MP* KERICHEN 2024-2025

DS nº1

Sujet 2

Il sera, dans la notation, tenu compte de la présentation et de la qualité de la rédaction. Les résultats devront obligatoirement être encadrés à la règle, le texte et les formules ponctuées, un minimum de 80% des s du pluriel et de 70% des accents est requis.

Pénalités (jusqu'à 15% de la note) pour

- manque de soin ou de lisibilité
- formules mathématiques non ponctuées
- recours à des abréviations autres que ssi (tt, qqs, fct., ens...), ou symbloles logiques mélangés à du texte.

L'usage de la calculatrice est interdite. Notations et rappels

Dans tout le problème, n est un entier naturel non nul. On identifie un vecteur de \mathbb{R}^n et la matrice colonne à n lignes formée de ses coordonnées dans la base canonique de \mathbb{R}^n . L'élément nul de \mathbb{R}^n est noté $0_{\mathbb{R}^n}$.

L'ensemble des matrices carrées d'ordre n à coefficients réels est noté $\mathcal{M}_n(\mathbb{R})$ et l'ensemble des matrices inversibles d'ordre n est noté $\mathrm{GL}_n(\mathbb{R})$. On désigne par I_n la matrice identité d'ordre n et par 0_n la matrice nulle d'ordre n

Pour toute matrice M de $\mathcal{M}_n(\mathbb{R})$, on appelle image de M, notée $\operatorname{Im} M$ l'image de l'endomorphisme de \mathbb{R}^n canoniquement associé à M et on appelle noyau de M, noté $\ker M$, le noyau de cet endomorphisme.

Pour toute matrice M de $\mathcal{M}_n(\mathbb{R})$, on note M^{\top} sa transposée, $\det(M)$ son déterminant, $\operatorname{rg}(M)$ son rang, $\operatorname{tr}(M)$ sa trace, χ_M son polynôme caractéristique et $\operatorname{Sp}_{\mathbb{C}}(M)$ l'ensemble de ses valeurs propres complexes.

On note \mathcal{T} la transposition dans $\mathcal{M}_n(\mathbb{R})$, c'est-à-dire l'application qui à toute matrice M associe M^{\top} .

Si $\mathcal{B} = (e_1, \dots, e_n)$ et $\mathcal{B}' = (e'_1, \dots, e'_n)$ sont deux bases de \mathbb{R}^n et si f est un endomorphisme de \mathbb{R}^n , on note $\mathcal{M}_{\mathcal{B},\mathcal{B}'}(f)$ la matrice dont, pour tout entier $j \in [1, n]$, la j-ième colonne est formée des coordonnées du vecteur $f(e_j)$ dans la base \mathcal{B}' .

Lorsque $\mathcal{B} = \mathcal{B}'$, on simplifie la notation $M_{\mathcal{B},\mathcal{B}}(f)$ en $M_{\mathcal{B}}(f)$ qui désigne la matrice, dans la base \mathcal{B} , de l'endomorphisme f. On définit la suite des puissances de f en posant

$$\begin{cases} f^0 = \mathrm{Id}_{\mathbb{R}^n}, \\ \forall k \in \mathbb{N}, & f^{k+1} = f \circ f^k. \end{cases}$$

Si
$$\Pi = \sum_{k=0}^p a_k X^k$$
 est un polynôme de $\mathbb{R}[X]$, on rappelle que $\Pi(f) = \sum_{k=0}^p a_k f^k$.

Lorsque M_1, \ldots, M_k désignent des matrices carrées d'ordres respectifs n_1, \ldots, n_k , on note diag (M_1, \ldots, M_k) la matrice carrée d'ordre $n_1 + \ldots + n_k$, diagonale par blocs, égale à

$$\begin{pmatrix} M_1 & 0 & \dots & 0 \\ 0 & M_2 & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \dots & 0 & M_k \end{pmatrix}.$$

On dit qu'un endomorphisme Φ de $\mathcal{M}_n(\mathbb{R})$ — conserve le rang si $\forall M \in \mathcal{M}_n(\mathbb{R})$, rg $(\Phi(M)) = \operatorname{rg}(M)$; — conserve le déterminant si $\forall M \in \mathcal{M}_n(\mathbb{R})$, $\det (\Phi(M)) = \det(M)$; — conserve la trace si $\forall M \in \mathcal{M}_n(\mathbb{R})$, $\operatorname{tr} (\Phi(M)) = \operatorname{tr}(M)$; — conserve le polynôme caractéristique si $\forall M \in \mathcal{M}_n(\mathbb{R})$, $\chi_{\Phi(M)} = \chi_M$.

L'objectif du problème est de caractériser les endomorphismes réalisant l'une de ces propriétés.

I Résultats préliminaires

I.A – On suppose que \mathcal{E}, \mathcal{F} et \mathcal{G} sont trois bases de \mathbb{R}^n et que f et g sont deux endomorphismes de \mathbb{R}^n .

Q 1. Question de cours. Démontrer que

$$M_{\mathcal{E},\mathcal{G}}(g \circ f) = M_{\mathcal{F},\mathcal{G}}(g) M_{\mathcal{E},\mathcal{F}}(f).$$

Q 2. En déduire qu'il existe deux matrices P et Q appartenant à $\mathrm{GL}_n(\mathbb{R})$ telles que

$$M_{\mathcal{F},\mathcal{G}}(f) = PM_{\mathcal{E}}(f)Q.$$

I.B – On suppose que M est une matrice de $\mathcal{M}_n(\mathbb{R})$.

Q 3. Soit $\lambda \in \mathbb{C}$ une valeur propre de M et X un vecteur propre associé. Montrer que, pour tout entier naturel k, $M^kX = \lambda^kX$.

Q 4. En déduire que, si $\Pi \in \mathbb{R}[X]$ est un polynôme annulateur de M, alors toute valeur propre complexe de M est une racine dans \mathbb{C} de Π .

II Étude de quelques endomorphismes de $\mathfrak{M}_n(\mathbb{R})$

II.A - Multiplication à gauche par une matrice donnée

L'ensemble des endomorphismes de $\mathcal{M}_n(\mathbb{R})$ est noté $\mathcal{L}(\mathcal{M}_n(\mathbb{R}))$.

Pour toute matrice $A \in \mathcal{M}_n(\mathbb{R})$, on note Γ_A l'application

$$\Gamma_A: \left| \begin{array}{ccc} \mathcal{M}_n(\mathbb{R}) & \to & \mathcal{M}_n(\mathbb{R}) \\ M & \mapsto & AM \end{array} \right|$$

- **Q 5.** Vérifier que, pour toute matrice $A \in \mathcal{M}_n(\mathbb{R})$, Γ_A appartient à $\mathcal{L}(\mathcal{M}_n(\mathbb{R}))$.
- **Q 6.** Démontrer que, si A appartient à $GL_n(\mathbb{R})$, alors Γ_A conserve le rang.
- Q 7. Démontrer que l'application

$$\Gamma: \left| \begin{array}{ccc} \mathcal{M}_n(\mathbb{R}) & \to & \mathcal{L}\left(\mathcal{M}_n(\mathbb{R})\right) \\ A & \mapsto & \Gamma_A \end{array} \right|$$

est linéaire et injective.

Dans la suite de cette sous-partie II.A, A est un élément fixé de $\mathcal{M}_n(\mathbb{R})$.

- **Q 8.** Démontrer que $\forall k \in \mathbb{N}, \ \Gamma_{A^k} = (\Gamma_A)^k$.
- **Q 9.** En déduire que, pour tout polynôme Π de $\mathbb{R}[X]$, $\Gamma_{\Pi(A)} = \Pi(\Gamma_A)$.

Q 10. À l'aide du résultat précédent, démontrer que A est diagonalisable si et seulement si Γ_A est diagonalisable.

- **Q 11.** Démontrer que χ_A est un polynôme annulateur de Γ_A et que χ_{Γ_A} est un polynôme annulateur de A.
- **Q 12.** En déduire que $\operatorname{Sp}_{\mathbb{C}}(\Gamma_A) = \operatorname{Sp}_{\mathbb{C}}(A)$.

II.B-Multiplication à gauche et à droite par des matrices inversibles avec ou sans transposition préalable

Pour toutes matrices P et Q appartenant à $GL_n(\mathbb{R})$, on considère les applications

$$\Phi_{P,Q}: \left| \begin{array}{ccc} \mathcal{M}_n(\mathbb{R}) & \to & \mathcal{M}_n(\mathbb{R}) \\ M & \mapsto & PMQ \end{array} \right.$$

$$\Psi_{P,Q}: \left| \begin{array}{ccc} \mathcal{M}_n(\mathbb{R}) & \to & \mathcal{M}_n(\mathbb{R}) \\ M & \mapsto & PM^\top Q \end{array} \right.$$

On admet que $\Phi_{P,Q}$ et $\Psi_{P,Q}$ sont des endomorphismes de $\mathcal{M}_n(\mathbb{R})$. On pose

$$\mathcal{L}_{1} = \left\{ \Phi_{P,Q} \mid (P,Q) \in \left(\operatorname{GL}_{n}(\mathbb{R}) \right)^{2} \right\} \qquad \text{et} \qquad \mathcal{L}_{2} = \left\{ \Psi_{P,Q} \mid (P,Q) \in \left(\operatorname{GL}_{n}(\mathbb{R}) \right)^{2} \right\}.$$

Q 13. Démontrer que $\mathcal{L}_1 \cup \mathcal{L}_2$ est stable par composition, c'est-à-dire que

$$\forall (\Theta, \Theta') \in (\mathcal{L}_1 \cup \mathcal{L}_2)^2, \qquad \Theta \circ \Theta' \in \mathcal{L}_1 \cup \mathcal{L}_2.$$

- **II.B.1)** Soient P et Q deux matrices de $GL_n(\mathbb{R})$.
- **Q 14.** Montrer que $\Phi_{P,Q}$ et $\Psi_{P,Q}$ sont des automorphismes de $\mathcal{M}_n(\mathbb{R})$ et préciser leurs applications réciproques.
- **Q 15.** Montrer que $\Phi_{P,Q}$ et $\Psi_{P,Q}$ conservent le rang.

Q 16. Donner une condition nécessaire et suffisante sur P et Q pour que $\Phi_{P,Q}$ et $\Psi_{P,Q}$ conservent le déterminant.

Q 17. Montrer que $\Phi_{P,P^{-1}}$ et $\Psi_{P,P^{-1}}$ conservent le polynôme caractéristique.

II.B.2) Dans cette section, on prend $n \ge 2$.

Q 18. Montrer que $\mathfrak{T} \in \mathcal{L}_2$ et $\mathfrak{T} \notin \mathcal{L}_1$.

Q 19. En déduire que les ensembles \mathcal{L}_1 et \mathcal{L}_2 sont disjoints.

III Endomorphismes de rang donné

On suppose que f est un endomorphisme de \mathbb{R}^n . Son noyau est noté $\ker(f)$.

III.A – On suppose dans cette sous-partie que f est un isomorphisme. On se donne une base $\mathcal{B} = (e_1, \dots, e_n)$ de \mathbb{R}^n . On note \mathcal{B}' la base

$$\mathcal{B}' = (f(e_1), \dots, f(e_n)).$$

Q 20. Déterminer $M_{\mathcal{B},\mathcal{B}'}(f)$.

III.B – On suppose dans cette sous-partie que f n'est pas l'endomorphisme nul et que $\ker(f) \neq \{0_{\mathbb{R}^n}\}$.

Soit \mathcal{B}_2 une base de $\ker(f)$, que l'on complète (à gauche) en une base $\mathcal{B}=(e_1,\ldots,e_k,\mathcal{B}_2)$ de \mathbb{R}^n .

Q 21. Montrer que la famille $(f(e_1), \ldots, f(e_k))$ est libre.

Q 22. Justifier que k < n.

On complète la famille $(f(e_1), \ldots, f(e_k))$ en une base $\mathcal{B}' = (f(e_1), \ldots, f(e_k), f_{k+1}, \ldots, f_n)$ de \mathbb{R}^n .

Q 23. Déterminer $M_{\mathcal{B},\mathcal{B}'}(f)$.

III.C – Dans toute la suite du problème, pour tout entier entier naturel $r \in [0, n]$, on note

$$J_{n,r} = \operatorname{diag}\left(I_r, 0_{n-r}\right)$$

en convenant que $J_{n,n} = I_n$ et $J_{0,n} = 0_n$.

Soit M un élément de $\mathcal{M}_n(\mathbb{R})$ de rang r.

Q 24. Montrer qu'il existe deux matrices P et Q de $GL_n(\mathbb{R})$ telles que

$$M = \Phi_{P,O}(J_{n,r}).$$

III.D – On suppose dans cette sous-partie que n=2 et que A et B sont deux éléments de $\mathcal{M}_2(\mathbb{R})$ de rang 1. On suppose que Im A et Im B sont distinctes.

Q 25. Montrer qu'il existe deux matrices P_2 et Q_2 de $\mathrm{GL}_2(\mathbb{R})$ telles que

$$A = P_2 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} Q_2$$
 et $B = P_2 \begin{pmatrix} 0 & 0 \\ \alpha & \beta \end{pmatrix} Q_2$

où α et β sont des réels, non tous deux nuls.

IV Endomorphismes de $\mathcal{M}_2(\mathbb{R})$ conservant le rang

Dans toute cette partie, on suppose que n=2.

On désigne par $\mathcal{B}_{ca} = (B_1, B_2, B_3, B_4)$ la base canonique de $\mathcal{M}_2(\mathbb{R})$, avec

$$B_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad B_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad B_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \quad \text{et} \quad B_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

IV.A -

Q 26. Expliciter la matrice de la transposition \mathcal{T} dans la base canonique de $\mathcal{M}_2(\mathbb{R})$.

Cette matrice de $\mathcal{M}_4(\mathbb{R})$ sera notée T.

Q 27. Justifier sans calcul que T est diagonalisable

Q 28. Préciser les valeurs propres et les sous-espaces propres de T.

On se donne deux éléments P et Q de $GL_2(\mathbb{R})$,

$$P = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad \text{ et } \quad Q = \begin{pmatrix} e & f \\ g & h \end{pmatrix}.$$

Q 29. Montrer que la matrice, dans la base \mathcal{B}_{ca} , de l'endomorphisme $\Phi_{P,Q}$ est de la forme

$$\begin{pmatrix} aU & bU \\ cU & dU \end{pmatrix},$$

où U est un élément de $\mathfrak{M}_2(\mathbb{R})$ à déterminer.

On suppose dans la suite de cette partie que Φ est un endomorphisme de $M_2(\mathbb{R})$ conservant le rang.

IV.B -

Q 30. Montrer que Φ est un automorphisme de $\mathcal{M}_2(\mathbb{R})$.

Q 31. Déterminer les rangs de $\Phi(B_1)$, $\Phi(B_4)$, $\Phi(B_1 + B_4)$. En déduire l'existence de deux matrices P_1 et Q_1 de $\mathrm{GL}_2(\mathbb{R})$, telles que :

$$\Phi_{P_1,Q_1} \circ \Phi(B_1) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad \text{ et } \qquad \Phi_{P_1,Q_1} \circ \Phi(B_4) = \begin{pmatrix} 0 & 0 \\ \alpha & \beta \end{pmatrix}$$

où α et β sont des réels tels que $(\alpha, \beta) \neq (0, 0)$.

On adopte alors les notations suivantes : $\Phi' = \Phi_{P_1,Q_1} \circ \Phi$, $M' = M_{\mathcal{B}_{ca}}(\Phi')$.

Pour tout $j \in \{1, 2, 3, 4\}$, $B'_j = \Phi'(B_j)$ et $C_j = (a_j, b_j, c_j, d_j)^{\top}$ désigne la j-ième colonne de la matrice M'.

Q 32. Déterminer C_1 et C_4 .

Q 33. Démontrer que $\forall i \in \{1, 2, 3, 4\}, a_i d_i - b_i c_i = 0.$

Q 34. En considérant le rang des matrices $B'_1 + B'_2$ et $B'_1 + B'_3$, démontrer que $d_2 = d_3 = 0$.

On déduit des deux questions précédentes que $b_2c_2 = b_3c_3 = 0$.

IV.C – On suppose dans cette sous-partie que $c_2 = 0$.

Q 35. En étudiant $\det(M')$, démontrer que les nombres b_2 , c_3 , d_4 sont tous trois non nuls.

Q 36. En utilisant les résultats de la question précédente et en considérant les rangs des matrices $B_3' + B_4'$, $B_2' + B_4'$ et $B_1' + B_2' + B_3' + B_4'$, démontrer que

$$M' = \begin{pmatrix} 1 & a_2 & 0 & 0 \\ 0 & b_2 & 0 & 0 \\ 0 & 0 & c_3 & c_4 \\ 0 & 0 & 0 & d_4 \end{pmatrix}$$

avec $c_4 = a_2 c_3$ et $d_4 = b_2 c_3$.

Q 37. En déduire que Φ appartient à \mathcal{L}_1 .

IV.D – On suppose à présent que $c_2 \neq 0$.

Q 38. Démontrer que la matrice, dans la base \mathcal{B}_{ca} , de l'endomorphisme $\Phi' \circ \mathcal{T}$ de $\mathcal{M}_2(\mathbb{R})$ est égale à

$$\begin{pmatrix} 1 & a_3 & a_2 & 0 \\ 0 & b_3 & 0 & 0 \\ 0 & c_3 & c_2 & c_4 \\ 0 & 0 & 0 & d_4 \end{pmatrix}.$$

Q 39. Démontrer que $c_3 = 0$.

Q 40. En déduire que Φ appartient à \mathcal{L}_2 .

On a ainsi démontré, pour n=2, qu'un endomorphisme de $\mathcal{M}_n(\mathbb{R})$ conserve le rang si et seulement s'il appartient à $\mathcal{L}_1 \cup \mathcal{L}_2$.

On admet que ce résultat est encore valable lorsque n est un entier strictement supérieur à 2.

V Endomorphismes de $\mathcal{M}_n(\mathbb{R})$ conservant le déterminant ou le polynôme caractéristique

V.A – On suppose dans cette sous-partie que n=2 et que Φ est un endomorphisme de $\mathcal{M}_2(\mathbb{R})$ conservant le déterminant.

On considère une matrice A non nulle de $\mathcal{M}_2(\mathbb{R})$ vérifiant $\Phi(A) = 0_2$.

 \mathbf{Q} 41. Montrer que A est de rang 1.

La partie III assure l'existence de deux éléments P et Q de $\mathrm{GL}_2(\mathbb{R})$ tels que

$$A = PJ_{2,1}Q$$
.

On pose alors $N = P(I_2 - J_{2,1})Q$.

Q 42. En calculant de deux manières différentes $\det(A+N)$, aboutir à une absurdité et conclure que Φ est un automorphisme de $\mathcal{M}_2(\mathbb{R})$.

 \mathbf{Q} 43. En discutant selon les valeurs possibles du rang, démontrer que Φ conserve le rang.

On a ainsi démontré que tout endomorphisme de $\mathcal{M}_2(\mathbb{R})$ qui conserve le déterminant conserve le rang. On admet que ce résultat s'étend au cas où n est un entier naturel non nul quelconque.

Q 44. Caractériser les endomorphismes de $\mathcal{M}_n(\mathbb{R})$ qui conservent le déterminant.

V.B – On revient au cas général où n est un entier naturel non nul.

IV.B.1) Propriétés de la trace

Q 45. Démontrer que l'application

$$\begin{vmatrix}
\mathcal{M}_n(\mathbb{R}) & \to & \mathbb{R} \\
M & \mapsto & \operatorname{tr}(M)
\end{vmatrix}$$

est une forme linéaire vérifiant

$$\forall (A, B) \in (\mathcal{M}_n(\mathbb{R}))^2, \quad \operatorname{tr}(AB) = \operatorname{tr}(BA).$$

Q 46. Montrer que l'application

$$\begin{pmatrix}
\left(\mathcal{M}_n(\mathbb{R})\right)^2 & \to & \mathbb{R} \\
(A, B) & \mapsto & \operatorname{tr}\left(A^{\top}B\right)
\end{pmatrix}$$

est un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$.

Q 47. En déduire que, si une matrice A de $\mathcal{M}_n(\mathbb{R})$ vérifie

$$\forall M \in \mathfrak{M}_n(\mathbb{R}), \quad \operatorname{tr}(AM) = 0,$$

alors A = 0.

V.B.2) Application à la caractérisation des endomorphismes de $\mathcal{M}_n(\mathbb{R})$ conservant le polynôme caractéristique

Q 48. Démontrer qu'un endomorphisme de $\mathcal{M}_n(\mathbb{R})$ qui conserve le polynôme caractéristique conserve également le déterminant et la trace.

Q 49. Caractériser les endomorphismes de $\mathcal{M}_n(\mathbb{R})$ qui conservent le polynôme caractéristique.