Utilisation des théorèmes de sommation par paquets

Soit I est un ensemble (dans la pratique dénombrable).

Cas des familles positives

Les théorèmes de ce paragraphe donne des équivalences à la sommabilité.

On considère $(u_i)_{i\in I}$ une famille de réels **positifs ou nuls.**

Sommation par paquets pour les familles de réels positifs ou nuls

Soient J un ensemble et $\{I_j\}_{j\in J}$ une partition de I. Alors on a

$$\sum_{j \in J} \left(\sum_{i \in I_j} u_i \right) = \sum_{i \in I} u_i \le +\infty.$$

En particulier $(u_i)_{i \in I}$ est sommable si et seulement si $\sum_{j \in J} \left(\sum_{i \in I_j} u_i\right)$ est finie.

Cas particulier : suite double $(u_{p,q})_{(p,q)\in\mathbb{N}^2}$ à termes **positifs ou nuls**. $I=\mathbb{N}\times\mathbb{N}$, deux partitions $\{\{p\}\times\mathbb{N}\}_{p\in\mathbb{N}}$ et $\{\mathbb{N}\times\{q\}\}_{q\in\mathbb{N}}$.

Interversion de sommation, Fubini-Tonelli

$$\sum_{p=0}^{+\infty} \left(\sum_{q=0}^{+\infty} u_{p,q}\right) = \sum_{(p,q)\in\mathbf{N}^2} u_{p,q} = \sum_{q=0}^{+\infty} \left(\sum_{p=0}^{+\infty} u_{p,q}\right) \leq +\infty.$$

Ce théorème permet de prouver la sommabilité d'une suite double en sommant d'abord par rapport à un indice puis par rapport à l'autre.

Exercice type: montrer l'existence et donner la valeur de $\sum_{q=0}^{+\infty} \left(\sum_{p=0}^{+\infty} u_{p,q}\right)$.

Solution —

La famille $(u_{p,q})_{(p,q)\in \mathbb{N}^2}$ est une famille de réels POSITIFS ou nuls.

Pour tout $p \in \mathbb{N}$, $\sum_{q \geq 0} u_{p,q}$ converge, la somme de cette série (téléscopique, géométrique...) se calcule sans mal :

$$\sum_{q=0}^{+\infty} u_{p,q} = \dots = s(p).$$

La série $\sum_{p\geq 0} s(p)$ converge et sa somme vaut $\sum_{p=0}^{+\infty} s(p) = \dots = S$.

Donc par le théorème de Fubini-Tonelli, pour tout $q \in \mathbf{N}$, $\sum_{p \geq 0} u_{p,q}$ converge et $\sum_{q \geq 0} \left(\sum_{p=0}^{+\infty} u_{p,q}\right)$ converge de plus

$$\sum_{q=0}^{+\infty} \left(\sum_{p=0}^{+\infty} u_{p,q}\right) = \sum_{p=0}^{+\infty} \left(\sum_{q=0}^{+\infty} u_{p,q}\right) = S.$$

On procéde ainsi quand on ne sait pas calculer la somme de $\sum_{p\geq 0} u_{p,q}$, tout au plus sait-on que cette série converge Notons que S est la somme de la famille sommable $(u_{p,q})_{(p,q)\in \mathbb{N}^2}$.

Cas des familles de réels ou complexes

Les théorèmes de ce paragraphe exigent la sommabilité et donnent des propriétés qu'elle implique.

On considère $(u_i)_{i\in I}$ une famille d'éléments de \mathbf{K} , où $\mathbf{K}=\mathbf{R}$ ou \mathbf{C} .

Sommation par paquets pour les familles de réels ou complexes

Soit $\{I_n\}_{n\in\mathbb{N}}$ une partition de I. On suppose la famille $(u_i)_{i\in I}$ SOMMABLE. Alors

- pour tout entier naturel n, $(u_i)_{i \in I_n}$ est sommable;
- la série $\sum_{n>0} \left(\sum_{i \in I_n} u_i \right)$ converge;
- enfin $\sum_{n=0}^{+\infty} \left(\sum_{i \in I_n} u_i \right) = \sum_{i \in I} u_i$.

Pour prouver la sommabilité de $(u_i)_{i \in I}$, on utilise souvent le théorème de sommation par paquets pour une famille de réels positifs ou nuls

- Sommabilité.
- Soit $n_0 \in \mathbb{N}$. La famille $(|u_i|)_{i \in I_{n_0}}$ est sommable. En effet..... Calculons sa somme $\sum_{i \in I_{n_0}} |u_i| = \dots = p_{n_0}$.
- La série $\sum_{n>0} p_n$ converge, en effet......

Donc $(|u_i|)_{i \in n_0}$ et donc $(u_i)_{i \in n_0}$ sont <u>sommables</u>.

• Calcul de la somme. Soit $n_0 \in \mathbb{N}$. On sait que $(u_i)_{i \in I_{n_0}}$ est sommable. Calculons sa somme : $\sum_{i \in I_{n_0}} u_i = \dots = s_{n_0}$. On sait, par le théorème de sommation par paquets des familles sommables d'éléments de \mathbb{K} , que $\sum_{n \geq 0} s_n$ converge et

que :
$$\sum_{i \in I} u_i = \sum_{n=0}^{+\infty} s_n.$$

Théorème de Fubini Lebesgue pour les suites doubles réelles oucomplexes

Soient $(u_{p,q})_{(p,q)\in\mathbb{N}^2}$ une famille de réels ou de complexes. On suppose que la famille $(|u_{p,q}|)_{(p,q)\in\mathbb{N}^2}$ est SOMMABLE. Alors on a l'égalité, toute les quantités qui y figurent étant bien définies (dans \mathbb{C}),

$$\sum_{p=0}^{+\infty} \left(\sum_{q=0}^{+\infty} u_{p,q} \right) = \sum_{(p,q) \in \mathbb{N}^2} u_{p,q} = \sum_{q=0}^{+\infty} \left(\sum_{p=0}^{+\infty} u_{p,q} \right).$$

Exercice type : montrer l'existence et donner la valeur de $\sum\limits_{q=0}^{+\infty}\left(\sum\limits_{p=0}^{+\infty}u_{p,q}\right)$.

Solution—

- Sommabilité.
- Pour tout élément p de $\mathbf{N}, \sum_{q \geq 0} |u_{p,q}|$ converge, sa somme (téléscopique, géométrique...) se calcule et vaut s(p).
- La série $\sum_{p>0} s(p)$ converge.

Donc par le th. de **Fubini-Tonelli**, la famille <u>positive</u> $(|u_{p,q}|)_{(p,q)\in\mathbb{N}^2}$ et donc la famille $(u_{p,q})_{(p,q)\in\mathbb{N}^2}$ sont <u>sommables</u>.

• Calcul de la somme. On sait que pour tout $p \in \mathbb{N}, \sum_{q \geq 0} u_{p,q}$ converge, la somme de cette série (téléscopique, géométrique...) se calcule et vaut t_p . Par le théorème de **Fubini-Lebesgues**, toute les termes suivants sont bien définis et

$$\sum_{q=0}^{+\infty} \left(\sum_{p=0}^{+\infty} u_{p,q} \right) = \sum_{p=0}^{+\infty} t_p.$$

2