MP* KERICHEN 2024-2025

Correction du DS n°1

Sujet 1

PARTIE I.

1. (a) Soient $(x_1, x_2) \in \mathbf{R}^2$ et $\lambda \in \mathbf{R}_+^*$

$$f(\lambda(x_1 + x_2)) = 2\lambda x_1 + \lambda x_2 = \lambda f(x_1, x_2),$$

donc f est homogène de degré 1.

(b) Soient (x_1, x_2) $\in \mathbf{R}_+^{*2}$ et $\lambda \in \mathbf{R}_+^*$

$$f(\lambda(x_1 + x_2)) = \sqrt{\lambda^3 x_1^3 + 3\lambda^3 x_1 x_2^2} = \lambda^{\frac{3}{2}} f(x_1, x_2),$$

donc f est homogène de degré $\frac{3}{2}$.

(c) Soient $(x_1, x_2) \in \mathbb{R}_+^{*2}$ et $\lambda \in \mathbb{R}_+^*$

$$f(\lambda(x_1 + x_2) = \lambda^{-2}\lambda f(x_1, x_2),$$

donc f est homogène de degré -2.

2. Notons c la faleur constante de f sur la droite D_1 d'équation $x_1=1$.

PREUVE 1.

Soit (x, y) un point de $\mathbb{R}_+^* \times \mathbb{R}$. La demi-droite ouverte d'origine (0, 0) et passant par (x, y) est incluse dans C, donc par 0-homogénéité, f est constante sur cette droite, mais elle rencontre D_1 donc f(x, y) = c.

PREUVE 2 (VARIANTE).

Soit (x,y) un point de $\mathbf{R}_+^* \times \mathbf{R}$. Par 0-homogénéité

$$f(x,y) = \left(\frac{1}{x}\right)^0 f\left(1, \frac{y}{x}\right) = c.$$

En conclusion f est constante sur C.

- 3. L'application $C \to \mathbf{R}$; $(x_1, x_2) \mapsto \frac{1}{x_1 + 2024x_2}$ est homogène de degré -1. L'application $C \to \mathbf{R}$; $(x_1, x_2) \mapsto (x_1 + x_2)^{\pi}$ est homogène de degré π .
- 4. (a) Soit $\lambda \in \mathbf{R}_+^*$. Pour tout $(x_1, x_2) \in C$,

$$f(\lambda x_1, \lambda x_2) = \lambda^{\alpha} f(x_1, x_2),$$

en calculant la dérivée partielle des deux membres, pour i = 1, 2,

$$\lambda \partial_i f(\lambda x_1, \lambda x_2) = \lambda^{\alpha} \partial_i f(x_1, x_2).$$

soit:

$$\partial_i f(\lambda(x_1, x_2)) = \lambda^{\alpha - 1} \partial_i f(x_1, x_2).$$

Les dérivées partielles de f sont $\alpha-1$ -homogènes.

(b) Soit $(x_1, x_2) \in C$. concidérons,

$$g: \mathbf{R}_+^* \to \mathbf{R}; t \mapsto f(t(x_1, x_2))$$

La règle de la chaîne assure que g est de classe \mathcal{C}^1 et pour tout $t \in \mathbf{R}_+^*$

$$g'(t) = x_1 \partial_1 f(tx_1, tx_2) + x_2 \partial_2 f(tx_1, tx_2).$$

Mais pour tout $t \in \mathbf{R}_+^*$, $g(t) = t^{\alpha} f(x_1, x_2)$, et donc $g'(t) = \alpha t^{\alpha-1} f(x_1, x_2)$. En égalant les deux expressions pour t = 1:

$$x_1 \partial_1 f(x_1, x_2) + x_2 \partial_2 f(x_1, x_2) = \alpha f(x_1, x_2). \tag{1}$$

(c) Gardons les notations du (b). Pour tout $t \in \mathbf{R}_{+}^{*}$,

$$tg'(t) = tx_1\partial_1 f(tx_1, tx_2) + tx_2\partial_2 f(tx_1, tx_2) = \alpha f(tx_1, tx_2) = \alpha g(t).$$

Donc g est LA solution sur \mathbb{R}_+^* du problème de Cauchy linéaire d'ordre 1,

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\alpha}{t}y, \\ y(1) = f(x_1, x_2). \end{cases}$$

Donc pour tout réel t > 0,

$$f(tx_1, tx_2) = g(t) = f(x_1, x_2)(\exp\left(\alpha \int_1^t \frac{1}{s} ds\right) = t^{\alpha} f(x_1, x_2).$$

La fonction f est α -homogène.

- 5. (a) Notons $X = \{ \mathbf{C} \to \mathbf{R}(x, y) \mapsto \phi\left(\frac{y}{x}\right), \phi \in \mathbf{R}^{\mathbf{R}} \}.$
 - Soit $f \in h_0$. Posons $\phi : \mathbf{R} \to \mathbf{R}; t \mapsto f(1,t)$. Pour tout $(x,y) \in \mathbf{C}$,

$$f(x,y) = x^0 f\left(1, \frac{y}{x}\right) = \phi\left(\frac{y}{x}\right),$$

 $(x \neq 0)$, donc $f \in X$, et donc

$$H_0 \subset X$$
.

• L'inclusion $H_0 \subset X$ est évidente.

Concluons: $H_0 = \{ \mathbf{C} \to \mathbf{R}(x, y) \mapsto \phi\left(\frac{y}{x}\right), \phi \in \mathbf{R}^{\mathbf{R}} \}.$

- (b) De même $H_1 = \{ \mathbf{C} \to \mathbf{R}(x, y) \mapsto x\phi\left(\frac{y}{x}\right), \phi \in \mathbf{R}^{\mathbf{R}} \}.$
- (c) Soit $L: \mathcal{C}^1(C,\mathbf{R}) \to \mathcal{C}^0(C,\mathbf{R})$; $f \mapsto x_1\partial_1 f + x_2\partial_2 f$, ou abusivement x_i désigne, pour i=1,2 la i^{e} forme coordonnée dans la base canonique. L'application L est linéaire, par linéarité de la dérivation partielle, et donc $\underline{S_0}$ est un espace vectoriel, en tant que noyau de L.
- (d) L'application g est 2-homogène, donc par (1), donc

$$\frac{1}{2}g \in S_g.$$

(e) Soit $f \in \mathcal{C}^1(C, \mathbf{R})$, on a $f \in S_g$ si et seulement si $f - \frac{1}{2}g \in S_0$, donc :

$$S_h = \frac{1}{2}g + S_0$$

(f) Par (1), $S_0 = H_0 \cap \mathcal{C}^1(C, \mathbf{R})$. Soit par ailleurs $\phi \in \mathbf{R}^{\mathbf{R}}$; L'application

$$f: \mathbf{R} \to \mathbf{R}; (x_1, x_2) \mapsto \phi\left(\frac{x_2}{x_1}\right).$$

Si ϕ est \mathcal{C}^1 alors comme $(x_1, x_2) \mapsto x_i$ est \mathcal{C}^1 pour i = 1, 2, les théorèmes de transfert assurent que f est \mathcal{C}^1 .

Si f est \mathcal{C}^1 , comme $\phi = f(1,\cdot)$ et que $t \mapsto (1,t)$ est \mathcal{C}^1 , alors ϕ est \mathcal{C}^1 . Donc

$$S_0 = \left\{ \mathbf{C} \to \mathbf{R} \left(x, y \right) \mapsto \phi \left(\frac{y}{x} \right), \phi \in \mathcal{C}^1(\mathbf{R}, \mathbf{R}) \right\}.$$

6. (a) Soient $(x_1, x_2) \in C$ et $(r, \theta) \in U$.

Alors classiquement, comme $x_1 \neq 0$, on a $p(r,\theta) = (x_1, x_2)$ si et seulement si

$$\begin{cases} r = x_1^2 + x_2^2, \\ \tan \theta = \frac{x_2}{x_1}. \end{cases}$$

Or $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\text{donc } p(r,\theta) = (x_1, x_2) \text{ si et seulement si}$

$$\begin{cases} r = \sqrt{x_1^2 + x_2^2}, \\ \theta = \arctan\left(\frac{x_2}{x_1}\right). \end{cases}$$

Donc p est une bijection de U sur C. et

$$p^{-1}: C \to U; (x_1, x_2) \mapsto \left(\sqrt{x_1^2 + x_2^2}, \arctan\left(\frac{x_2}{x_1}\right)\right).$$

(b) La mytique rêgle de la chaîne assure que

$$\frac{\partial \tilde{f}}{\partial r}(r,\theta) = \cos\theta \partial_1 f(r\cos(\theta), r\sin(\theta) + \sin\theta \partial_2 f(r\cos(\theta), r\sin(\theta)).$$

- (c) Supposons que $f \in S_0$. Alors par (b), $\frac{\partial \tilde{f}}{\partial r}$ soit nulle sur U.
 - Supposons que $\frac{\partial \tilde{f}}{\partial r}$ soit nulle sur U, alors $x_1\partial_1 f + x_2\partial_2 f$ est nulle sur p(U) donc sur C par $surjectivit\acute{e}$ de p, et voilà donc f élément de S_0 .

Notons $\tilde{S}_0 = \{g \in \mathcal{C}^1(U, \mathbf{R}) / \frac{\partial g}{\partial r} = 0_{U \to \mathbf{R}} \}.$

On a déjà $f \in S_0$ si et seulement si $f \circ p \in \tilde{S}_0$.

DÉTERMINATION DE \tilde{S}_0 .

• Soit $g \in \mathcal{C}^1(U, \mathbf{R})$; supposons $g \in \tilde{S}_0$ alors pour tout $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, l'application $g(\cdot, \theta)$ est de dérivée, $\frac{\partial g}{\partial r}$, nulle sur *l'intervalle* \mathbf{R}_+^* donc est constante. On dispose donc d'une application ψ de $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ dans \mathbf{R} telle que por tout $(r, \theta) \in U$,

$$g(r,\theta) = \psi(\theta).$$

Comme $\psi = g(1, \cdot)$ et que g est \mathcal{C}^1 , ψ est \mathcal{C}^1 .

• Réciproquement pour tout $\psi \in \mathcal{C}^1\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[,\mathbf{R}\right)$, l'application

$$(r,\theta): U \to \mathbf{R}; \mapsto \psi(\theta)$$

est élément de \tilde{S}_0 .

CONCLUSION

$$S_{0} = \{g \circ p^{-1}, g \in \tilde{S}_{0}\}\$$

$$= \left\{\mathbf{C} \to \mathbf{R} ; (x_{1}, x_{2}) \mapsto \psi \left(\arctan\left(\frac{x_{2}}{x_{1}}\right)\right), \psi \in \mathcal{C}^{1}\left(\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[, \mathbf{R}\right)\right\}\$$

$$= \left\{\mathbf{C} \to \mathbf{R} ; (x_{1}, x_{2}) \mapsto \phi\left(\frac{x_{2}}{x_{1}}\right), \phi \in \mathcal{C}^{1}\left(\mathbf{R}, \mathbf{R}\right)\right\}.$$

La dernière égalité résulte du caractère bijectif de arctan de $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$ sur **R**, donc de celui de

 $\mathcal{C}^{1}\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[,\mathbf{R}\right)\to\mathcal{C}^{1}\left(\mathbf{R},\mathbf{R}\right)\;;\;\psi\mapsto\psi\circ\arctan.$

PARTIE II. Applications harmoniques

1. L'ensemble des applications harmoniques d'un ouvert U de \mathbb{R}^2 dans \mathbb{R} est un espace vectoriel car c'est le noyau de l'application linéaire

$$C^2(U, \mathbf{R}) \to C^0(U, \mathbf{R}); f \mapsto \Delta(f),$$

(linéarité des dérivations partielles).

- 2. Fonctions harmoniques radiales
 - (a) Supposons F de classe C^2 . Comme $(x_1, x_2) \mapsto x_i$ pour i = 1, 2 $\sqrt{\cdot}$ sont de classe C^2 , par produit, somme et composition d'applications C^2 , on a f de classe C^2 .
 - Supposons f de classe \mathcal{C}^2 ; l'application $\mathbf{R}_+^* \to \mathbf{R}$; $t \mapsto (t^2, 0)$ est de classe \mathcal{C}^2 et pour tout réel t > 0, on a $F(t) = f(t^2, 0)$, donc par composition de telles applications, F est \mathcal{C}^2 .

Concluons : f est de classe C^2 si et seulement si F est de classe C^2 .

On suppose que f est de classe C^2 .

(b) Pour tout élément (x_1, x_2) de $\mathbf{R}^2 - \{(0, 0)\},$

$$\frac{\partial f}{\partial x_1}(x_1, x_2) = \frac{x_1}{\sqrt{x_1^2 + x_2^2}} F'\left(\sqrt{x_1^2 + x_2^2}\right),\,$$

$$\frac{\partial f}{\partial x_2}(x_1, x_2) = \frac{x_2}{\sqrt{x_1^2 + x_2^2}} F'\left(\sqrt{x_1^2 + x_2^2}\right).$$

(c) Pour tout élément (x_1, x_2) de $\mathbf{R}^2 - \{(0, 0)\},\$

$$\frac{\partial^2 f}{\partial x_1^2}(x_1, x_2) = \frac{x_1^2}{x_1^2 + x_2^2} F''\left(\sqrt{x_1^2 + x_2^2}\right) + \left(\frac{1}{\sqrt{x_1^2 + x_2^2}} - \frac{x_1^2}{\left(x_1^2 + x_2^2\right)^{3/2}}\right) F'\left(\sqrt{x_1^2 + x_2^2}\right),$$

soit

$$\frac{\partial^2 f}{\partial x_1^2}(x_1, x_2) = \frac{x_1^2}{x_1^2 + x_2^2} F'' \left(\sqrt{x_1^2 + x_2^2} \right) + \frac{x_2^2}{(x_1^2 + x_2^2)^{3/2}} F' \left(\sqrt{x_1^2 + x_2^2} \right).$$

De même,

$$\frac{\partial^2 f}{\partial x_2^2}(x_1, x_2) = \frac{x_2^2}{x_1^2 + x_2^2} F'' \left(\sqrt{x_1^2 + x_2^2} \right) + \frac{x_1^2}{(x_1^2 + x_2^2)^{3/2}} F' \left(\sqrt{x_1^2 + x_2^2} \right).$$

$$\frac{\partial^2 f}{\partial x_2 \partial x_1}(x_1, x_2) = \frac{x_2 x_1}{x_1^2 + x_2^2} F'' \left(\sqrt{x_1^2 + x_2^2} \right) - \frac{x_2 x_1}{\left(x_1^2 + x_2^2\right)^{3/2}} F' \left(\sqrt{x_1^2 + x_2^2} \right).$$

Remarque: f étant de classe \mathcal{C}^2 , on a $\frac{\partial^2 f}{\partial x_2 \partial x_1}(x_1, x_2) = \frac{\partial^2 f}{\partial x_1 \partial x_2}(x_1, x_2)$, ce que redonne plus simplement ici la symétrie des rôles tenus par x_1 et x_2 .

(d) Pour tout $(x_1, x_2) \in \mathbf{R}^2 - \{(0, 0)\},\$

$$\Delta f(x_1, x_2) = F''\left(\sqrt{x_1^2 + x_2^2}\right) + \frac{1}{\sqrt{x_1^2 + x_2^2}} F'\left(\sqrt{x_1^2 + x_2^2}\right).$$

Or l'application

$$\mathbf{R}^2 - \{(0,0)\} \to \mathbf{R} \; ; \; (x_1, x_2) \mapsto \sqrt{x_1^2 + x_2^2}$$

induit une surjection de $\mathbf{R}^2 - \{(0,0)\}$ sur \mathbf{R}_+^* , donc Δf est nul si et seulement si pour tout $r \in \mathbf{R}_+^*$,

$$F''(r) + \frac{1}{r}F'(r) = 0,$$

autrement dit Δf est nul si et seulement si F' est solution sur \mathbf{R}_{+}^{*} de l'équation différentielle du premier ordre linéaire homogène

$$\frac{\mathrm{d}y}{\mathrm{d}r} = -\frac{1}{r}y. \tag{2}$$

(e) (2) est une équation différentielle du premier ordre linéaire homogène, a est continue, L'ensemble de ses solutions sur \mathbf{R}_{+}^{*} est donc la droite vectorielle engendrée par

$$\mathbf{R}_{+}^{*} \to \mathbf{R} \; ; \; r \mapsto \exp\left(\int_{1}^{r} a(s) \mathrm{d}s.\right).$$

Donc, dans le cas présent, l'ensemble des solutions sur \mathbf{R}_{+}^{*} de (2) est l'ensemble des applications de la forme

$$\mathbf{R}_+^* \to \mathbf{R} \; ; \; r \mapsto \frac{A}{r},$$

où A est un réel quelconque.

(f) On a vu que Δf est l'application nulle sur $\mathbf{R}^2 - \{(0,0)\}$ si et seulement si il existe un réel A tel que pour tout $r \in \mathbf{R}_+^*$, $F'(r) = \frac{A}{r}$, donc Δf est nul si et seulement si il existe des réels A et B tels que pour tout $r \in \mathbf{R}_+^*$, $F(r) = A \ln r + B$. Donc Δf est nul si et seulement si il existe des réels A et B tels que :

$$f: \mathbf{R}^2 - \{(0,0)\} \to \mathbf{R}; (x,y) \mapsto A \ln \left(\sqrt{x^2 + y^2}\right) + B.$$

Remarque:

Dans le cas général et pour n différent de 2, un calcul analogue montre que l'ensemble des applications de $\mathbf{R}^n - \{(0, \dots, 0)\}$ dans \mathbf{R} radiales et de laplacien nul est l'ensemble des applications de la forme

$$f: \mathbf{R}^n - \{(0,0)\} \to \mathbf{R}; (x,y) \mapsto \frac{A}{\left(\sqrt{x^2 + y^2}\right)^{n-2}} + B,$$

où A et B sont des réels quelconques 1 .

3. FONCTIONS HARMONIQUES ANGULAIRES On considère \mathcal{P} le demi-plan ouvert de \mathbf{R}^2 d'équation $x_1 > 0$,

$$\mathcal{P} = \{(x_1, x_2) \in \mathbf{R}^2, x_1 > 0\} = \mathbf{R}_+^* \times \mathbf{R}.$$

On définit la fonction G de \mathcal{P} dans \mathbf{R} par

$$G: \mathcal{P} \to \mathbf{R}; (x_1, x_2) \mapsto \arctan\left(\frac{x_2}{x_1}\right).$$

(a) Soit $(x_2, x_1) \in \mathcal{P}$.

$$\frac{\partial G}{\partial x_2}(x_2, x_1) = \frac{1}{x_1} \frac{1}{1 + \frac{x_2^2}{x_1^2}} = \frac{x_1}{x_2^2 + x_1^2}, \quad \frac{\partial^2 G}{\partial x_2^2}(x_2, x_1) = x_1 \frac{-2x_2}{(x_2^2 + x_1^2)^2} = \frac{-2x_2x_1}{(x_2^2 + x_1^2)^2},$$

$$\frac{\partial G}{\partial x_1}(x_2, x_1) = -\frac{x_2}{x_1^2} \frac{1}{1 + \frac{x_2^2}{x_1^2}} = \frac{-x_2}{x_2^2 + x_1^2}, \quad \frac{\partial^2 G}{\partial x_2^2}(x_2, x_1) = \frac{x_2 \cdot 2x_1}{(x_2^2 + x_1^2)^2} = \frac{2x_2 x_1}{(x_2^2 + x_1^2)^2}.$$

finalement $\Delta G = 0$ sur \mathcal{P} . G est harmonique sur \mathcal{P} .

(b) Soit φ une application \mathcal{C}^2 de \mathbf{R} dans \mathbf{R} . L'application $q: \mathcal{P} \to \mathbf{R}, (x_2, x_1) \mapsto \frac{x}{2x_1}$ est \mathcal{C}^2 (car rationnelle). Par composition f est de classe \mathcal{C}^2 . Soit $(x_2, x_1) \in \mathcal{P}$.

$$f(x_2, x_1) = \varphi\left(\frac{x_2}{x_1}\right),$$

$$\frac{\partial f}{\partial x_2}(x_2, x_1) = \frac{1}{x_1}\varphi'\left(\frac{x_2}{x_1}\right), \quad \frac{\partial^2 f}{\partial x_2^2}(x_2, x_1) = \frac{1}{x_1^2}\varphi''\left(\frac{x_2}{x_1}\right),$$

$$\frac{\partial f}{\partial x_1}(x_2, x_1) = \frac{-x_2}{x_1^2}\varphi'\left(\frac{x_2}{x_1}\right), \quad \frac{\partial^2 f}{\partial x_1^2}(x_2, x_1) = \frac{2x_2}{x_1^3}\varphi'\left(\frac{x_2}{x_1}\right) + \frac{x_2^2}{x_1^4}\varphi''\left(\frac{x_2}{x_1}\right).$$

Donc:

$$\Delta f(x_2, x_1) = \frac{x_2^2 + x_1^2}{x_1^4} \varphi'' \left(\frac{x_2}{x_1}\right) + \frac{2x_2 x_1}{x_1^4} \varphi' \left(\frac{x_2}{x_1}\right).$$

Donc $\Delta f = 0$ si et seulement si, pour tout $(x_2, x_1) \in \mathcal{P}$,

$$\left(\frac{x_2^2}{x_1^2} + 1\right)\varphi''\left(\frac{x_2}{x_1}\right) + \frac{2x_2}{x_1}\varphi'\left(\frac{x_2}{x_1}\right) = 0.$$

Première méthode : L'application q est surjective de \mathcal{P} sur \mathbf{R} , donc f est harmonique sur \mathcal{P} si et seulement si φ' est solution sur \mathbf{R} de l'équation différentielle linéaire homogène du premier ordre à coefficients continus :

$$(1+u^2)\frac{\mathrm{d}x}{\mathrm{d}u} + 2ux = 0. ag{3}$$

^{1.} Pour n=3 on retrouve les potentiels électrostatiques créés par une charge ponctuelle ou gravitationnels créés par une masse ponctuelle, placées en l'origine, Potentiels en « 1/r ». D'après le 4. pour un potentiel à symétrie radiale U, être en « 1/r » équivaut à satisfaire à l'équation de Poisson dans le vide $\Delta U=0$.

Donc f est harmonique si et seulement si il existe $\lambda \in \mathbf{R}$ tel que

$$\varphi' : \mathbf{R} \to \mathbf{R} ; u \mapsto \frac{\lambda}{1 + u^2}.$$

Donc f est harmonique si et seulement si il existe des réels λ et μ tels que

$$\varphi : \mathbf{R} \to \mathbf{R}; \ u \mapsto \lambda. \arctan(u) + \mu.$$

Notons que f est harmonique si et seulement si il existe des réels λ et μ tels que $f = \lambda G + \mu$.

Méthode plus rusée et plus concise : L'application q est surjective de \mathcal{P} sur \mathbf{R} , donc en identifiant X^2 et l'application polynomiale associée, f est harmonique si et seulement si $((1+x_2^2)\varphi')'=0$, soit, \mathbf{R} étant un intervalle si et seulement si il existe des réels λ et μ tels que :

$$\varphi : \mathbf{R} \to \mathbf{R}; \ u \mapsto \lambda. \arctan(u) + \mu.$$

(c) L'application f est élément de S_2 si et seulement si, pour tout $(x_2, x_1) \in \mathcal{P}$,

$$\left(\frac{x_2^2}{x_1^2} + 1\right)\varphi''\left(\frac{x_2}{x_1}\right) + \frac{2x_2}{x_1}\varphi'\left(\frac{x_2}{x_1}\right) = \frac{x_2}{x_1},$$

soit, comme dans (b), si et seulement si pour tout réel u

$$((1+X^2)\phi')'(u) = u.$$

Donc f est élément de S_2 si et seulement si il existe $a \in \mathbf{R}$ tel que pour tout $u \in \mathbf{R}$

$$\phi'(u) = \frac{u^2}{2(1+u^2)} + \frac{a}{1+u^2} = \frac{1}{2} + \frac{a-\frac{1}{2}}{1+u^2},$$

et finalement f est élément de S_2 si et seulement si il existe $(b, c) \in \mathbf{R}^2$ tels que pour tout $u \in \mathbf{R}$,

$$\phi(u) = \frac{1}{2}u + b\arctan(u) + c.$$

Conclusion: $S_2 = \left\{ \mathcal{P} \to \mathbf{R} \; ; \; (x_1, x_2) \mapsto \frac{x_2}{2x_1} + bG(x_1, x_2) + c, (b, c) \in \mathbf{R}^2 \right\}.$