MP* KERICHEN 2023-2024

DS no4

SUJET CCP

Il sera, dans la notation, tenu compte de la présentation et de la qualité de la rédaction. Les résultats devront obligatoirement être soulignés ou encadrés à la règle, le texte et les formules ponctuées, un minimum de 80% des s du pluriel et de 70% des accents est requis.

Pénalités:

- Moins de 80% des s du pluriel ou moins de 70% des accents : -3 points,
- Formules mathématiques non ponctuées : -1 point,
- Recours à des abréviations (tt, qqs, fc., ens...) : -2 points.

L'usage de la calculatrice est interdite.

Ce problème est constitué de deux exercices et d'un problème.

EXERCICE 1

- 1. Soit [a, b] un segment non réduit à un point (a < b) et soit f une application de [a, b] dans \mathbf{R} . On suppose que
 - -f est continue,
 - f est à valeurs dans [a, b],
 - f est croissante,
 - pour tout élément x de [a, b], f(x) < x et f(a) = a,
 - il existe un réel strictement positif λ et un réel r strictement supérieur à 1 tels que,

$$f(x) - f(a) = (x - a) - \lambda (x - a)^r + o((x - a)^r) \ (x \to a).$$

a. Exemple: Vérifier que pour a = 0 et b = 1, l'application

$$f: [0,1] \to \mathbf{R} ; x \mapsto \ln(1+x)$$

satisfait bien aux conditions précédentes pour des valeurs de r et λ à préciser.

b. On revient au cas général. Soit c un élément de]a,b[. Montrer que la relation de récurrence

$$u_0 = c$$
, $u_{n+1} = f(u_n)$, pour tout $n \in \mathbb{N}$,

définit bien une suite $(u_n)_{n\in\mathbb{N}}$.

2. a. LIMITE DE LA SUITE :

Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers a.

b. ÉQUIVALENT DE LA SUITE :

Montrer qu'il existe un réel β tel que la suite $((u_{n+1}-a)^{\beta}-(u_n-a)^{\beta})_{n\in\mathbb{N}}$ converge vers un réel non nul.

En déduire un équivalent de $u_n - a$ lorque n tend vers $+\infty$ de la forme $\frac{k}{n^{\gamma}}$, où k et γ sont des réels à préciser.

c. APPLICATION : On prend pour f l'application définie au 1.a. Donner dans ce cas les valeurs de k et γ .

EXERCICE 2

On se propose d'étudier le reste de la série $\sum_{n\geq 0} (-1)^n u_n$, où $(u_n)_{n\in\mathbb{N}}$ est une de réels qui jouit des propriétés suivantes :

- i. Pour tout entier naturel $n, u_n > 0$;
- ii. $\frac{u_{n+1}}{u_n} \xrightarrow[n \to +\infty]{} 1$;
- iii. La suite $(u_n)_{n \in \mathbb{N}}$ converge en décroissant vers 0;
- iv. Pour tout entier naturel n, $u_{n+2} u_{n+1} \ge u_{n+1} u_n$.
- 1. Montrer que la série converge.

Dans la suite on note
$$R_n = \sum_{k=n}^{+\infty} (-1)^k u_k$$
.

2. Montrer que pour tout entier naturel n,

$$|R_n| + |R_{n+1}| = u_n.$$

3. Montrer que pour tout entier naturel n,

$$|R_n| - |R_{n+1}| = \sum_{p=0}^{+\infty} (-1)^p (u_{n+p} - u_{n+1+p}).$$

En déduire que la suite $(|R_n|)_{n\in\mathbb{N}}$ est monotone, on précisera si elle croît ou décroît.

4. Montrer que pour tout entier naturel $n \geq 1$,

$$\frac{u_n}{2} \le |R_n| \le \frac{u_{n-1}}{2}$$

En déduire un équivalent de R_n , lorsque n tend vers $+\infty$.

PROBLEME I

Partie A

1. Pour tout entier n supérieur ou égal à 1, on pose

$$u_n = \left(\sum_{k=1}^n \frac{1}{k}\right) - \ln n.$$

Etudier la nature de la série $\sum (u_{n+1}-u_n)$ en déduire que la suite $(u_n)_{n\in\mathbb{N}^*}$ converge. On note γ sa limite.

2. Pour tout élément x de \mathbf{R}_{+}^{*} on considère l'application

$$h_x: \mathbf{R}_+^* \to \mathbf{R}; t \mapsto \frac{\ln t}{t^x}.$$

- (a) Soit x un réel strictement positif. Dresser le tableau de variation de h_x .
- (b) montrer que pour tout entier n supérieur ou égal à 3,

$$\int_{n}^{n+1} \frac{\ln t}{t} dt \le \frac{\ln n}{n}.$$

(c) Montrer que pour tout entier n supérieur ou égal à 4,

$$\frac{\ln n}{n} \le \int_{n-1}^{n} \frac{\ln t}{t} \mathrm{d}t.$$

(d) Prouver que la série $\sum_{n\geq 2} (-1)^n \frac{\ln n}{n}$ est convergente. Converge-t-elle absolument?

On note

$$S = \sum_{n=2}^{+\infty} (-1)^n \frac{\ln n}{n}.$$

Les deux parties suivantes sont indépendantes

Partie B

On se propose dans cette partie de calculer S. Pour tout entier n supérieur ou égal à 3 on pose :

$$S_n := \sum_{k=1}^n (-1)^k \frac{\ln k}{k},$$

$$t_n := \sum_{k=1}^n \frac{\ln k}{k},$$

$$a_n := t_n - \frac{(\ln n)^2}{2}.$$

- 1. Démontrer que :
 - (a) La suite $(a_n)_{n\geq 3}$ est décroissante.
 - (b) La suite $(a_n)_{n\geq 3}$ est convergente.
- 2. Soit n un entier supérieur ou égal à 3. montrer que :

$$S_{2n} = t_n - t_{2n} + \left(\sum_{k=1}^n \frac{1}{k}\right) \ln 2.$$

En déduire une expression de S_{2n} où figure a_n , a_{2n} et u_n .

3. Calculer $\lim_{n\to +\infty} S_{2n}$ en fonction de γ et ln 2. Déterminer S.

Partie C

On Considère l'application

$$F:]1, +\infty[\to \mathbf{R}; x \mapsto \sum_{n=1}^{+\infty} \frac{1}{n^x}.$$

Pour tout élément n de \mathbb{N}^* , on considère l'application

$$\varphi_n:]0, +\infty[\to \mathbf{R}; x \mapsto \frac{(-1)^{n-1}}{n^x}.$$

1. Pour tout élément n de \mathbf{N}^* on considère les application v_n et w_n de $[1, +\infty[$ dans $\mathbf{R},$ définie par

$$v_n(x) = \frac{1}{n^x} - \frac{1}{(n+1)^x}, w_n(x) = \frac{1}{n^x} - \int_n^{n+1} \frac{1}{t^x} dt,$$

pour tout élément x de $[1, +\infty[$

- (a) Montrer que v_n est dérivable et donner sa dérivée.
- (b) Montrer que pour tout entier $n \ge 1$ et tout réel $x \ge 1$, $0 \le w_n(x) \le v_n(x)$.
- (c) On considère la fonction W de la variable réelle x définie par

$$W(x) = \sum_{n=1}^{+\infty} w_n(x).$$

Démontrer que W est définie sur $[1, +\infty[$. Les 3/2 admettrons la continuité de W sur $[1, +\infty[$, les 5/2 la montrerons.

(d) Montrer que pour tout réel x > 1, $W(x) = F(x) + \frac{1}{1-x}$.

Montrer que $F(x) + \frac{1}{1-x}$ admet une limite lorsque x tend vers 1 par valeurs strictement supérieures, et exprimer $\lim_{x\to 1^+} \left(F(x) + \frac{1}{1-x}\right)$ au moyen de γ .

2. Montrer que pour tout réel x strictement positif, la série $\sum_{n\geq 1} \varphi_n(x)$ converge. On notera $\varphi(x)$ sa somme. On dispose donc d'une application

$$\varphi : \mathbf{R}_+^* \to \mathbf{R}; x \mapsto \sum_{n=1}^{+\infty} \varphi_n(x).$$

(a) Les 3/2 admettrons que φ est de classe \mathcal{C}^1 et que pour tout réel x>0,

$$\varphi'(x) = \sum_{n=1}^{+\infty} \varphi_n'(x).$$

Ils vériferons cependant la convergence pour tout réel x>1 de la série $\sum_{n\geq 1} \varphi_n{}'(x)$. Les 5/2 montrerons ce résultat.

- 3. (a) Etablir que, pour tout réel x > 1, $\varphi(x) = (1 2^{1-x})F(x)$.
 - (b) Déterminer un développement limité à l'ordre 2 de $1-2^{1-x}$, puis un développement limité à l'ordre 1 de $\varphi(x)$, lorsque x tend vers 1.
 - (c) En déduire la valeur de S.