DM n^o10

Pour le 1^e février.

EXERCICE I —ENTIERS DE GAUSS —

Les élèves intéressés, compléteront par l'exercice 38.

Soient $\mathbf{Z}[i]$ l'ensemble des nombres complexes de la forme u+iv, avec $(u,v) \in \mathbf{Z}^2$ et l' A_p plication. $\varphi \colon \mathbf{Z}[i] \to \mathbf{N} \colon a \mapsto \bar{a}a$.

- 1. Montrer que $\mathbf{Z}[i]$ est un sous-anneau du corps \mathbf{C} .
- 2. Déterminer $\mathbf{Z}[i]^*$, ensemble des éléments inversibles de $\mathbf{Z}[i]$.
- 3. Montrer que pour tout élément a de $\mathbf{Z}[i]$ et tout élément b de $\mathbf{Z}[i] \setminus \{0\}$, il existe un couple (non nécessairement unique) (q, r) d'éléments de $\mathbf{Z}[i]$ tel que a = bq + r et $\varphi(r) < \varphi(b)$. On dit que l'anneau $\mathbf{Z}[i]$ est euclidien pour φ .
- 4. Montrer que tout idéal de $\mathbf{Z}[i]$ est de la forme $a\mathbf{Z}[i]$, on dit que $\mathbf{Z}[i]$ est principal.
- 5. Soit a un élément de $\mathbf{Z}[i]$. Montrer que si $\varphi(a)$ est premier, alors a est un élément irréductible de $\mathbf{Z}[i]$.

rappelons qu'un élément a d'un anneau intègre est dit irréductible si par définition il n'est pas inversible et si il admet la décomposition a = bc, alors a ou b est inversible.

PROBLÈME I —EXTENTIONS DE CORPS —

Les élèves intéressés, compléteront par le DM supplémentaire des vacances de Noël.

Première partie : Un exemple d'extension du corps Q

- 1. Soit P le polynôme $X^3 X 1$. Montrer que P n'a pas de racines rationnelles. En déduire que P est irréductible dans $\mathbf{Q}[X]$. Montrer que P a une racine réelle que l'on notera ω .
- 2. Soit **K** le **Q**-espace vectoriel engendré par $(\omega^i)_{i \in \mathbb{N}}$. Montrer que **K** est de dimension finie, et donner une base simple de K.
- 3. Montrer que K est une Q-sous-algèbre de R, muni de sa structure naturelle de Q-algèbre.
- 4. Montrer que K est un sous-corps de R.

Deuxième partie : Cas général d'extension de \mathbf{Q} Soit a un réel.

- 1. Montrer que tout sous-corps de R contient Q.
- 2. Montrer que l'ensemble des sous-corps de \mathbf{R} qui contiennent a admet un plus petit élément pour l'inclusion. On le notera dans la suite $\mathbf{Q}(a)$.
- 3. Montrer que $\phi: \mathbf{Q}[X] \to \mathbf{R}$; $P \mapsto P(a)$ est un morphisme de la \mathbf{Q} -algèbres $\mathbf{Q}[X]$ dans la \mathbf{Q} algèbre \mathbf{R} . On note $\mathbf{Q}[a]$ son image.

- 4. Soit $I := \{ P \in \mathbf{Q}[X], P(a) = 0 \}$. Montrer que I est un idéal de $\mathbf{Q}[X]$.
- 5. Le réel a est dit algébrique (sur \mathbf{Q}), si, par définition, a est racine d'un polynôme non nul à coefficients entiers.

Montrer que a est algèbrique si et seulement si I est non réduit à $\{0\}$.

Dans cette partie on suppose dans la suite que que a est algèbrique, sauf à la dernière question.

- 6. Montrer qu'il existe un et un seul élément de $\mathbf{Q}[X]$ unitaire, μ_a , tel que $I = \mu_a \mathbf{Q}[X]$. Montrer que μ_a est irréductible dans $\mathbf{Q}[X]$. Montrer que si a est irrationnel, alors le degré de μ_a est supérieur ou égal à 2. Déterminer μ_a pour $a = \sqrt{2}$ et pour $a = \sqrt{\frac{1+\sqrt{5}}{2}}$.
- 7. Montrer que $\mathbf{Q}[a]$ est un corps. Montrer que $\mathbf{Q}(a) = \mathbf{Q}[a]$. Montrer que $\mathbf{Q}(a)$ est un \mathbf{Q} -espace vectoriel de dimension n, où n est le degré de μ_a , dont on donnera une base simple.
- 8. Si a est non algébrique, montrer qu'alors $\mathbf{Q}(a)$ est un \mathbf{Q} -espace vectoriel de dimension infinie 1 .

PROBLÈME II

Dans tout le problème, p désigne un nombre premier strictement supérieur à 3, \mathbf{Z}_p l'anneau quotient $\mathbf{Z}/p\mathbf{Z}$.

Si A est un anneau fini, d'élément unité e, on A_p pelle ordre d'un élément inversible a de A, le plus petit entier strictement positif ω tel que $a^{\omega} = e$.

Pour toute matrice carrée M à coefficients dans un corps, on note $\Delta(M)$ son déterminant et T(M) sa trace.

Les 3/2 vérifieront que pour tout élément M de $\mathcal{M}_2(\mathbf{R})$, on a : $\chi_M(M) = 0_2$ (Théorème de Caylay-Hamilton).

Ι

1. Soit A_p l'ensemble des matrices à coefficient dans \mathbf{Z}_p de la forme

$$R = \lambda M + \mu I$$

οù

$$\begin{pmatrix} 4 & 1 \\ -1 & 0 \end{pmatrix}, I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

et λ et μ sont des éléments de \mathbf{Z}_p .

Montrer que A_p est un anneau commutatif pour l'addition et la multiplication des matrices usuelles.

Donner le nombre d'éléments de A_p .

- 2. Calculer T(R) et $\Delta(R)$ pour R dans A_p . Exprimer $T(R^2)$ et $\Delta(R^2)$ en fonction de T(R) et $\Delta(R)$.
- 3. Montrer que deux quelconques des conditions suivantes impliquent la troisième :
 - i. T(R)=0.
 - ii. $\Delta(R) = 1$.
 - iii. L'ordre de R est 4.

^{1.} On pourrait montrer que $\mathbf{Q}(a)$ est isomorphe en tant que corps au corps $\mathbf{Q}(X)$.

4. On considère la suite d'entiers $(Y_k)_{k\in\mathbb{N}}$, définie par

$$Y_0 = 2$$
 et $Y_{k+1} = 2Y_k^2 - 1$.

- , Comparer Y_k et $T(M_k)$, pour tout entier naturel k.
- 5. Montrer que pourtout entier naturel k, l'ordre de M est 2^k si et seulement si p divise Y_{k-2} .

II

- 1. Montrer que A_p est un corps si et seulement si $\bar{3}$ n'est pas le carré d'un élément de \mathbf{Z}_p .
- 2. Dans cette question, on suppose que $\bar{3}$ est un carré dans \mathbf{Z}_p : $\bar{3}=a^2$, où $a\in\mathbf{Z}_p$). Montrer que M est semblable à une matrice diagonale. En déduire que A_p est isomorphe à l'anneau produit $\mathbf{Z}_p \times \mathbf{Z}_p$, puis donner le nombre des éléments de A_p de déterminant 1, ainsi que celui de ses éléments inversibles.
- 3. Dans cette question, on suppose que $\bar{3}$ n'est pas un carré dans \mathbf{Z}_p .
 - (a) Montrer que Δ donne un homomorphisme du groupe multiplicatif des éléments non nuls de A_p dans celui des éléments non nuls de \mathbf{Z}_p . En déduire que le nombre des éléments de l'image de Δ est un diviseur de p-1 et que celui des éléments du noyau de Δ est un multiple de p+1.
 - (b) Vérifier que, pour tout $\lambda \in \mathbf{Z}_p$, il y a au plus deux éléments μ de \mathbf{Z}_p tels que $\Delta(\lambda M + \mu I) = 1$

Donner alors de nombre des éléments de A_p de déterminant 1.

4. Montrer que l'ordre de M divise le nombre des éléments de A_p de déterminant 1. En déduire que, si p divise Y_{k-2} alors 2^k divise p-1 ou p+1.

indication pour le DM n°9

Pour le 1^e février.

EXERCICE I —ENTIERS DE GAUSS —

- 1. Sans problème.
- 2. Supposons que z soit un inversible de l'anneau $\mathbf{Z}[i]$, alors

$$1 = \varphi(1) = \varphi(zz^{-1}) = \varphi(z)\varphi(z^{-1}).$$

Donc φ qui est à valeurs dans **N** est inversible, donc vaut 1. Donc z est élément de $\{1, -1, i, -i\}$ ensemble des entiers de Gauss de module 1.

Réciproquement tout élément de $\{1, -1, i, -i\}$ est inversible dans $\mathbf{Z}[i]$, 1 et -1 étant leur propre inverse et i et -i inverses l'un de l'autre.

L'ensemble des inversibles de $\mathbf{Z}[i]$ est $\{1, -1, i, -i\}$.

3. Notons α et β les parties réelle et imaginaire de $\frac{a}{b}$ ($b \neq 0$). Arrondissons α et β à l'entier (ou l'un des entiers) le plus proche (donc distant de moins de $\frac{1}{2}$), respectivement q_1 et q_2 et posons $q = q_1 + iq_2$, élément de $\mathbf{Z}[i]$. Alors

$$\varphi\left(\frac{a}{b} - q\right) = (\alpha - q_1)^2 + (\beta - q_2)^2 \le \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2 = \frac{1}{2};$$

de plus $a = bq + b\left(\frac{a}{b} - q\right)$ et $\varphi\left(b\left(\frac{a}{b} - q\right)\right) \le \varphi(b)\frac{1}{2} < \varphi(b)$.

D'où le résultat.

- 4. Soit I un idéal. Excluons le cas où I est trivial et donc de la forme $0\mathbf{Z}[i]$, alors l'ensemble $\{\varphi(z), z \in \setminus \{0\}\}$ est une parie non vide de \mathbf{N} et donc admet un plus petit élément, ce qui autorise à considérer a un élément de $I \setminus \{0\}$ de module au carré minimum.
 - L'idéal engendré par a est évidement inclus dans l'idéal $I: a\mathbf{Z}[i] \subset I$. Soit $z \in$. Par division euclidienne z s'écrit z = qa + r avec q et r des entiers de Gauss et $\varphi(r) < \varphi(a)$. par le premier point $qa \in I$ et comme I est un sous-groupe de $\mathbf{Z}[i]$, on a $z qa \in I$, autant dire que r est un élément de I de module au carré STRICTEMENT inférieur à celui de a donc est nul. Donc $z \in a\mathbf{Z}[i]$, et donc $I \subset a\mathbf{Z}[i]$.

Concluons : $I = a\mathbf{Z}[i]$.

- 5. Supposons $\phi(a)$ premier.
 - Donc $\phi(a) \neq 1$ et donc a n'est pas inversible, ni nul.
 - Soit a = bc une décomposition de a en produit de deux éléments de $\mathbf{Z}[i]$. On a $\phi(a) = \phi(b)\phi(c)$, donc par primalité de $\phi(a)$ et positivité de φ , $\phi(a)$ ou $\phi(b)$ égal à 1, donc a ou b est inversible par 1.

De ces deux points nous vient {it la primalité de a.

PROBLÈME I —EXTENTIONS DE CORPS —

Première partie

1. Soit P le polynôme $X^3 - X - 1$.

Supposons que P ait une racinne rationnelle r. Elle s'écrit : $r = \frac{p}{q}$ avec $p \in \mathbf{Z}$, $q \in \mathbf{N}$ et p et q premiers entre eux. On a donc : $r^3 - r - 1 = 0$, Soit

$$p^3 - pq^2 - q^3 = 0. (1)$$

On déduit de cette égalité que p divise q^3 . Or p et q sont premiers entre eux donc le théorème de Gauss dit que p divise q^2 . Une nouvelle application du thèorème de gauss donne que p divise q, enfin une dernière application de ce théorème donne que p divise 1. Donc :

$$p = 1. (2)$$

On déduit aussi de (1) que q divise p^3 . Un raisonnement analogue au précédent donne q|1. Donc

$$q = \pm 1. (3)$$

Donc on déduit de (2-3), que les seules racines rationnelles possibles sont 1 et -1. Or P(1) = -1, P(-1) = -1. Donc P n'admet pas de racines rationnelles.

Montrons que P est irréductible dans $\mathbf{Q}[X]$. En premier lieu P n'est pas inversible. Ensuite, supposons que P s'écrive P=AB, avec A et B éléments de $\mathbf{Q}[X]$. Alors $\mathrm{d}^{\mathrm{o}}A+\mathrm{d}^{\mathrm{o}}B=\mathrm{d}^{\mathrm{o}}P$. Or ni A ni B ne sont de degré 1, car un élément de $\mathbf{Q}[X]$ de degré 1 admet une racine rationnelle et P n'en admet pas. Donc $\mathrm{d}^{\mathrm{o}}A=0$ et $\mathrm{d}^{\mathrm{o}}B=3$ où $\mathrm{d}^{\mathrm{o}}B=0$ et $\mathrm{d}^{\mathrm{o}}A=3$. En conclusion P est irréductible dans $\mathbf{Q}[X]$.

Le polynôme P est de degré impair à coefficients $r\acute{e}els$, il admet donc une racine réelle ω , puisque un au moins de ses facteurs irréductibles dans ${\bf R}$ est de degré 1.

2. Soit c un élément de \mathbf{K} . Par définition de \mathbf{K} , il s'écrit $c = \sum_{i=0}^{n} a_i \omega^i$, avec $n \in \mathbf{N}$ et

 a_0, a_1, \ldots, a_n des rationnels. Soit l'élément de $\mathbf{Q}[X]$, $C = \sum_{i=0}^n a_i X^i$. Par division euclidienne de C par P dans $\mathbf{Q}[X]$ on obtient :

$$C = QP + rX^2 + sX + t, (4)$$

avec $Q \in \mathbf{Q}[X]$, r, s et t des rationnels. En substituant ω à l'indéterminée dans (4), il vient : $c = C(\omega) = Q(\omega)P(\omega) + r\omega^2 + s\omega + t = r\omega^2 + s\omega + t$. Donc c étant quelconque, on a : \mathbf{K} est le Q-espace vectoriel engendré par la sous famille de $(\omega^i)_{i\in\mathbf{N}}$, $(\omega^0,\omega^1,\omega^2)$.

Montrons que la famille $(\omega^0, \omega^1, \omega^2)$ est libre. Soit λ , μ et ν des rationnels tels que : $\lambda\omega^2 + \mu\omega + \nu = 0$. Soit l'élément de $\mathbf{Q}[X]$, $C = \lambda X^2 + \mu X + \nu$. Supposons C non nul. Alors par division euclidienne : $P = \tilde{Q}C + uX + v$ avec $\tilde{Q} \in \mathbf{Q}[X]$, u et v des rationnels. En substituant dans cette égalité ω à l'indéterminée, il vient $0 = u\omega + v$. Comme ω est irrationnel u = 0 et donc v = 0, et donc v = 0 divise v = 0. Mais v = 0 étant irréductible v = 0 et constant non nul, ce qui contredit v = 0. Donc v = 0 de cet nul, c'est-à-dire : v = 0 de constant non v = 0 de contredit v = 0 de cet nul, c'est-à-dire : v = 0 de contredit v = 0 de cet nul, c'est-à-dire : v = 0 de contredit v = 0 de contredit v = 0 de contredit v = 0 de cet nul, c'est-à-dire : v = 0 de contredit v = 0 de cet nul, c'est-à-dire : v = 0 de contredit v = 0 de contredit v = 0 de cet nul, c'est-à-dire : v = 0 de contredit v = 0 de contredit v = 0 de cet nul, c'est-à-dire : v = 0 de contredit v =

Finalement $(\omega^0, \omega^1, \omega^2)$ est une base de K.

- 3. K sous-espace vectoriel sur Q de \mathbf{R} est stable par combinaison linéaire.
 - soient x et x' des éléments de K. On dispose de rationnels a,b,c,a',b',c' tels que $x=a\omega^2+b\omega+c,\ x'=a'\omega^2+b'\omega+c'$. Alors

$$xx' = aa'\omega^4 + (ab' + a'b)\omega^3 + (ac' + a'c + bb')\omega^2 + (bc' + c'b)\omega + cc'.$$

Donc $xx' \in \text{vect}(\omega^i)_{i \in \mathbb{N}} = K$. Donc K est stable par produit.

• Enfin $1 = \omega^0 \in K$.

De ces trois points on déduit : K est une \mathbf{Q} -sous-algèbre de \mathbf{R} .

4. D'après (c), K est un sous-anneau de R, il est donc commutatif et non trivial. Soit, par ailleurs, x un élément non nul de K. Il existe, d'après (b), des rationnels a, b et c non tous nuls, tels que x = aω² + bω + c. Soit D = aX² + bX + C. P et D sont, dans Q[X], premiers entre eux, en effet P est irréductible (cf. 1.) et ne divise pas D, puisque d°P > d°D > -∞. Le lemme de Bezout assure donc l'existence de U et V éléments de Q[X] tels que : UD + VP = 1. En substituant ω à l'indéterminée X dans cette égalité, il vient :

$$U(\omega)D(\omega) + V(\omega)P(\omega) = xD(\omega) = 1.$$

Donc $D(\omega)$ est l'inverse de x. L'inverse de x est donc élément de K.

Conclusion : K est un sous-corps de \mathbf{R} .

Deuxième partie Cas général :

Soit a un réel.

- 1. Soit K_0 un sous-corps de \mathbf{R} . Il contient 1, donc, étant stable par somme et différence il contient \mathbf{Z} . K_0 étant stable par passage à l'inverse et multiplication il contient \mathbf{Q} .
- 2. Soit \mathcal{K} l'ensemble des sous-corps de \mathbf{R} qui contiennent a. Soit $\mathbf{Q}(a)$, l'intersection de tous les éléments de \mathcal{K} :

$$\mathbf{Q}(a) = \bigcap_{K \in \mathcal{K}} K.$$

- $\mathbf{Q}(a)$ est un sous-corps de \mathbf{R} comme intersection non vide $(\mathbf{R} \in \mathcal{K})$ de sous-corps.
- Pour tout élément K de K, $a \in K$, donc $a \in \mathbf{Q}(a)$.
- Soit K_0 un sous-corps de ${\bf R}$ qui contient a, par définition de ${\cal K},\,K_0\in{\cal K}$ donc

$$\mathbf{Q}(a) = \bigcap_{K \in \mathcal{K}} K \subset K_0.$$

Donc l'ensemble \mathcal{K} des sous-corps de \mathbf{R} qui contiennent a,

admet $\mathbf{Q}(a)$ comme plus petit élément pour l'inclusion.

- 3. Soient P et Q des éléments de $\mathbb{Q}[X]$, λ et μ des rationnels.
 - $\phi(\lambda P + \mu Q) = (\lambda P + \mu Q)(a) = \lambda P(a) + \mu Q(a) = \lambda \phi(P) + \mu \phi(Q)$.

 - $\phi(1) = 1$.

Donc ϕ est un morphisme de la **Q**-algèbre **Q**[X] dans la **Q**-algèbre **R**.

- 4. D'après la question précédente, ϕ induit notamment un morphisme de l'anneau $\mathbf{Q}[X]$ sur l'anneau \mathbf{R} . I en est le noyau, c'est donc un idéal de $\mathbf{Q}[X]$.
- 5. HYPOTHÈSE : I non réduit à 0.

 Il existe donc un polynôme P élément de $\mathbf{Q}[X]$, non nul tel que P(a)=0. Notons d le degré de P et pour $i=0,1,\ldots,d,\ a_i$ sont coefficient de degré i. Pour tout $i\in\{0,1,\ldots,n\},\ a_i$ s'écrit $\frac{p_i}{q_i}$, avec $p_i\in\mathbf{Z}$ et $q_i\in\mathbf{N}^*$. Posons $\delta=q_0\times q_1\times\cdots\times q_d$. δP est un polynôme non nul à coefficients entiers et $(\delta P)(a)=0$. Donc a est algébrique.

HYPOTHÈSE: a est algébrique.
 Donc a est racine d'un polynôme P non nul à coefficients entiers. Donc I admet P comme élément et I est non réduit à 0.

Donc a est algèbrique si et seulement si I est non réduit à $\{0\}$.

6. I est un idéal de $\mathbf{Q}[X]$, donc, d'après le programme, il existe P élément de $\mathbf{Q}[X]$ (appelé générateur de I), tel que $I = P\mathbf{Q}[X]$, I étant non nul, il admet un et un seul générateur unitaire.

 $\mu_a(a) = 0$, donc μ_a ne saurait être un inversible de $\mathbf{Q}[X]$. Soient A et B des éléments de $\mathbf{Q}[X]$, tels que $\mu_a = AB$. $A(a)B(a) = \mu_a(a) = 0$. L'intégrité de \mathbf{Q} assure donc que A(a) ou B(a) est nul. Prenons par exemple A(a) nul. Alors $A \in I$ donc $\mu_a|A$, or $A|\mu_a$ donc A et μ_a sont associés et donc B est de degré 0. Donc μ_a est irréductible.

Supposons que d° $\mu_a \leq 1$. d° $\mu_a \neq -\infty$ (I non nul) et d° $\mu_a \neq 0$ car $\mu_a(a) = 0$, donc d° $\mu_a = 1$. Il existe donc s et t rationels tels que $s \neq 0$ et $\mu_a = sX + t$. De $\mu_a(a) = 0$ on déduit $a = -\frac{t}{s}$, et donc $a \in \mathbf{Q}$. Par contaposition :

si a est irrationnel, alors le degré de μ_a est supérieur ou égal à 2.

L'élément de $\mathbf{Q}[X]$, X^2-2 admet $\sqrt{2}$ comme racine. Donc $X^2-2|\mu_{\sqrt{2}}$. Or $\sqrt{2}$ est notoirement irrationnel donc, comme on vient de le voir, $\mathrm{d}^{\mathrm{o}}\mu_{\sqrt{2}}\geq 2$. Donc X^2-2 qui est unitaire est égal à $\mu_{\sqrt{2}}$.

$$\mu_{\sqrt{2}} = X^2 - 2.$$

Maintenant $a=\sqrt{\frac{1+\sqrt{5}}{2}}$. L'élément de $\mathbf{Q}[X]$, X^4-X^2-1 admet a comme racine. Donc $\mu_a|X^4-X^2-1$. Montrons que X^4-X^2-1 est irréductible dans $\mathbf{Q}[X]$. Supposons qu'il existe A et B éléments de $\mathbf{Q}[X]$ tels que :

$$X^4 - X^2 - 1 = AB.$$

En notant $a'=\sqrt{\frac{-1+\sqrt{5}}{2}}$. X^4-X^2-1 admet quatre racines complexes, a,-a,ia',-ia'. $\sqrt{5}$ étant irrationnel, on montre qu'aucune de ses racines n'est rationnelle, donc ni A ni B n'est de degré 1. Supposons que $\mathrm{d}^o A=2$ et donc $\mathrm{d}^o B=2$. L'un des deux polynômes A et B, disons pour fixer les idées A, admet ia' comme racine, étant à coefficients rationnels donc réels, il admet aussi comme racine $\overline{ia'}=-ia'$. Donc il existe $c\in \mathbf{R}^*$, tel que $A=c(X^2-\frac{1-\sqrt{5}}{2})$. A étant à coefficients rationnels, c est rationnel, mais alors $c\frac{1-\sqrt{5}}{2}$ est rationnel ce qui conduit à la rationnalité de $\sqrt{5}$, ce qui est faux. Donc finalement un des polynômes A et B est de degré 0, et donc X^4-X^2-1 est irréductible.

Donc μ_a , diviseur de $X^4 - X^2 - 1$ est associé à $X^4 - X^2 - 1$. Ces deux polynômes étant unitaires ils sont égaux :

$$\mu_a = X^4 - X^2 - 1.$$

7. $\mathbf{Q}[a]$ est l'image par le morphisme d'anneaux ϕ de l'anneau $\mathbf{Q}[X]$ (cf. 3.), c'est donc un sous-anneau de \mathbf{R} . Comme \mathbf{R} est un corps, l'anneau $\mathbf{Q}[a]$ est commutatif et non trivial. Soit x un élément non nul de $\mathbf{Q}[a]$. Il existe $P \in \mathbf{Q}[X]$ tel que x = P(a). La division euclidienne de P par μ_a conduit à l'existence de Q et R éléments de $\mathbf{Q}[X]$ tels que : $P = Q\mu_a + R$

et d°R < d° μ_a . D'où $x = P(a) = Q(a)\mu_a(a) + R(a) = R(a)$. x étant non nul, R est non nul, Donc μ_a ne saurait divisé R, polynôme dont le degré est inférieur au sien. Or μ_a est irréductible dans $\mathbf{Q}[X]$ (cf. 6.), donc R et μ_a sont premiers entres eux dans $\mathbf{Q}[X]$. Le lemme de Bezout affirme donc l'existence de deux éléments U et V de $\mathbf{Q}[X]$ tels que $UR + V\mu_a = 1$. En substituant a à l'indéterminé X, on obtient :

$$1 = U(a)R(a) + V(a)\mu_a(a) = U(a)x.$$

Donc $U(a) = x^{-1}$ et donc $x^{-1} \in \mathbf{Q}[a]$. Autrement dit $\mathbf{Q}[a]$ est stable par passage à l'inverse. Conclusion : $\mathbf{Q}[a]$ est un corps.

 $\mathbf{Q}[a]$ est un corps qui contient a. Donc $\mathbf{Q}(a) \subset \mathbf{Q}[a]$ Soit Soit x un élément de $\mathbf{Q}[a]$. Il sécrit

$$x = \sum_{i=0}^{n} c_i a^i,$$

avec n un naturel et c_0, c_1, \ldots, c_n des rationnels. le corps $\mathbf{Q}(a)$ contenant 1 et a et étant stable par multiplication, il contient a^i , pour $i = 0, 1, \ldots, n$. Par ailleurs $c_i \in \mathbf{Q}(a)$ (cf. 1.). Donc le corps $\mathbf{Q}(a)$ étant stable par multiplication est addition, il contient $\sum_{i=0}^{n} c_i a^i = x$. Donc $\mathbf{Q}[a] \subset \mathbf{Q}(a)$.

CONCLUSION : $\underline{\mathbf{Q}}(a) = \underline{\mathbf{Q}}[a]$. $\underline{\mathbf{Q}}[a]$ est l'image par ϕ , morphisme de $\underline{\mathbf{Q}}$ -espaces vectoriels, de l'espace vectoriel $\underline{\mathbf{Q}}[X]$ (cf. 3.), c'est donc un sous-espace vectoriel du Q-espace vectoriel $\underline{\mathbf{R}}$. En raisonnant comme dans le début de la question on montre que tout élément x de $\underline{\mathbf{Q}}[a]$ est de la forme x = R(a) où R est un élément de $\underline{\mathbf{Q}}[X]$, de degré inférieur strictement à n, degré de μ_a . En notant c_i le coefficient d'ordre i de R, pour $i = 0, 1, 2, \ldots, n-1, x$ s'écrit :

$$x = \sum_{i=0}^{n-1} c_i a^i.$$

Donc $\mathbf{Q}[a] \subset \operatorname{vect}(a^0, a^1, \dots, a^{n-1})$. L'inclusion inverse étant évidente,

$$Q[a] = \text{vect}(a^0, a^1, \dots, a^{n-1}).$$

la famille la famille $(a^0, a^1, \dots, a^{n-1})$ engendre donc $\mathbf{Q}[a]$.

Finalement $(a^0, a^1, \dots, a^{n-1})$ est une base de $\mathbb{Q}[a]$, qui est donc de dimension n.

9. Supposons que la famille $(a_i)_{i\in\mathbb{N}}$ soit liée. Montrons qu'alors a est algèbrique. Par hypothèse il existe $m\in\mathbb{N}, \lambda_0, \lambda_1, \ldots, \lambda_{m-1}$ des rationnels non tous nuls, tels que : $\lambda_0 a^0 + \lambda_1 a^1 + \cdots + \lambda_{m-1} a^{m-1} = 0$. Soit l'élément de $\mathbb{Q}[X]$,

$$D = \lambda_0 X^0 + \lambda_1 X^1 + \dots + \lambda_{m-1} X^{m-1}.$$

D est non nul et $D \in I$, donc d'après 5., a est algébrique. Par contraposée, si a est non algébrique, alors la famille d'éléments de $\mathbf{Q}(a)$, $(a_i)_{i \in \mathbf{N}}$ est libre et donc $\mathbf{Q}(a)$ est de dimension infinie.

Ι

1. D'abord A_p est le sous espace vectoriel engendré par (I, M), cette famille étant manifestement libre le sous-espace vectoriel A_p de $\mathcal{M}_2(Z_p)$ est de dimension 2 et donc isomorphe à l'espace vectoriel \mathbf{Z}^{p2} (par l'application coordonnées dans (I, M), par exemple). donc le cardinal de A_p est $|F_p|^2 = p^2$.

Ensuite A_p jouit des propriétés suivantes :

- il contient I;
- stabilité par addition (en tant que sous-espace vectoriel de $\mathcal{M}_2(\mathbf{Z}_p)$);
- stabilité par multiplication en effet la famille génératrice (I, M) est stable par produit, puisque et c'est la seule chose à vérifier $M^2 \in \text{vect}(I, M)$ grâce au théorème de Cayley-Hamilton.

Donc A_p est un sous-anneau de l'anneau $\mathcal{M}_2(\mathbf{Z}_p)$. Il est de plus <u>commutatif</u>, puisqu'inclus dans l'algèbre commutative $F_p[M]$.

- 2. Soit R élément de A_p de coordonnées (μ, λ) dans (I, M).
 - $T(R) = \bar{4}\lambda + \bar{2}\mu$ et $\Delta(R) = \lambda^2 + \bar{4}\lambda\mu + \mu^2$.
 - par propriété du déterminant, $\Delta(R^2) = [\Delta(R)]^2$.
 - Par le théorème de Cayley-Hamilton,

$$R^2 - T(R)R = (R)I = O_2,$$
 (C-H)

donc $T(R^2) = [T(R)]^2 - \bar{2}\Delta(R)$.

- 3. Montrer que deux quelconques des conditions suivantes impliquent la troisième :
 - i. T(R)=0.
 - ii. $\Delta(R) = 1$.
 - iii. L'ordre de R est 4.

Gardons les notations précédentes.

• Supposons i. et ii.

Par (C-H), $R^2 = -I$, et donc $R^4 = I$ donc l'ordre de R est un diviseur de 4 qui n'est pas 2 et qui n'est pas 1, car $T(R) = 0 \neq T(I)$. D'où iii.

- Supposons i. et iii. Par (C-H) et i., on a $R^2 = -\Delta(R)I$ et donc par iii., $I = R^4 = \Delta(R)^2I$. Donc $\Delta(R) \pm \bar{1}$ mais $\Delta(R) \neq -\bar{1}$ car sinon R^2 serait égal à I contredisant iii. Donc $\Delta(R) = 1$, soit ii.
- \bullet Supposons ii. et iii. Le théorème de Cayley-Hamilton appliqué à \mathbb{R}^2 puis à \mathbb{R} donne :

$$\bar{2}I = T(R^2)R^2 \text{ et } R^2 = T(R)R - I$$

Donc

$$\bar{2}I = T(R^2)(T(R)R - I) = (T(R^2)T(R))R + T(R^2)I.$$

En admettant un instant la liberté de (R, I) on : $(T(R^2)T(R)) = \bar{0}$ et $T(R^2) = \bar{2}$. Donc T(R) = 0 puisque $\bar{2}$ nest pas nul car $p \geq 3$. D'ou i.

La liberté de R et I vient de ce que si $R = \mu I$, alors par ii. $1 = D(R) = \mu^2$ et donc $R^2 = \mu^2 I = I$ ce qui contredit ii.

D'où l'équivalence de i., ii., et iii.

Remarque. Pour le dernier point on pouvait se vautrer dans la théorie.

Le polynôme caractéristique de M qui est annulateur est le polynôme minimal, car si ce dernier était de degré 1, On aurait $R = \mu I$ ou $\mu \in \mathbf{Z}_p$ et par ii. viendrait $\bar{1} = \Delta(R) = \mu^2$ puis $R^2 = \mu^2 I = I$, ce qui contredirait iii.

Comme par iii., $X^4 - \bar{1}$ est annulateur pour R, on a $X^2 - T(R)X + \bar{1}$ divise $X^4 - \bar{1}$. Donc $X^4 - 1$ s'écrit

$$X^4 - \bar{1} = (X^2 - T(R)X + \bar{1})(X^2 + aX - \bar{1}),$$

ou $a \in \mathbf{Z}_p$. En développant

$$X^{4} - \bar{1} = (X^{4} + (a - T(R))X^{3} - T(R)aX^{2} + (T(R) + a)X - \bar{1}.$$

Donc T(R) = a; T(R)a = 0; T(R) = -a ce qui conduit à T(R) = 0 de plusieurs façons

4. Une récurrence sans malice montre que pour tout $k \in \mathbb{N}$,

$$T(M^{2k}) = \bar{2}\bar{Y}_k.$$

5. Le théorème de Cayley-Hamilton assure que $M^2=\bar{4}M-I$, donc , puisque $p\neq 2,\ M^2\neq I$ si l'ordre de M est 2^k , alors $k\in [\![2,+\infty[\![$

Soit un entier $k \geq 2$. Posons $R := M^{2^{k-2}}$. On a $R^4 = M^{2^k}$, $R^2 = M^{2^{k-1}}$.

Supposons M d'ordre 2^k alors $R^4 = I$ et donc l'ordre de R divise 4, mais n'est pas 2 ni 1, donc est 4.

Réciproquement supposons l'ordre de R égal à 4. Alors $M^{2^k} = I$, l'ordre de M est donc un diviseur de 2^k , qui ne divise pas 2^{k-1} (comme $R^2 \neq I$), autant dire 2^k .

Donc l'ordre de M est 2^k si et seulement si R est d'ordre 4, mais $\Delta(R) = \Delta(M)^{2^k} = 1^{2^k} = 1$, donc par 3., l'ordre de M est 2^k si et seulement si $T(R) = \bar{0}$.

Or par 4., $T(R) = \bar{2}\bar{Y}_k$ et comme $\bar{2}$ est inversible $(p \neq 2)$ on a que \underline{M} est d'ordre 2^k si et seulement si Y_k . Montrer que pourtout entier naturel k, l'ordre de M est 2^k si et seulement si p divise Y_{k-2} .

II

1. Soit R un élément de A_p NON NUL, on note toujours (μ, λ) ses coordonnées dans (I, M). Supposons R inversible dans A_p . A fortiori R est inversible dans $\mathcal{M}_2(\mathbf{Z}_p)$, donc son déterminant est non nul.

Réciproquement si $\Delta(R) \neq 0$ alors le théorème de Cayley-Hamilton donne

$$R^{-1} = -D(R)^{-1}(R - T(r)I) \in A_p.$$

Donc R est inversible dans A_p si et seulement si son déterminant est non nul. Or l'expression du polynôme caractéristique de R montre qu'il admet 0 comme racine si et seulement si $\Delta(R) = 0$, donc R est inversible dans A_p si et seulement si $0 \neq \operatorname{sp}(R)$.

• Cas 3 n'est pas un carré.

Pour commencer observons que

$$\chi_M(X) = X^2 - \bar{4}X + \bar{1} = (X - \bar{2})^2 - \bar{3}.$$

Donc le spectre de M est vide.

Si λ est nul alors μ ne l'est pas $(R \neq O_2)$ et A est inversible dans A_p d'inverse $\frac{1}{\mu}I$.

Sinon, prenons α une éventuelle valeur propre de R et X un vecteur propre qui lui est associé. On a $\lambda MX + \mu X = \alpha X$, donc $MX = \left(\frac{\alpha - \mu}{\lambda}\right) X$, ce qui contredit la vacuité du spectre de M.

Donc le spectre de R est vide et ne contient a fortiori pas 0, donc R est inversible.

Conclusions A_p est un corps.

• Cas 3 est un carré.

On a $\bar{3} = a^2$ et χ_M se factorise en $((X - \bar{2}) - a)((X - \bar{2}) + a)$, donc par Le théorème de Cayley-Hamilton

$$((M - \bar{2}I) - aI)((M - \bar{2}) + aI) = O_2$$

Ainsi $((M - \bar{2}I) - aI)$, élément de A_p , non nul par liberté de (I, M), est-il non inversibe.

Conclusion : A_p est un corps si et seulement si $\bar{3}$ n'est pas un carré.

2. La factorisation de χ_M vue dans la question précédente, $((X - \bar{2}) - a)((X - \bar{2}) + a)$, assure que M possède deux valeurs propres distinctes, $\bar{2} + a$ et $\bar{2} - a$ en effet la différence entre ces deux éléments de \mathbf{Z}_p est $\bar{4}$,donc non nulle puisque p, distinct de 2, ne divise pas 4. Donc M est diagonalisable dans $2\mathbf{Z}_p$, plus précisément, on dispose d'un élément P de $2\mathbf{Z}_p$ tel que : $PMP^{-1} = \mathrm{diag}(\bar{2} + a, \bar{2} - a)$

Pour tout λ et tout μ élément de \mathbf{Z}_p , on a

$$P(\lambda M + \mu I)P^{-1} = \operatorname{diag}(\lambda(\bar{2} + a) + \mu, \lambda(\bar{2} - a) + \mu)$$

On dispose donc de l'application de $\Phi: A_p \to D_2(\mathbf{Z}_p)$; $M \mapsto PMP^{-1}$, où $D_2(\mathbf{Z}_p)$ est l'ensemble des éléments de $\mathcal{M}_2(\mathbf{Z}_p)$ diagonaux. Cette application est linéaire et son noyau est trivialement... trivial! donc, par égalité des dimensions de A_p et $D_2(\mathbf{Z}_p)$, c'est un isomorphisme d'espace vectoriels, mais aussi d'anneaux puisque en plus $\Phi(I) = I$ et pour tout $(M, M') \in A_p^2$, on a $\Phi(MM') = PMM'P^{-1} = PM'P^{-1}PM'P^{-1} = \Phi(M)\Phi(M')$. Comme par ailleurs $D_2(\mathbf{Z}_p)$ s'identifie à l'anneau $\mathbf{Z}_p \times \mathbf{Z}_p$, en identifiant une matrice daigonale et le couple de ses termes diagonaux, l'anneau A_p est isomorphe à l'anneau produit $\mathbf{Z}_p \times \mathbf{Z}_p$.

Un élément R de A_p est de déterminant 1 si et seulement son image par l'isomorphisme précédent est de la forme (a,b) avec a inversible et $b=a^{-1}$. Donc l'ensemble $S_2(\mathbf{Z}_p)$ des éléments de A_p de déterminant 1 à le même cardinal que $\{(a,a^{-1}), a \in \mathbf{Z}_p^*\}$. Donc comme $|\mathbf{Z}_p^*| = p - 1$, on a $|S_2(\mathbf{Z}_p)| = p - 1$.

D'autre part il y a autant d'inversible dans A_p que dans $\mathbf{Z}_p \times \mathbf{Z}_p$ c'est à dire $(p-1)^2$, puisque un élément de $\mathbf{Z}_p \times \mathbf{Z}_p$ est inversible si et seulement si ses deux composantes le sont.

- 3. Dans cette question, on suppose que $\bar{3}$ n'est pas un carré dans \mathbf{Z}_p .
 - (a) On a vu en II.1. que tout élément non nul de A_p est inversible donc de déterminant non nul, par ailleurs par la propriété morphique du déterminant, Δ réalise un homomorphisme du groupe multiplicatif des éléments non nuls de A_p dans celui des éléments non nuls de \mathbf{Z}_p .
 - L'image de Δ (considéré comme une application de A_p^* dans \mathbf{Z}_p^* , le texte est maladroit) est un sous groupe du groupe (\mathbf{Z}_p^* , \times) donc son cardinal divise p-1, cardinal de \mathbf{Z}_p^* .
 - Nous avons pour la suite besoin de la formule :

$$|\ker(\Delta)| |\operatorname{im}(\Delta)| = |A_{\mathfrak{p}}^*|.$$

 $Preuve^{2}$.

Deux éléments R et R' de A_p^* ont même image par Δ si et seulement si $R'R^{-1} \in \ker(\Delta)$. Donc la relation \mathcal{R} sur A_p^* avoir même image par Δ est une relation d'équivalence, car $\ker(\Delta)$ est un groupe. De plus la classe d'équivalence d'un élément R_0 est $\ker(\Delta)R_0$, ensemble de cardinal $|\ker(\Delta)|$.

Le nombre de classes d'équivalence est le nombre d'images d'éléments de A_p^* par Δ , autant dire le cardinal de im (Δ) . Donc, comme les classes d'équivalence de la relation \mathcal{R} forme une partition de A_p^* , on a :

$$|A_n^*| = |\operatorname{im}(\Delta)| |\ker(\Delta)|$$

Donc par le premier point et la formule,

$$|\operatorname{im}(\Delta)| |\ker(\Delta)| = |A_p^*| = (p+1)(p-1) = q|(p+1)\operatorname{im}(\Delta)| oq \in \mathbf{N}.$$

Donc $|\ker(\Delta)|$ divise (p+1).

(b) • Soient $\lambda \in \mathbf{Z}_p$

Pour tout élément μ de \mathbf{Z}_p , $\Delta(\lambda M + \mu I) = 1$ si et seulement si μ est solution de

$$x^2 + 4x\mu + \mu^2 = 1.$$

Cette équation polynomiale x, de degré 2, admet au plus deux racines dans le l'anneau intègre \mathbb{Z}_p .

- Comme λ est élément d'un ensemble à p éléments, il y a donc au plus 2p éléments de déterminant 1 dans A_p . Donc $|\mathrm{Ker}(\Delta)|$ est inférieur ou égal à 2p et est aussi on l'a vu en a. un multiple (non nul) de p+1, on peut conclure que A_p admet (p+1) éléments de déterminant 1.
- 4. Le raisonnement du II.1. a montré que tout élément de déterminant 1 de A_p est inversible dans A_p . Il est alors immédiat que l'ensemble $S_2(\mathbf{Z}_p)$ des éléments de déterminant 1 de A_p est un sous-groupe de A_p^* et est donc un groupe multiplicatif. Comme $M \in S_2(\mathbf{Z}_p)$, son ordre divise celui de $S_2(\mathbf{Z}_p)$, c'est-à-dire p-1 ou p+1 selon que 3 est un carré dans \mathbf{Z}_p (question II2.) ou ne l'est pas (question II3.), mais si p divise Y_{k-2} alors l'ordre de M n'est autre que 2^k , par I.5. D'où le résultat.

.

^{2.} Cette preuve a été donnée dans la démonstration du théorème de Lagrange général