une fréquence d’échantillonnage de 44,1kHz et en téléphonie elle est de 8kHz.



2 Echantillonnage

2.1 Définition

Echantillonner un signal c’est prélever les valeurs du signal e(t) étudié à des instants régulièrement espacés, de la forme
tn = nTE , où n est un entier qui va de 0 à N − 1. On appelle TE la période d’échantillonnage et fE = 1/TE la fréquence
d’échantillonnage. N étant le nombre de points d’acquisition la durée totale de l’acquisition est TA = (N − 1)TE . Le signal
échantillonné est donc une suite de valeurs : eE = (e0, e1, e2, . . . eN−1)

On comprend bien que le signal échantillonné est une image d’autant plus fidèle au signal e(t) que la fréquence d’échan-
tillonnage est élevée. C’est sur la valeur optimale de cette fréquence qu’on va s’interroger par la suite.

2.2 Exercice
On modélise la numérisation d’un signal e(t) par la multiplication de e(t) par un signal peigne pE(t) composé d’impulsions

de hauteur 1 et de durée τ . Ce signal est de période TE .
1. Quelles sont les fréquences contenues dans le spectre de pE ? On admettra que si τ � TE , les différentes harmoniques

de pE ont toutes la même amplitude.

2. On considère tout d’abord un signal e(t) sinusoïdal de fréquence f . Représenter les allures de e(t), pE(t) et du produit
y(t) = e(t)× pE(t).
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3. Quelles sont les fréquences dans le spectre de y ? Quelles sont leurs amplitudes ? En supposant f < fE/2 représenter
le spectre de y sur un graphe. Montrer qu’on retrouve alors le signal de départ à l’aide d’un filtre passe-bas.

Que se passe-t-il si f<fE/2 ?

4. Quel serait le spectre d’un signal non sinusoïdal e(t) dont le spectre contient des fréquences entre fmin et fmax ?

2.3 Expérience
Faire l’acquisition sur l’entrée EA0 d’un signal sinusoïdal délivré par le GBF de fréquence f=500 Hz avec les paramètres

d’acquisition suivants : N = 512, TE=40 µs
La touche F10 lance l’acquisition. Faire l’analyse de Fourier du signal. (traitements spécifiques, analyse spectrale). Augmenter
progressivement la fréquence et observer le spectre obtenu (on pourra faire une acquisition continue ; le calcul du spectre se
fait aussi en continu ). Expliquer et mesurer la fréquence obtenue pour f=15kHz et pour f=24kHz.
Remarque : Les petites raies spectrales visibles autour des raies principales sont des artefacts c’est à dire qu’elles sont pro-
duites par des imperfections dues à la numérisation et au traitement.

Faire également l’analyse spectrale d’un signal créneau puis d’un signal triangulaire de basse fréquence puis augmenter
leur fréquence et observer le repliement du spectre.

2.4 Critère de Niquyst Shannon
Pour que l’échantillonnage d’un signal ne modifie pas son spectre, il faut que la fréquence d’échantillonnage fE soit

supérieure au double de la plus grande fréquence contenue dans son spectre.

fE > 2fmax

Les signaux réels présentent en général un spectre contenant un très grand nombre de fréquences (parfois même infini,
comme pour les signaux créneaux..). Le critère de Niquyst-Shannon est alors impossible à satisfaire. Il existe cependant une
fréquence au delà de laquelle les fréquences ne sont plus porteuses d’information dans le signal. Par exemple les fréquences
supérieures à 20 kHz ne sont pas audibles. On peut donc interposer entre le signal d’entrée et le dispositif d’acquisition un
filtre passe-bas qui éliminera les fréquences inutiles. Dès lors on évitera le phénomène de repliement. Un tel filtre est appelé
filtre anti-repliement.

2.5 Transformée de Fourier discrète
Le calculateur ne disposant pas du signal e(t) mais que des N valeurs numérisées, il donne après calcul les N valeurs de

l’amplitude des différentes composantes spectrales aux fréquences fk = k fE
N = kδf . 1

1. Si le signal analogique e(t) est numérisé en N valeurs e(nTE) = en, l’amplitude de la composante spectrale à la fréquence fk = k fE
N

= kδf

est donnée par Ek = E(kδf) =
N−1∑
n=0

en exp(−i2π(kδf)nTE). Connaissant les Ek, on peut calculer les en par une formule tout à fait identique :

en = 1
N

N−1∑
k=0

Ek exp(i2π(kδf)nTE)
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Latispro utilise un algorithme très efficace appelé Transformée de Fourier Rapide (FFT en anglais) qui impose un nombre
de points d’acquisition N puissance de 2, ce qui permet d’optimiser un très grand nombre de traitements. Attention donc
quand on utilise Latispro, il réajuste automatiquement le nombre de points pour avoir une puissance de 2.

2.6 Optimisation, conséquences pratiques
Le spectre est calculé pour les fréquences fk = k fE

N = kδf . La résolution en fréquence est ainsi fE
N = kδf . Donc si on

double la fréquence d’échantillonnage il faut aussi doubler le nombre de points si on veut garder la même résolution.

Lors du calcul du spectre, le logiciel propose de sélectionner une partie seulement du signal acquis, il est recommandé de
choisir un nombre entier de périodes, plutôt grand. On assure ainsi que la fréquence f du signal (et ses éventuelles harmo-
niques) fera partie des fréquences pour lesquelles le spectre est effectivement calculé. En effet si on sélectionne p périodes :
TA = pT = p/f de sorte que δf = fE

N = 1
NTE

≈ 1
TA

.
Il n’est pas toujours possible de réaliser cette condition. Dans ce cas, le spectre calculé diffère légèrement du spectre réel. Il
apparait des raies secondaires au voisinage de f et l’amplitude pour f est inférieure à la valeur attendue.
Vérifier ceci en faisant par exemple l’acquisition d’un signal sinusoïdal de fréquence f =200Hz échantillonné à 1000Hz.

On retiendra deux causes d’apparition de raies fantômes dans un spectre :
— le repliement du spectre dû à l’échantillonnage
— le fait de ne pas échantillonner sur un nombre entier de périodes

3 Filtrage numérique
Une fois le signal numérisé, on peut effectuer des traitements sur le signal numérisé. On va traiter ici l’exemple du filtre

passe-bas d’ordre 1.

3.1 Passe-bas d’ordre 1
La fonction de transfert d’un filtre passe-bas d’ordre 1 s’écrit :

H =
1

1 + j ω
ωc

Dans le domaine temporel cette fonction de transfert correspond à l’équation différentielle :

1

ωc

ds

dt
+ s(t) = e(t)

ou encore
τ
ds

dt
+ s(t) = e(t)

avec τ = 1/ωc.
Cette relation concerne les grandeurs continues (analogiques). Pour l’utiliser sur le signal numérisé, il faut la discrétiser elle
aussi. On ne dispose que des valeurs du signal e(t) qu’aux instants tn = nTE , on va remplacer dans l’équation précédente
un signal par sa valeur prise à l’instant tn. Ainsi e(t) devient e(tn) que l’on notera en et de même s(t) devient s(tn) = sn. 2
Pour la dérivée de s par rapport à t, on fait l’approximation :

ds

dt
(tn) =

sn+1 − sn
TE

Si on se donne s0 on pourra calculer les sn de proche en proche par la relation :

sn+1 = sn

(
1− TE

τ

)
+
TE
τ
en

2. En réalité le signal numérisé n’est pas e(tn) mais la valeur discrète e′(tn) obtenue en sortie du convertisseur analogique numérique CNA.
Pour simplifier, on confond ces deux valeurs.
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3.2 Passe-bas d’ordre 1 numérique avec LatisPro
On réalise un filtre passe-bas de fréquence de coupure fc=100 Hz. Le montage est le suivant :

Le CAN correspond à l’acquisition et l’échantillonnage du signal sur l’entrée EA0 de la carte. Après calcul, la carte permet
d’émettre un signal analogique image du signal numérique sn grâce à un CNA (convertisseur numérique analogique).

3.2.1 le code

Paramètres d’acquisition :
fE=20 kHz soit TE=50 µs ; nombre de points : N=10000 donc NTE=0,5 s� τ .

dans la feuille de calcul traitements → feuille de calcul taper le code suivant :
TE=50e-6
fE=1/TE
fc=100
tau=1/(2*3,14*fc)
s[0]=0
s[n]=s[n-1]*(1-TE/tau)+(TE/tau)*EA0[n-1]

Valider le code avec F2. La touche F10 fera l’enchaînement automatique de l’acquisition, du calcul des sn et de l’émission
analogique par SA1 (mode GBF, flèche verte Latispro, cocher sortie active, choisir la source (ici s)). On peut observer le
signal e et le signal s émis par SA1 à l’oscilloscope et/ou en et sn sur Latispro. Il faut bien comprendre que à l’oscilloscope,
il n’y a pas de relation de phase entre les signaux e et s car le calcul prend un certain temps.

Observations :
Observer que le régime périodique s’établit après un régime transitoire. Estimer ce temps caractéristique du régime transitoire ;
est ce la valeur attendue ?
Tester ce filtre avec un signal d’entrée carré ou triangulaire de fréquence 10Hz puis 1000Hz. Décrire les allures obtenues pour
s. La fonction de filtre passe bas est-elle bien réalisée ? Retrouve-t-on le caractère intégrateur du filtre à haute fréquence ?
Le critère de Niquyst-Shannon est-il bien vérifié ?

Diagramme de Bode :
On reprend un signal d’entrée sinusoïdal et on fait varier sa fréquence pour tracer le diagramme de Bode en gain de ce filtre
numérique. On pourra relever l’amplitude du signal de sortie sur Latispro, et on ira jusqu’à f=5000Hz.
Tracer (avec QTPlot par exemple) ce diagramme de Bode, on n’oubliera pas de mettre les incertitudes de mesure sur
l’amplitude, et on fera un affinement (fit) afin de vérifier si la fonction est bien réalisée.
Expliquer pourquoi l’approximation :

ds

dt
(tn) =

sn+1 − sn
TE

n’est pas valable à toute fréquence. Quelle est la limite de validité de cette expression approchée ?

Essayer malgré tout pour f=19900Hz et commenter. Vous devriez observer un repliement du spectre !
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Diagramme de Bode bis :
Reprendre cette étude avec une fréquence d’échantillonnage plus faible (par exemple fE=5000 Hz ; TE=200µs) et comparer
au cas précédent.
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