DM n^O11 Préparation aux oraux Pour le 19 Mars

Pour le 18 Mars. Rédiger **huit** des exercices suivants dont obligatoirement les exercices 6, 7, 8 et 14. Les exercices marqués d'un astérisque sont plus difficiles, ceux marqués de deux réservés et destinés aux candidats X-ENS.

Exercice 1 * Des éléments A et B de $\mathcal{M}_n(\mathbf{Z})$ sont dit semblables dans $\mathcal{M}_n(\mathbf{Z})$ si il existe un élément P de $\mathcal{M}_n(\mathbf{Z})$ inversible d'inverse élément de $\mathcal{M}_n(\mathbf{Z})$ tel que $A = PBP^{-1}$. Pour tout entier a on note S_a l'élément de $\mathcal{M}_2(\mathbf{Z})$, $\begin{pmatrix} 1 & a \\ 0 & -1 \end{pmatrix}$

- 1. S_0 et S_1 sont elle semblables dans $\mathcal{M}_2(\mathbf{Q})$?
- 2. S_0 et S_1 sont elle semblables dans $\mathcal{M}_2(\mathbf{Z})$?
- 3. Soit A un élément de $\mathcal{M}_2(\mathbf{Z})$ ayant 1 et -1 comme valeurs propres. Montrer qu'il existe $a \in \mathbf{Z}$ tel que M soit semblable dans $\mathcal{M}_2(\mathbf{Z})$ à S_a .

Exercice $2\star$ — Théorème de Cayley-Hamilton par la formule de Cauchy — Soit A un élément de $\mathcal{M}_n(\mathbf{C})$. Montrer qu'il existe un réel $R \geq 0$ tel que, pour tout entier $k \geq 0$ et tout réel $r \geq R$,

$$A^{k} = \frac{1}{2\pi} \int_{0}^{2\pi} r^{k+1} e^{i(k+1)\theta} \left(r e^{i\theta} I_{n} - A \right)^{-1} d\theta.$$

En déduire le théorème de Cayley-Hamilton.

Exercice 3 — Soit Soit A un élément de $\mathcal{M}_n(\mathbf{K})$ diagonalisable. Nous noterons $\lambda_1, \lambda_2, \ldots, \lambda_p$ ses p valeurs propres deux à deux distinctes et de multiplicité respectives m_1, m_2, \ldots, m_p . Montrer que l'ensemble des éléments de $\mathcal{M}_n(\mathbf{K})$ qui commutent avec A est un espace vectoriel dont on déterminera la dimension.

Exercice 4 —

- 1. Déterminer les applications f de \mathbf{R} dans \mathbf{R} dérivables telles que f'(x) = f(-x) pour tout réel x.
- 2. Déterminer les applications f de \mathbb{R}_+^* dans \mathbb{R} dérivables telles que $f'(x) = f\left(\frac{1}{x}\right)$ pour tout réel x.

Exercice 5 —

- 1. Soient A et A' et B des éléments de $\mathcal{M}_n(\mathbf{R})$ et M la matrice élément de $\mathcal{M}_{2n}(\mathbf{R})$, $\begin{pmatrix} A & B \\ 0_n & A' \end{pmatrix}$. Montrer que si M est diagonalisable alors A et A' le sont.
- 2. Déterminer les éléments A de $\mathcal{M}_n(\mathbf{R})$ tels que la matrice B suivante soit diagonalisable.

$$B = \begin{pmatrix} A & A \\ 0 & A \end{pmatrix}$$

Exercices 6 — ÉQUATION DE MATHIEU —

Soit l'équation différentielle :

$$y'' + (1 + \gamma q) y = 0, \tag{1}$$

où q est une fonction continue réelle de période τ, γ un réel >0. On pose k=|q|, et on note Q et K les fonctions définies par :

$$Q(t) = \int_0^t q(s) ds, K(t) = \int_0^t k(s) ds,$$

pour tout réel t.

Soit α et β des réels, on s'intéresse à la solution de (1) satisfaisant à la condition initiale :

$$y(0) = \alpha, y'(0) = \beta.$$

1. Soit g une fonction continue de \mathbb{R}_+ dans \mathbb{C} . Montrer que toute solution sur \mathbb{R}_+ de

$$y'' + y = g$$

est de la forme :

$$f: t \mapsto f(0)\cos t + f'(0)\sin t + \int_0^t \sin(t-s)g(s) ds$$

2. On considère la suite d'applications de \mathbf{R}_+ dans \mathbf{C} , $(f_n)_{n \in \mathbb{N}}$, définie par :

$$f_0'' + f_0 = 0$$
; $f_0(0) = \alpha$, $f_0'(0) = \beta$,

pour tout $n \in \mathbf{N}^*$,

$$f_n'' + f_n = -q f_{n-1}; f_n(0) = 0, \ f_n'(0) = 0.$$

(a) Montrer que pour tout entier $n \geq 0$ et tout t élément de \mathbf{R}_+ on a :

$$|f_n(t)| \le \sqrt{\alpha^2 + \beta^2} \frac{K^n(t)}{n!}.$$

En déduire que pour tout t élément de \mathbf{R}_+ , la série entière de la variable complexe z, $\sum_{n\geq 0} f_n(t) z^n$ a un rayon de convergence infini.

(b) Montrer que la fonction f définie par :

$$f: \mathbf{R}_{+} \to \mathbf{R}; t \mapsto \sum_{n=0}^{\infty} f_{n}(t) \gamma^{n}$$

est l'unique solution sur R₊ du problème de Cauchy

$$y + (1 + \gamma q) y = 0, \ y(0) = \alpha, \ y'(0) = \beta.$$

Exercices 7 —

STABILITÉ ASYMPTOTIQUE D'UN SYSTÈME LINÉAIRE — Soient $A \in \mathcal{M}_n(\mathbf{R})$ et $B \in \mathcal{M}_{n,1}(\mathbf{R})$ Soit X_0 une élément de $\mathcal{M}_{n,1}(\mathbf{R})$ tel que

$$AX_0 + B = 0_{n,1}$$
.

On dira que X_0 est une position d'équilibre asymptotiquement stable du système différentiel

$$X' = AX + B, (S)$$

si toute solution Φ sur \mathbb{R}_+ de ce système vérifie :

$$\Phi(t) \underset{t \to +\infty}{\longrightarrow} X_0.$$

1. Montrer que X_0 est une position d'équilibre asymptotiquement stable de (S) si et seulement si

$$\exp(tA) \underset{t \to +\infty}{\to} 0_n.$$

- 2. On suppose que les parties réelles de toutes les valeurs propres complexes de A sont négatives. Montrer que X_0 est une position d'équilibre asymptotiquement stable de (S). On utilisera une décomposition par blocs de Dundford de A.
- 3. On suppose qu'une valeur propre λ_0 de A a pour partie réelle un réel r > 0 et on note V_0 un vecteur propre de A associé à λ_0 .
 - (a) On suppose que la valeur propre λ_0 est réelle. Montrer que X_0 n'est pas une position d'équilibre asymptotiquement stable de (S).

On pourra considérer la solution du système X' = AX sur \mathbf{R}_+ qui prend en 0 la valeur V_0 .

(b) On suppose que la valeur propre λ_0 est non réelle. Montrer que X_0 n'est pas une position d'équilibre asymptotiquement stable de (S).

On pourra considérer la solution du système X' = AX sur \mathbf{R}_+ qui prend en 0 la valeur $\frac{1}{2}(V_0 + \bar{V}_0)$.

Exercice 8 — CRYPTOGRAPHIE —

Le but de cet exercice est l'étude du principe de criptage RSA, qui permet de communiquer de façon sure des données. Ce résultat est à connaître

Dans cet exercice φ désignera l'indicatrice d'Euler.

1. Chiffrement du message

On étudie le cryptage d'un message par un expéditeur. Soient p et q des nombres premiers distincts et n leur produit : n = pq. On appelle n module de chiffrement

- (a) Donner en fonction de p et q la valeur de $\varphi(n)$.
- (b) Soit e un entier premier avec $\varphi(n)$. On appele e exposant de chiffrement. Montrer qu'il existe un entier **naturel** d tel que $ed \equiv 1 [\varphi(n)]$

Le couple (n, e) est appelé clef publique (elle peut être transmise à l'expéditeur), le couple (n, d) est appelé clef privée, elle reste connue du seul destinataire du message.

Dans la suite on considère un entier M (représentant le message) strictement inférieur à n. On note C l'élément de $\{0,1,\ldots,n-1\}$ congru à M^e modulo n. Cet entier représente le message codé qui est transmis.

2. DÉCHIFFREMENT DU MESSAGE

On se propose de montrer que C^d est congru à M modulo n, ce qui permet au destinataire de trouver M, grâce à sa clef (n, d).

- (a) Montrer que M^{ed} est congru à M modulo p. On distinguera les deux cas M premier avec p et M non premiers avec p.
- (b) En déduire que $C^d \equiv M[n]$.

pour trouver d à partir de e et n il faut savoir inverser e dans $\mathbb{Z}/\varphi(n)\mathbb{Z}$ ce qui nécessite de connaître $\varphi(n)$ et donc le couple (p,q). La décomposition de n en facteurs premiers peut être très difficile si les nombres premiers p et q ont été choisis très grands.

Exercice 9 —

1. Donner une condition nécessaire portant sur la parité de l'élément n de \mathbb{N}^* , pour qu'il existe une matrice M élément de $\mathcal{M}_n(\mathbf{R})$ qui vérifie :

$$M^2 + 2M + 5I_n = 0_n$$
.

2. Cette condition est-elle suffisante?

Exercice 10 * —Problèmes de Dirichlet —

1. Soient f et g des application de [a,b] dans ${\bf R}$ continues telles que $f\leq 0$. Montrer que l'équation différentielle

$$y'' + f(t)y = g(t)$$

possède une solution unique φ sur [a,b] telle que $\varphi(a)=\varphi(b)=0$

2. Montrer que si f est positive alors l'équation précédente peut avoir aucune ou plusieurs solutions.

Exercice 11 \star Soit X une variable aléatoire réelle admettant un moment d'ordre 2. Montrer pour tout réel $\lambda > 0$:

1.

$$\mathbf{P}(X \ge \mathrm{E}(X) + \lambda) \le \frac{\mathrm{V}}{\mathrm{V} + \lambda^2}.$$

On pourra considérer poour tout $t \in \mathbf{R}_+^*$, $\{(X - \mathbf{E}(X) + t)^2 \ge (t + \lambda)^2\}$.

2. Soit $(X_n)_{n \in \mathbb{N}^*}$ une suite de variables aléatoires mutuellement indépendantes ayant un moment d'ordre 2. On suppose que tout $n \in \mathbb{N}^*$, on a :

$$E(X_n) = 0$$
 et $V(X_n) = 1$.

On pose $N = \min\{n \in \mathbf{N}^*, X_n \le 1\}.$

- (a) Soit un entier $n \geq 2$. Exprimer $\{N > n-1\}$ grâce aux événements $\{X_i > 1\}$, pour i = 1, ... n-1
- 3. En utilisant la question précédente, montrer :

$$P(N=n) \le \frac{1}{2^{n-1}}.$$

En déduire que N est presque sûrement finie.

4. Montrer que e^{aN} est d'espérance finie, pour tout $a \in [0, \ln 2]$

Exercice 12 ** — Soit u un endomorphisme d'un **C**-espace vectoriel **E** de dimension finie n, non nulle. Soit $Q \in \mathbf{C}[X]$. On suppose que Q(u) est diagonalisable et que Q'(u) est inversible. Montrer que u est diagonalisable.

Exercice 13 Soit M un élément de $\mathcal{M}_n(\mathbf{C})$.

- On suppose que pour tout entier m strictement positif, $Tr(M^m) = 0$. Montrer que M est nilpotente.
- On suppose que $\operatorname{Tr}(M^m) \underset{m \to +\infty}{\to} 0$. Montrer que les valeurs propres de M sont toutes de module inférieur strictement à 1.

Exercice 14 —

Pour tout $n \in \mathbb{N}^*$ on les fonctions de la variable réelle x, u_n définies par :

$$u_n(x) = \frac{x^n}{1 - x^n}; f(x) = \sum_{n=1}^{+\infty} u_n(x).$$

On considère également la fonction f de la variable réelle x, définie par :

$$f(x) = \sum_{n=1}^{+\infty} u_n(x).$$

- 1. Étudier le domaine de définition de f^* .
- 2. Étudier la continuité et la dérivabilité de f.
- 3. Donner un équivalent de f en 1.
- 4. Démontrer que pour tout $x \in]-1,1[, f(x) = \sum_{n=1}^{+\infty} d(n)x^n,$ où d(n) est le nombre de diviseurs positifs de n.

Exercice 15 **

- 1. Soit M un élément de $M_n(\mathbf{R})$. On note μ sont polynôme minimal et $\mu_{\mathbf{C}}$ sont polynôme minimal lorsqu'on considère M comme comme un élément de \mathbf{C} . Montrer que $\mu = \mu_{\mathbf{C}}$.
- 2. Soit M un élément de $M_n(\mathbf{Q})$. On note $\mu_{\mathbf{Q}}$ son polynôme minimal et $\mu_{\mathbf{R}}$ son polynôme minimal lorsqu'on considère M comme comme un élément de $\mathcal{M}_n(\mathbf{R})$. Montrer que $\mu_{\mathbf{Q}} = \mu_{\mathbf{R}}$.

Exercice 16 ** — ÉGALITÉ DES ACCROISSEMENTS FINIS VECTORIELLE —

- 1. Rappeler l'égalité des accroissements finis pour une application f d'un segment [a,b] (non réduit à un point) à valeurs dans \mathbf{R} . Montrer que ce résultat est faux si l'on remplace « à valeurs dans \mathbf{R} » par « à valeurs dans \mathbf{R}^n ».
- 2. Soit F une application de [a, b] dans \mathbf{R}^p de classe \mathcal{C}^1 . On note d la dimension de l'espace affine engendré par F'([a, b]), c'est-à-dire du plus petit sous-espace vectoriel de \mathbf{R}^n contenant F'([a, b]).
 - (a) Montrer que l'espace affine \mathcal{A} engendré par F'([a,b]) est l'ensemble des barycentres d'un nombre quelconque de points de F'([a,b]). Que dire de \mathcal{A} lorsque $0_{\mathbf{R}^n}$ appartient à F'([a,b]).
 - (b) Montrer qu'il existe des éléments $c_1, c_2,...,c_{d+1}$ de [a,b], des réels $\lambda_1, \lambda_2,...,\lambda_{d+1}$, positifs ou nuls, de somme 1 tels que :

$$\frac{F(b) - F(a)}{b - a} = \sum_{i=1}^{d+1} F'(c_i).$$

On pourra pour simplifier commencer par supposer que $0_{\mathbb{R}^n}$ est élément de F'([a,b]). On utilisera librement le théorème de Carathéodory, cf. colles