MP^*

Programme de colles n°1

1 Révisions de probabilités de sup.

- Probabilités sur un ensemble fini.
- Variables aléatoires.

2 Algèbre linéaire : révisions de MPSI, utilisation pratique de la diagonalisation et trigonalisation

- Espace vectoriels, familles libres, génératrices bases, somme directes, sous-espaces supplémentaires.
- Rang d'un endomorphisme, théorème et formule du rang, polynômes d'interpolation de Lagrange.
- À venir : semaine prochaine formes linéaires, hyperplans...
- Matrices :
 - Matrices semblables, deux matrices semblables ont même trace, trace d'un endomorphisme.
 - Matrices équivalentes : des matrices sont équivalentes si et seulement si elles ont même rang.
- Semaine prochaine diagonalisation, trigonalisation, (point de vue géométrique et pratique).

Les questions de cours ou exercices avec un astérisque * pour : C. Brévignon, Malo Le Grognec, Augustin Ravasse, Lucas Pan, Anaël Pelé, Arthur Quendo, Noémie Manach, Martin Pina-Silas, Aiden Legal, Kevynn Boucher.

Les questions de cours ou exercices avec deux astérisques ** pour : C. Brévignon, Malo Le Grognec, Augustin Ravasse.

3 Questions de cours

- 1. Théorème du rang : l'image d'une application linéaire est isomorphe à un supplémentaire du noyau, application si \mathbf{F} et \mathbf{F}' sont des supplémentaires d'un même sous-espace vectoriel alors ils sont isomorphes (p. 40).
- 2. Tout élément de $\mathcal{M}_{n,p}(\mathbf{K})$ de rang r est équivalent à la matrice J_r . (Preuve algébrique cette semaine).
- 3. Polynômes d'interpolation : existence unicité puis expression (page 42).

4 Récitation d'exercices

- 1. On se donne n urnes dans lesquelles on dispose au hasard et uniformément m boules. Soit $k \in \mathbb{N}$.
 - (a) Quel est la probabilité $p_{m,n}$ de l'événement « la première urne contienne k boules » ?
 - (b) Soit c un entier naturel et une suite d'entier naturels $(m_i)_{i \in \mathbb{N}}$ telle que $m_i \underset{i \to +\infty}{\sim} ci$. Montrer que $p_{m_i,i}$ tend vers $e^{-c} \frac{c^k}{k!}$, lorsque i tend vers $+\infty$.
 - (c) \star Déterminer la probabilité $q_{m,n}$ de l'événement « Chaque urne contient au plus une boule ». Montrer que $q_{m,i}$ tend vers 1 lorsque i tend vers $+\infty$.

Soit c un entier naturel et une suite d'entier naturels $(m_i)_{i\in\mathbb{N}}$ telle que $m_i \sim c\sqrt{i}$. Montrer que

$$q_{m_i,i} \underset{i \to +\infty}{\to} \exp\left(-\frac{c^2}{2}\right).$$

2. Soit V une variable aléatoire définie sur un univers (fini) Ω , à valeurs dans $\{0,...,n\}$. Montrer que $\mathrm{E}(V) = \sum_{i=1}^{n} \mathbf{P}(V \geq i)$.

Soient X et Y des variables alatoires définies sur Ω , indépendantes et qui suivent la loi uniforme sur $\{0,...,n\}$. Calculer $\mathrm{E}(\min(X,Y))$.

- 3. On considère une urne contenant a boules noires et b boules blanches. Après chaque tirage la boule extraite et remise dans l'urne avec c boules de sa couleur. Déterminer la probabilité $p_n(a,b)$ que la n^e boule tirée soit blanche. On raisonera par récurrence.
- 4. \star Deux amis A et B jouent à un jeu chacun leur tour selon le principe suivant :
 - chaque partie est indépendante des autres ;
 - le joueur A commence ;
 - si un joueur perd sa partie alors l'autre joueur joue la prochaine partie ;
 - si un joueur gagne sa partie, alors il joue la partie suivante.
 - le joueur A gagne une partie avec une probabilité $a, (a \in]0,1[)$ et le joueur B gagne une partie avec une probabilité $b, (b \in]0,1[)$.

Quelle est la probabilité que le joueur A remporte sa première partie avant le joueur B?

- 5. Soit ℓ une forme linéaire sur $\mathcal{M}_n(\mathbf{R})$ telle que pour tout A et tout B éléments de $\mathcal{M}_n(\mathbf{R})$, $\ell(AB) = \ell(BA)$; montrer qu'il existe $k \in \mathbf{R}$ tel que $\ell = k \operatorname{tr}$.
- 6. Montrer que des éléments de $\mathcal{M}_n(\mathbf{R})$, semblables comme éléments de $\mathcal{M}_n(\mathbf{C})$ sont semblables comme éléments de $\mathcal{M}_n(\mathbf{R})$.
- 7. ★ Même question pour équivalents. On donnera une preuve par densité algébrique, une en montrant l'invariance du rang par passage de C à R, ce de deux façons.
- 8. ** Montrer que des éléments de $\mathcal{M}_n(\mathbf{Q})$, semblables comme éléments de $\mathcal{M}_n(\mathbf{R})$ sont semblables comme éléments de $\mathcal{M}_n(\mathbf{Q})$.
- 9. Théorème d'Hadamard —

Soit A un élément de $\mathcal{M}_n(\mathbf{R})$, tel que pour $i=1,2,\ldots,n$ on ait : $|a_{i,i}|>\sum\limits_{\substack{j=1,\ldots,n,\\j\neq i,}}|a_{i,j}|$. Montrer que

A est inversible.

- 10. \star \mathbf{R}^n est muni de sa structure euclidienne canonique Pour toute permutation σ élément de \mathbf{S}_n , on note P_{σ} la matrice de permutation associée à σ On pose : $P := \frac{1}{n!} \sum_{\sigma \in \mathbf{S}_n} P_{\sigma}$.
 - (a) Montrer que l'endomorphisme p de \mathbb{R}^n associé canoniquement à P est une projection dont on déterminera l'image et le noyau.
 - (b) Montrer que p est orthogonale.
 - (c) On munit S_n d'une probabilité uniforme et l'on désigne par X la variable aléatoire qui à σ élément de S_n associe le nombre de points fixes de σ . Calculer l'espérence de X.
- 11. Soit n un entier naturel non nul et A un élément de $\mathcal{M}_n(\mathbf{R})$. Montrer que l'ensemble E, défini par

$$E = \{ M \in \mathcal{M}_n(\mathbf{R}), AMA = 0_n \},$$

est un sous-espace vectoriel de $\mathcal{M}_n(\mathbf{R})$ dont on précisera la dimension en fonction du rang de A.

12. $\star\star$ Soit **E** un espace de dimension finie. Montrer que les seuls idéaux bilatères ¹ de $\mathcal{L}(\mathbf{E})$ sont $\{O_{\mathcal{L}(\mathbf{E})}\}$ et $\mathcal{L}(\mathbf{E})$.

Le résultat demeure-t-il si l'on ne suppose plus E de dimension finie?

- 13. Effet de la multiplication à droite ou à gauche par une transvection, inverse d'une transvection.
- 14. \star Montrer que tout élément de $SL_n(\mathbf{R})$ est un produit de matrices de transvection.
- 15. ** Déterminer les éléments de $\mathcal{M}_n(\mathbf{C})$ dont la classe de similitude est bornée.
- 16. ** Théorème de Frobenius-Zolotarev Soit f une application de $\mathcal{M}_n(\mathbf{C})$ dans \mathbf{C} continue telle que :

i.
$$f(I_n) = 1$$
;

ii. pour tout $(A, B) \in \mathcal{M}_n(\mathbf{C})^2$, f(AB) = f(A)f(B).

Montrer qu'il existe une application g de \mathbb{C} dans \mathbb{C} continue vérifiant g(1) = 1 et g(ab) = g(a)g(b) pour tout couple (a, b) de complexes, telle que :

$$f = g \circ \det$$
.

^{1.} Un idéal bilatère est un sous-groupe stable par multiplication à gauche et à droite par un élément de $\mathcal{L}(\mathbf{E})$.

 MP^*

Programme de colles n°2

5 Algèbre linéaire : révisions de MPSI, utilisation pratique de la diagonalisation et trigonalisation

Par K on désigne R ou C

- Espace vectoriels, familles libres, génératrices bases, base canonique de l'ensemble des applications polynômiales à p variables, somme directes, sous-espaces supplémentaires.
- Rang d'un endomorphisme, théorème et formule du rang, polynômes d'interpolation de Lagrange.
- Formes linéaires, hyperplans.
- Matrices:
 - Matrices semblables, deux matrices semblables ont même trace, trace d'un endomorphisme. Matrices équivalentes : des matrices sont équivalentes si et seulement si elles ont même rang.
 - Opérations sur les lignes et colonnes.
- Diagonalisation. (il s'agit d'une première approche géométrique axée sur la pratique, les applications le polynôme caractéristique. Un prochain chapitre traitera des polynômes d'endomorphismes et des questions subtiles de réduction)
 - On désigne u un endomorphisme d'un \mathbf{K} espace vectoriel \mathbf{E} de dimension finie non nulle. On note $\lambda_1, \lambda_2, \ldots, \lambda_k$ les valeurs propres deux à deux distinctes de u, d'ordre de multiplicité respectifs m_1, m_2, \ldots, m_k .
 - Valeurs propres, vecteurs propres, espaces propres : les espaces propres sont en sommes directes. Espaces propres de deux endomorphismes qui commutent.
 - Polynôme caractéristique (définitions, coefficients remarquables), polynôme caractéristique d'un endomorphisme induit.
 - Diagonalisation des matrices et des endomorphismes. Définition. l'endomorphisme u diagonalisable si et seulement si $\bigoplus_{i=1}^k \mathbf{E}_k = \mathbf{E}$. La dimension d'un espace propre est inférieur à l'ordre de multiplicité de la valeur propre associée. l'endomorphisme u est diagonalisable si et seulement si χ_u est scindé et $m_i = \dim(\mathbf{E}_i)$, pour $i = 1 \dots k$.
- A venir : trigonalisation révisions sur les déterminants, critère de diagonalisabilité, trigonalisation, ...

Les questions de cours ou exercices avec un astérisque * pour : C. Brévignon, Malo Le Grognec, Augustin Ravasse, Lucas Pan, Anaël Pelé, Arthur Quendo, Noémie Manach, Martin Pina-Silas, Aiden Legal, Kevynn Boucher, Thomas Jézequel.

Les questions de cours ou exercices avec deux astérisques ** pour : C. Brévignon, Malo Le Grognec, Augustin Ravasse.

6 Questions de cours

- 1. Des vecteurs propres associés à des valeurs propres deux à deux distinctes sont indépendants.
- 2. Polynôme caractéristique : polynomialité et coefficients remarquables.
- 3. Le polynôme caractéristique d'un endomorphisme induit par un endomorphisme u divise le polynôme caractéristique de u. L'ordre de multiplicité d'une valeur propre est supérieur à la dimension de l'espace propre associé.

7 Exercices

- 1. FORMULES DE WALD cf. DM 1 Soient $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires i.i.d. à valeurs dans \mathbf{R}_+ et T une variable aléatoire à valeurs dans \mathbf{N} . On suppose que pour $n\in\mathbb{N}^*$, les variables $T,X_1,...,X_n$ sont indépendantes et que X_1 et T sont d'espérance finie. On définit la variable aléatoire $S=\sum_{i=1}^T X_i$.
 - (a) Montrer que $E(S) = E(T)E(X_1)$.
 - (b) \star Donner une formule analogue pour V(S) en supposant que X_1^2 et T^2 admettent une espérance finie.

- 2. Soit u un endomorphisme d'un espace vectoriel \mathbf{E} tel que pour tout élément \vec{x} de \mathbf{E} , $(\vec{x}, u(\vec{x}))$ soit lié. Montrer que u est une homothétie. En déduire le centre de $\mathrm{GL}(\mathbf{E})$.
- 3. ★ (On admet l'exercice précédent)
 - (a) Par K on désigne \mathbf{R} ou \mathbf{C} (ou même tout corps). Soit A un élément de $\mathcal{M}_n(\mathbf{K})$ de trace nulle. Montrer que A est semblable à une matrice de diagonale nulle.
 - (b) Pour tout couple (B, C) d'éléments de $\mathcal{M}_n(\mathbf{K})$, on note [BC] = BC CB (crochet de lie de B et C). Montrer qu'il existe des matrices B et C telles que A = [BC].
- 4. Soient A et B des éléments de $\mathcal{M}_n(\mathbf{K})$. Comparer com(AB) et com(A)com(B). On commencera par le cas où A et B sont inversibles.
- 5. Soit $M \in \mathcal{M}_n(\mathbf{R})$. Etudier le rang de com(M) en fonction de celui de M. Déterminer det(com(M)) et com(com(M)).

Retrouver ces résultats par densité algébrique sans discuter sur le rang de M.

6. Déterminer les couples d'applications de **R** dans **R** de classe \mathcal{C}^1 , (φ, ψ) tels que :

$$\begin{cases}
\varphi' = 6\varphi + 4\psi, \\
\psi' = 11\varphi - \psi,
\end{cases}$$
(1)

7. Soit f un edomorphisme d'un **R**-espace vectoriel **E** de dimension n non nulle. Pour tout entier $n \ge 1$ on pose $N_n = \mathrm{Ker}(()f^n)$ et $I_n = \mathrm{Im}(f^n)$. Montrer qu'il existe un entier $n_0 \ge 1$ tel que :

$$N_1 \underset{\neq}{\subset} N_2 \underset{\neq}{\subset} \dots \underset{\neq}{\ldots} \underset{\neq}{\subset} N_{n_0} = N_{n_0+1} = \dots = N_n = \dots$$

$$I_1 \underset{\neq}{\supset} I_2 \underset{\neq}{\supset} \dots \underset{\neq}{\ldots} \underset{\neq}{\ldots} I_{n_0} = I_{n_0+1} = \dots = I_n = \dots$$

Soit $n \in \mathbb{N}^*$. Montrer que $I_n = I_{n+1}$ si et seulement si $I_n + N_n = I_n \oplus N_n$, (cf. TD 1).

- * Montrer la décroissance de la suite $(\dim(N_{i+1}) \dim(N_i)_{i \in \mathbb{N}})$.
- 8. Soient A et B des éléments de $\mathcal{M}_n(\mathbf{K})$. Montrer $\chi_{AB} = \chi_{BA}$, 1. par densité algébrique, 2. en utilsant l'équivalence de A à $J_{rg(A)}$.
- 9. * Montrer que tout hyperplan de $\mathcal{M}_n(\mathbf{R})$ rencontre $\mathrm{GL}_n(\mathbf{R})$.
- 10. Soit \mathbf{E} un espace vectoriel de dimension finie et G un sous-groupe fini de GL (\mathbf{E}). Montrer que

$$\dim \left(\bigcap_{g \in G} \operatorname{Ker}(g - \operatorname{id}_{\mathbf{E}}) \right) = \frac{1}{|G|} \sum_{g \in G} \operatorname{Tr}(g).$$

11. Forme de Jordan

Notons pour tout entier $k \geq 2$, J_k l'élément de $\mathcal{M}_k(\mathbf{C})$ qui n'a que des 1 sur la sous-diagonale et des zéros partout ailleurs. et convenons que $J_1 = O_1$.

Soit M un élément de $\mathcal{M}_n(\mathbf{C})$, nilpotent d'ordre p.

- (a) Montrer pour p = n que M est semblable à J_n .
- (b) \star On suppose que p=2. Montrer que M est semblable à diag $\underbrace{J_2,J_2,....J_2}_{r \text{ termes}},0_{n-2r}$, où $r=\operatorname{rg}(M)$
- (c) $\star \star$ Montrer dans le cas général que $\operatorname{Im}(()u)$ est stable par u. En déduire qu'il existe un entier naturel $k \geq 1$, un élément $(\alpha_1, \alpha_2, ..., \alpha_k)$ de $(\mathbf{N}^*)^k$ vérifiant : $\alpha_1 \leq \alpha_2 \leq ... \leq \alpha_k$, et $\alpha_1 + \alpha_2 + ... + \alpha_k = n$, tel que M soit semblable à la matrice $\operatorname{diag}(J_{\alpha_1}, J_{\alpha_2}, ..., J_{\alpha_k})$.
- (d) ★★ Étudier l'unicité d'une telle décomposition.
- 12. ** On admet le théorème de théorème de FROBENIUS-KÖNIG : Soit $A \in \mathcal{M}_n(\mathbf{R})$. Pourtout $\sigma \in S_n$, le « serpent » $(a_{1,\sigma(1)}, a_{2,\sigma(2)}, \dots a_{n,\sigma(n)})$, admet au moins un terme nul si et seulement si A admet une sous-matrice nulle de taille $s \times t$ avec s + t = n + 1.
 - (a) Montrer que toute matrice bistochastique admet un serpent dont tous les éléments sont strictement positifs.
 - (b) Montrer qu'une matrice B bistochastique a au moins n éléments strictement positifs, et que si elle a exactement n éléments strictement positifs, alors c'est une matrice de permutation.
 - (c) Montrer l'ensemble des matrices bistochastiques est l'enveloppe convexes des matrices de permutations.
 - (d) Montrer que l'ensemble des matrices bistochastique d'ordre n est un convexe, préciser ses points extrémaux.
- 13. ** Démontrer le théorème de Frobenius-König.

Indication pour la question 7.

Soit $n \in \mathbb{N}^*$. Montrer que $I_n = I_{n+1}$ si et seulement si $I_n + N_n = I_n \oplus N_n$,

 \star Montrer la décroissance de la suite $(\dim(N_{i+1}) - \dim(N_i)_{i \in \mathbf{N}})$.

• Supposons $I_n + N_n = I_n \oplus N_n$. Soit l'application

$$v_n: I_n \to I_{n+1}; \vec{x} \mapsto u(\vec{x}).$$

On a $\ker(v_n) = N_1 \cap I_n \subset N_n \cap I_n = \{\vec{0}_{\mathbf{E}}\}$ par croissance de $(N_i)_{\in \mathbf{N}}$, donc le noyau de v étant réduit à $\{\vec{0}_{\mathbf{E}}\}$, l'application v_n est injective, donc $\dim I_{n+1} \geq \dim I_{n+1}$, par le théorème du rang (l'image de v_n est isomorphe à I_n), mais joint à l'inclusion de I_{n+1} dans I_n , voila qui assure :

$$I_n = I_{n+1}$$
.

• Supposons $I_n = I_{n+1}$. Soit l'application

$$w: I_n \to I_{2n}; \vec{x} \mapsto u^n(\vec{x}).$$

Cette application est trivialement surjective, mais comme $n \ge 1$ on a $2n \ge n+1$, et donc $I_{2n} = I_n$, égalité qui transforme la surjectivité de u en bijectivité et donc en injectivité donc :

$$\{\vec{0}_{\mathbf{E}}\} = \ker(w) = I_n \cap N_n.$$

Les sous-espaces I_n et N_n sont donc en somme directe et donc, par la formule du rang suplémentaires. Voila pour la première équivalence.

Ensuite, la formule du rang, appliquée à v_{n+1} et à v_n , applications sujectives, veut que :

$$\dim(I_n) - \dim(I_{n+1}) = \dim(\ker(v_{n+1})) = \dim(N_1 \cap I_{n+1}) \le \dim(N_1 \cap I_n) = \dim(\ker(v_n)) = \dim(I_n) - \dim(I_{n+1}),$$

par décroissance de la suite $((I_i)-)_{i\in\mathbb{N}}$. D'où la décroissance de la suite $(\dim(I_{i+1})-\dim(I_i)_{i\in\mathbb{N}})$, et donc, par la formule du rang celle de $(\dim(N_{i+1})-\dim(N_i))_{i\in\mathbb{N}}$.

 MP^*

Programme de colles provisoire n°3,

8 Révivions de sup.

— Déterminants, applications et calculs

9 Algèbre linéaire : révisions de MPSI, utilisation pratique de la diagonalisation et trigonalisation

Par K on désigne R ou C

- Espace vectoriels, familles libres, génératrices bases, base canonique de l'ensemble des applications polynômiales à p variables, somme directes, sous-espaces supplémentaires.
- Rang d'un endomorphisme, théorème et formule du rang, polynômes d'interpolation de Lagrange.
- Formes linéaires, hyperplans.
- Matrices : Voir programme précédent.
- Diagonalisation. On désigne u un endomorphisme d'un \mathbf{K} espace vectoriel \mathbf{E} de dimension finie non nulle. On note $\lambda_1, \lambda_2, \ldots, \lambda_k$ les valeurs propres deux à deux distinctes de u, d'ordre de multiplicité respectifs m_1, m_2, \ldots, m_k .
 - Valeurs propres, vecteurs propres, espaces propres : les espaces propres sont en sommes directes.
 Espaces propres de deux endomorphismes qui commutent.
 - Polynôme caractéristique (définitions, coefficients remarquables), polynôme caractéristique d'un endomorphisme induit.
 - Diagonalisation des matrices et des endomorphismes. Définition. l'endomorphisme u diagonalisable si et seulement si $\bigoplus_{i=1}^k \mathbf{E}_k = \mathbf{E}$. La dimension d'un espace propre est inférieur à l'ordre de multiplicité de la valeur propre associée. l'endomorphisme u est diagonalisable si et seulement si χ_u est scindé et $m_i = \dim(\mathbf{E}_i)$, pour $i = 1 \dots k$.
 - Trigonalisation, un endomorphisme ou une matrice est trigonalisable si et seulement si leur polynôme caractéristique est scindé. Application à la résolution de systèmes différentiels et de systèmes de relations de récurrences linéaires.
 - Matrices nilpotentes, définition, une matrice est nilpotente si et seulement si elle est trigonalisable à valeurs propres nulles.
 - A venir : espace vectoriels normés...

Les questions de cours ou exercices avec un astérisque * pour : C. Brévignon, Malo Le Grognec, Augustin Ravasse, Lucas Pan, Anaël Pelé, Arthur Quendo, Noémie Manach, Martin Pina-Silas, Aiden Legal, Kevynn Boucher, Thomas Jézequel Ilies Le Marc.

Les questions de cours ou exercices avec deux astérisques ** pour : C. Brévignon, Malo Le Grognec, Augustin Ravasse.

10 Questions de cours

- 1. Un élément de $\mathcal{M}_n(\mathbf{K})$ d'un espace vectoriel de dimension fini est trigonalisable si et seulement si son polynôme caractéristique est scindé sur \mathbf{K} . Au choix du colleur, l'hérédité se fera par les endomorphismes ou par les matrices en blocs.
- 2. Déterminants en blocs.

11 Exercices

1. Polynôme caractéristique d'une matrice compagnon. Dans le cas où son polynôme caractéristique est scindé, montrer qu'elle est diagonalisable si et seulement si ses valeurs propres sont simples.

2. \star On admet la question précédente Soient $k \in \mathbf{N}^*$ et $(a_0, a_1...a_{n-1}) \in \mathbf{C}^n$. Détermier l'ensemble E des éléments u de $\mathbf{C}^{\mathbf{N}}$, tels que pour tout $p \in \mathbf{N}$,

$$u_{p+n} + a_{n-1}u_{p+n-1} + \dots + a_1u_{p+1} + a_0u_p = 0,$$

en supposant que $X^n + \sum_{i=0}^{n-1} a_i X^i$ à n racines distinctes.

Que dire de la structure de E?

- 3. Soit A un élément de $\mathcal{M}_n(\mathbf{K})$ ayant n valeurs propres deux à deux distinctes.
 - (a) Montrer qu'un élément de $\mathcal{M}_n(\mathbf{K})$ commute avec A si et seulement si toute base qui diagonamise A diagonalise M.
 - (b) Détermine l'ensembleE où :

$$E = \left\{ M \in \mathcal{M}_2(\mathbf{R}), M^2 + M = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right\}$$

- (c) En utilisant (a) déterminer le centre de $GL_n(\mathbf{R})$, c'est-à-dire l'ensemble des éléments de ce groupe qui commutent avec tous les autres.
- 4. Commutant d'un endomorphisme
 - (a) Soit A un élément de $\mathcal{M}_n(\mathbf{K})$ ayant n valeurs propres deux à deux distinctes. Montrer que l'ensemble C(A) des matrices éléments de $\mathcal{M}_n(\mathbf{K})$ qui commutent avec A est un espace vectoriel dont on précisera la dimension. Montrer que tout élément de C(A) est un polynôme en A.
 - (b) ★ Même question pour une matrice compagnon (en colonne)
 - (c) \star Soit A un élément de $\mathcal{M}_n(\mathbf{K})$ ayant k valeurs propres deux à deux distinctes avec k < n et diagonalisable. Déterminer la dimension de C(A). Une matrice de C(A) est-elle un polunôme en A.
- 5. On note les éléments de \mathbf{R}^3 en colonne. Déterminer les éléments $\begin{pmatrix} \phi \\ \chi \\ \psi \end{pmatrix}$ de $\mathcal{C}^1(\mathbf{R}, \mathbf{R}^3)$ tels que

$$\left\{ \begin{array}{l} 2\phi' = \phi + \chi + 2\psi, \\ 2\chi' = \phi + \chi - 2\psi, \\ 2\psi' = -\phi + \chi + 4\psi \end{array} \right.$$

6. Déterminer les valeurs propres de la matrice L suivante. Est-elle diagonalisable ?

$$L = \begin{pmatrix} 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 0 & 1 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 1 \\ 1 & 1 & \cdots & 1 & 1 \end{pmatrix}$$

- 7. Déterminer le déterminant de l'élément A de $\mathcal{M}_n(\mathbf{C})$, dont tous les coefficients diagonaux valent a et tous les autres b. On utilisera le plolynôme caractéristique.
- 8. Soient $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbf{R})$ telle que $a_{i,i} = 0$ pour i = 1, 2, ...n et $a_{i,j} \in \{-1, 1\}$ pour tout couple (i, j) d'éléments distincts de $\{1, ...n\}$. Montrer que si n est pair, alors A est inversible.
- 9. \star On dispose de 2n+1 cailloux. On supose que chaque sous ensemble de 2n cailloux peut se partager en deux paquets de n cailloux de même masse. Montrer que tous les cailloux on la même masse.
- 10. Soient n un entier strictement positif et M un élément de $\mathcal{M}_n(\mathbf{C})$. Pour n=3, montrer que pour tout réel strictement positif ε , il existe une matrice triangulaire supérieure $(t_{i,j})_{\substack{i=1,\ldots,n\\j=1,\ldots,n}}$, semblable à M, telle que pour tout couple (i,j) d'éléments distincts de $\{1,\ldots,n\}$, $|t_{i,j}| \leq \varepsilon$.
 - \star Montrer le résultat pour n quel conque.
- 11. Soient $z_1, z_2,...,z_n$ des nombres complexes, et P le polynôme

$$P = (X - z_1)(X - z_2) \dots (X - z_n)$$

On suppose que P est à coefficients entier. Soit un entier $q \geq 2$. Montrer que

$$Q = (X - z_1^q)(X - z_2^q) \dots (X - z_n^q)$$

est à coefficients entiers.

- 12. \star THÉORÈME DE KRONECKER Montrer que si P est un polynôme unitaire de $\mathbf{Z}[X]$ dont les racines complexes sont toutes de module inférieur ou égal à 1 tel que $P(0) \neq 0$, alors toutes les racines de P sont des racines de l'unité.
- 13. ** Soit A un élément de $\mathcal{M}_n(\mathbf{C})$. On considère l'endomorphisme de $\mathcal{M}_n(\mathbf{C})$,

$$\Psi_A : X \mapsto AXA.$$

- (a) Montrer que Ψ_A est diagonalisable si et seulement si A est diagonalisable.
- (b) En supposant A réelle, montrer que l'endomorphisme de $\mathcal{M}_n(\mathbf{R})$ induit par Ψ_A est une isométie pour la norme euclidienne canonique, si et seulement si A est orthogonale.
- 14. $\star\star$ Soit ϕ un endomorphisme de $\mathcal{M}_n(\mathbf{C})$ qui envoie $\mathrm{GL}_n(\mathbf{C})$ dans lui-même.
 - (a) Donner des exemples de tels endomorphismes. Montrer que ceux-ci préservent le rang.
 - (b) Montrer que pour tout $M \in \mathcal{M}_n(\mathbf{C})$, $\phi(M) \in \mathrm{GL}_n(\mathbf{C})$ si et seulement si $M \in \mathrm{GL}_n(\mathbf{C})$. Indication: Montrer dans le cas où M est non inversible qu'il existe $P \in \mathrm{GL}_n(\mathbf{C})$ tel que pour tout complexe λ , $P - \lambda M$ soit inversible.
 - (c) Montrer que $rg(\phi(M)) \ge rg(M)$.
 - (d) Montrer que ϕ conserve le rang.

 MP^* 2025-26

Programme de colles n°4

12 Algèbre linéaire : révision de MPSI, utilisation pratique de la diagonalisation et trigonalisation

— Programme de la semaine précédente.

13 Espaces vectoriels normés

Il s'agit d'un premier contact...

- Définition de norme, espace vectoriel normé, distance à une partie non vide.
- Ouverts, fermés, intérieur, adhérence. Ouverts et fermés relativement à une partie.
- Limite d'une suite à valeurs dans un espace vectoriel normé, convergence d'une suite à valeurs dans un produit d'espaces vectoriels normés. Caractérisation de l'adhérence par les suites, caractérisation des fermés et des fermés relatifs par les suites.
- Valeurs d'adhérence d'une suite à valeurs dans un espace vectoriel normé. Caractérisation des valeurs d'adhérence par les suites extraites.
- A venir : limite des applications, compacité...

Les questions de cours ou exercices avec un astérisque ⋆ pour : C. Brévignon, Malo Le Grognec, Augustin Ravasse, Lucas Pan, Anaël Pelé, Arthur Quendo, Noémie Manach, Martin Pina-Silas, Aiden Legal, Kevynn Boucher, Thomas Jézequel Ilies Le Marc Brieg Ollivier, Vincent Nouaille -Degorce.

Les questions de cours ou exercices avec deux astérisques ** pour : C. Brévignon, Malo Le Grognec, Augustin Ravasse.

14 Questions de cours

- 1. Soit $(\mathbf{E}, \|\cdot\|)$ un e.v.n., X un ensemble non vide. Montrer que $N_{\infty}: \mathcal{B}(X, \mathbf{E}) \to \mathbf{R}; f \mapsto \sup_{x \in X} \|f(x)\|$ est une norme.
- 2. Caractérisation de l'adhérence par les suites. Caractérisation d'un fermé par les suites.
- 3. Montrer que la distance à une partie A non vide d'un e.v.n. $(\mathbf{E}, \|\cdot\|)$ est 1-lipschitzienne de $(\mathbf{E}, \|\cdot\|)$ dans $(\mathbf{R}, |\cdot|)$. Montrer que la distance d'un élément \vec{x} de \mathbf{E} à A est nulle si et seulement si \vec{x} est adhérent à A.

15 Récitation d'exercices

- 1. Soient (a_1, \ldots, a_n) et (b_1, \ldots, b_n) des *n*-uplet de réels positifs. Soient p et q des réels tels que $\frac{1}{p} + \frac{1}{q} = 1$.
 - (a) On admet que pour tout a et tout b réels positifs,

$$ab \leq \frac{a^p}{p} + \frac{b^q}{q}$$
 (inégalité de Young).

Montrer que
$$\sum_{i=1}^n a_i b_i \le \left(\sum_{i=1}^n a_i^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^n b_i^q\right)^{\frac{1}{q}}$$

- (b) Montrer que : $\left(\sum_{i=1}^{n}(a_i+b_i)^p\right)^{\frac{1}{p}} \leq \left(\sum_{i=1}^{n}a_i^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n}b_i^p\right)^{\frac{1}{p}}$. Que dire du cas p=q=2?
- (c) Montrer que, n_p est une norme sur \mathbf{K}^n
- 2. On note ${\bf E}$ l'espace vectoriel $\mathcal{C}([a,b],{\bf R})$. Soit un réel p>1. On admet que n_p est une norme sur ${\bf R}^n$. Montrer que N_p est une norme sur ${\bf E}$.
- 3. ** Montrer sans utiliser n_p que N_p est une norme.

4. Montrer que pour tout élément f de $\mathcal{C}^0([a,b],\mathbf{R}), N_p(f) \xrightarrow[n \to +\infty]{} N_{\infty}(f)$.

Ou version *

Soient ϕ et f des applications de [a,b] dans \mathbf{R} continues. On supose ϕ à valeurs dans \mathbf{R}_+^* et f à valeurs dans \mathbf{R}_+ . On pose pour tout entier $n \geq 0$, $I_n = \int_{[a,b]} \phi f^n$.

- (a) Montrer que le suite $(\sqrt[n]{I_n})_{n\in\mathbb{N}}$ converge de limite à déterminer.
- (b) Montrer que le suite $\left(\frac{I_{n+1}}{I_n}\right)_{n\in\mathbf{N}}$ converge de limite à déterminer.
- 5. Soit G un sous-groupe de \mathbf{R} non trivial. Montrer que, soit il est de la forme $k\mathbf{Z}$, avec k élément de \mathbf{R}_+^* , soit il est dense dans $(\mathbf{R}, |\cdot|)$ (on discutera sur la valeur de $\inf(G \cap \mathbf{R}_+^*)$).
- 6. Soient A et B des parties d'un e.v.n. $(\mathbf{E}, \|\cdot\|)$.
 - (a) Prouver que si A est ouvert, alors A + B l'est également.
 - (b) Montrer que \mathbf{Z} et $\sqrt{3}\mathbf{Z}$ sont des parties fermées de $(\mathbf{R}, |\cdot|)$. La partie $\mathbf{Z} + \sqrt{3}\mathbf{Z}$ est-elle également fermée?
- 7. \star Soit **E** l'ensemble des applications de [0,1] dans **R** continues, muni de la norme N_1 (resp. N_{∞}). Soit F l'ensemble des éléments de **E** qui prennent en 0 la valeur 1. Quelle est l'intérieur de F? Quelle est l'adhérence de F? L'étudiant fera de jolies figures claires et en couleur.
- 8. Soit $(\mathbf{E}, \|\cdot\|)$ un espace vectoriel normé. Montrer que tout sous-espace vectoriel propre de \mathbf{E} est d'intérieur vide. Montrer que l'adhérence d'un sous-espace vectoriel est un sous-espace vectoriel.
- 9. \star On munit ℓ^{∞} ensemble des suites réelles bornées de la norme N_{∞} . On note \mathcal{P} l'ensemble des suites réelles ultimement nulles (polynômes). Déterminer l'adhérence de \mathcal{P} .

RÉVISION —

- 10. Soit A une matrice stochastique d'ordre n, c'est-à-dire un élément de $\mathcal{M}_n(\mathbf{R})$ à coefficient strictements positifs et tel que la somme des coefficients de n'importe quelle colonne fasse 1 :
 - (a) Montrer que $1 \in \operatorname{sp}(A)$ et $\operatorname{sp}(A)$.
 - (b) Soit λ une valeur propre complexe de A. Montrer que $|\lambda| \leq 1$.
 - (c) \star Montrer qu'il existe un élément U de $E_1(A)$ dont toutes les composantes sont strictement positives. On pourra, pour pour $(x_1, ..., x_n)^{\top}$ vecteur propre associé à une valeur propre de module 1, considérer $(|x_1|, |x_2|, ..., |x_n|)^{\top}$.
 - (d) \star Montrer que tout élément V de $E_1(A)$ dont toutes les composantes sont strictement positives est colinéaire à U.

Indication: choisir λ tel que $U - \lambda V$ ait tous ses coefficients positifs et un au moins nul.

11. Soit n en entier naturel non nul. pour toute n-uplet de réels $(b_0, b_1, \ldots, b_{n-1})$ on note $C(b_0, \ldots, b_{n-1})$ la

matrice
$$\begin{pmatrix} b_0 & b_{n-1} & b_{n-2} & \dots & b_1 \\ b_1 & b_0 & b_{n-1} & \dots & b_2 \\ b_2 & b_1 & b_0 & \dots & b_3 \\ \vdots & \vdots & \vdots & & \vdots \\ b_{n-2} & b_{n-3} & b_{n-4} & \dots & b_{n-1} \\ b_{n-1} & b_{n-2} & b_{n-3} & \dots & b_0 \end{pmatrix}$$

- (a) Pour C_1 désigne la matrice $C(0,1,0,\ldots,0)$ Exprimer $C(b_0,\ldots,b_{n-1})$ a u poyen de C_1 .
- 12. ** Soit **E** un espace vectoriel de dimension finie; on désignera par $\|\cdot\|$ une norme sur **E**. Soit $(U_n)_{n\in\mathbb{N}}$ une suite d'ouverts denses de **E**. Montrer que $\bigcap_{n\in\mathbb{N}} U_n$ est dense. Soit $(F_n)_{n\in\mathbb{N}}$ une suite de fermés de **E**

telle que $\bigcup_{n \in \mathbb{N}} F_n = \mathbf{E}$. Montrer que $\bigcup_{n \in \mathbb{N}} \overset{\circ}{F_n}$ est un ouvert dense.

- 13. **Soit (f_n) une suite d'applications de \mathbf{R} dans \mathbf{R} continues, qui converge simplement vers une application f.
 - (a) Soit ε un élément de \mathbf{R}_{+}^{*} . Pour tout entier nnaturel n, on pose :

$$F_{n,\varepsilon} := \{ x \in \mathbf{R} | \forall p \in \mathbf{N}, (p \ge n) \Rightarrow (|f_n(x) - f_p(x)| \le \varepsilon) \}$$

et

$$\Omega_{\varepsilon} := \bigcup_{n \in \mathbf{N}} \overset{\mathrm{o}}{F}_{n,\varepsilon}.$$

Montrer que Ω_{ε} est un ouvert dense.

- (b) Montrer que tout élément a de Ω_{ε} , admet un voisinage V tel que pour tout élément x de V, $||f(x) f(a)|| \le 3\varepsilon$.
- (c) Montrer que f est continue sur un G_{δ} dense. Application aux dérivées.

INDICATIONS

 $9. \star On \ munit \ \ell^{\infty}$ ensemble des suites réelles bornées de la norme N_{∞} . On note $\mathcal P$ l'ensemble des suites réelles ultimement nulles (polynômes). Déterminer l'adhérence de $\mathcal P$.

Preuve séquentielle

Notons ℓ_0 l'ensemble des suites réelles de limite nulle. Un élément u de $\mathbf{R}^{\mathbf{N}}$ sera noté $u = (u(k))_{k \in \mathbf{N}}$, notation qui permettra de considérere des suites $(u_n)_{n \in \mathbf{N}}$ d'éléments de $\mathbf{R}^{\mathbf{N}}$ (suite de suites!), on notera pour tout $n \in \mathbf{N}$,

$$u_n = (u_n(k))_{k \in \mathbf{N}}.$$

Soit $\varepsilon \in \mathbf{R}_{+}^{*}$.

 $\bullet \ell_0 \subset \overline{\mathbf{R}[X]}$.

Soit $u \in \ell_0$. Considérons la suite de polynômes $(p_n)_{n \in \mathbb{N}}$ où, pour tout $n \in \mathbb{N}$; la suite p_n est la troncarture de u au rang n:

$$p_n(k) = u(k)$$
 pour $k = 0, 1, ..., n$ et $p_n(k) = 0$ pour $k \ge n + 1$.

La suite de polynômes $(p_n)_{n\in\mathbb{N}}$ converge vers u. La convergence vers 0 de u nous livre un naturel N tel que pour tout $k\in[N,+\infty[,|u(k)|\leq\varepsilon]$.

Soit alors un entier $n \geq N$. Pour tout $k \in \mathbb{N}$, si $k \leq n$ alors $|p_n(k) - u(k)| = 0 \leq \varepsilon$, et sinon $|p_n(k)_u(k)| = |u(k)| \leq \varepsilon$, puisque $k > n \geq N$; Donc

$$N_{\infty}(p_n - u) \leq \varepsilon$$
.

Donc u, limite de la suite de polynômes $(p_n)_{n\in\mathbb{N}}$ est adhérente à $\mathbf{R}[X]$

$$\bullet \overline{\mathbf{R}[X]} \subset \ell_0$$

Soit v un élément de $\overline{\mathbf{R}[X]}$, on dispose d'une suite $(q_n)_{n\in\mathbb{N}}$ d'éléments de $\mathbf{R}[X]$ de limite v et donc en particulier d'un élément n_0 tel que $N_{\infty}(v-q_{n_0}) \leq \varepsilon$. Notons d_0 le degré de q_{n_0} . Pour tout entier k, si $k \geq d_0$, alors

$$|v(k)| \le |v(k) - q_{n_0}(k)| + |q_{n_0}(k)| \le N_{\infty}(v - q_{n_0}) + 0 \le \varepsilon.$$

Donc $v \in \ell_0$.

Par ces deux points; $\ell_0 \subset \overline{\mathbf{R}[X]}$.

PREUVE NON SÉQUENTIELLE

$$\bullet \ell_0 \subset \overline{\mathbf{R}[X]}$$
.

Soit $u \in \ell_0$. La convergence vers 0 de u nous livre un naturel N tel que pour tout $k \in [N+1, +\infty[$, $|u(k)| \le \varepsilon$. Soit p le polynôme qui coïncide avec u sur [0, N] et qui est nul sur $[N+1, +\infty[$. Pour tout $k \in \mathbb{N}$, si $k \le N$ alors $|p(k) - u(k)| = 0 \le \varepsilon$, et sinon $|p(k) - u(k)| = |u(k)| \le \varepsilon$, et donc

$$N_{\infty}(p_n - u) \le \varepsilon$$
.

Donc la boule de centre u de rayon ε rencontre $\mathbf{R}[X]$. La suite u est donc adhérente à $\mathbf{R}[X]$.

$$\bullet \overline{\mathbf{R}[X]} \subset \ell_0.$$

Soit v un élément de $\overline{\mathbf{R}[X]}$, La boule ouverte de centre v de rayon ε rencontre $\mathbf{R}[X]$ en un polynôme q. Notons d le degré de q. Pour tout entier k, si $k \ge d$, alors

$$|v(k)| \le |v(k) - q(k)| + |q(k)| \le N_{\infty}(v - q) + 0 \le \varepsilon.$$

Donc $v \in \ell_0$.

 MP^* 2025-26

Programme de colles n°5

16 Espaces vectoriels normés

- Normes, espaces vectoriels normés, distance à une partie non vide.
- Ouverts fermés, intérieurs adhérences. Ouverts et fermés relativement à une partie.
- Limite d'une suite à valeurs dans un espace vectoriel normé. Caractérisation de l'adhérence par les suites.
- Valeurs d'adhérence d'une suite à valeurs dans un espace vectoriel normé. Caractérisation des valeurs d'adhérence par les suites extraites.
- Caractérisation séquentielle de la limite.
- Limite et continuité d'une application d'une partie d'un e.v.n. à valeurs dans un e.v.n.
- Caractérisation de la continuité par les images réciproques d'ouverts (de fermés).
- Continuité uniforme, applications lipschitziennes.
- A venir : Révisions sur les fonctions d'une variable réelle...

Les questions de cours ou exercices avec un astérisque * pour : C. Brévignon, Malo Le Grognec, Augustin Ravasse, Lucas Pan, Anaël Pelé, Arthur Quendo, Noémie Manach, Martin Pina-Silas, Aiden Legal, Kevynn Boucher, Thomas Jézequel Ilies Le Marc Brieg Ollivier, Vincent Nouaille -Degorce.

Les questions de cours ou exercices avec deux astérisques ** pour : C. Brévignon, Malo Le Grognec, Augustin Ravasse.

17 Questions de cours

— Caractérisation séquentielle de la limite.

18 Récitation d'exercices

- 1. (a) Soit n un entier supérieur ou égal à 2. On munit $\mathcal{M}_n(\mathbf{R})$ identifié à $\mathbf{R}^{(n^2)}$ de la norme $\|\cdot\|_{\infty}$, Montrer que $\mathrm{GL}_n(\mathbf{R})$ est un ouvert dense.
 - (b) Montrer que $SL_n(\mathbf{R})$ est un sous-groupe de $GL_n(\mathbf{R})$ fermé (dans $\mathcal{M}_n(\mathbf{R})$) et non borné.
 - (c) \star On note \mathcal{T} le sous-ensemble de $\mathcal{M}_n(\mathbf{R})$ des matrices de transvection. Déterminer l'adhérence et l'intérieur de \mathcal{T} . Même question pour \mathcal{P} le sous-ensemble de $\mathcal{M}_{\ell}(\mathbf{R})$) des matrices de permutation.
- 2. RÉVISION. Effet de la multiplicationà droite ou à gauche par une matrice de transvection ou de permutation.
- 3. On munit $\mathcal{M}_n(\mathbf{C})$ de la norme $\|\cdot\|_{\infty}$. Montre que l'ensemble D_n des éléments de $\mathcal{M}_n(\mathbf{C})$ diagonalisables est dense. Est il-ouvert ? fermé ?
- 4. * Soit un entier $n \geq 2$. On dit qu'un élément M de $\mathcal{M}_n(\mathbf{C})$ est cyclique si il existe un élément X de $\mathcal{M}_{n,1}(\mathbf{C})$ tel que $(X, MX, ..., M^{n-1}X)$ soit libre.
 - (a) Montrer que l'ensemble des matrices de $\mathcal{M}_n(\mathbf{C})$ cycliques est ouvert.
 - (b) Soit M un élément de $\mathcal{M}_n(\mathbf{C})$ diagonalisable et $\lambda_1, \lambda_2, ..., \lambda_n$ ses valeurs propres. Montrer que si les $\lambda_i, i = 1, 2, ..n$, sont deux à deux distincts alors M est cyclique. Étudier la réciproque.
 - (c) Montrer que l'ensemble des matrices cycliques de $\mathcal{M}_n(\mathbf{C})$ est dense.
- 5. \star On munit $\mathcal{M}_n(\mathbf{C})$ de la norme $\|\cdot\|_{\infty}$. Soit $M \in \mathcal{M}_n(\mathbf{C})$. Montrer que O_n est dans l'adhérence de la classe de similitude de M si et seulement si M est nilpotente.
- 6. On pose $A = \{ \exp(in), n \in \mathbf{Z} \}$. Montrer que $\bar{A} = \mathbf{U}$.

Version ** Pour tout $n \in \mathbb{N}^*$, posons $z_n = \prod_{k=1}^n \left(1 + \frac{\mathrm{i}}{k}\right)$ déterminer l'ensemble des valeurs d'adhérence de la suite $(z_n)_{n \in \mathbb{N}}$.

7. Soit $(x_n)_{n\in\mathbb{N}}$ une suite à valeurs dans l'e.v.n. $(\mathbf{R},|\cdot|)$ qui converge vers un élément ℓ de \mathbf{E} . Soient $\Sigma \alpha_n$ une série à termes strictement positifs divergente, on note $(S_n)_{n\in\mathbb{N}}$ la suite de ses sommes partielles. Soit la suite $(z_n)_{n\in\mathbb{N}}$ définie par,

$$\forall n \in \mathbf{N}, z_n = \frac{1}{S_n} \sum_{k=0}^n \alpha_k x_k,$$

Déterminer la limite de cette dernière suite.

8. \star Soit $(x_n)_{n \in \mathbb{N}}$ une suite à valeurs dans l'e.v.n. $(\mathbf{R}, |\cdot|)$ monotone. On suppose que le suite converge en moyenne. Montrer qu'elle converge.

moyenne. Montrer qu'ene converge. Version ** On dit qu'une partie A de \mathbb{N} est de densité nulle si $\frac{\operatorname{card}(A \cap \{0,1,\dots,n\})}{n} \xrightarrow[n \to +\infty]{} 0$. Soit $(x_n)_{n \in \mathbb{N}}$ une suite de réels positifs, majorée. On note $(S_n)_{n \in \mathbb{N}}$ la suite de ses moyennes.

Montrer l'équivalence des deux propositions suivantes :

i.
$$S_n \underset{n \to +\infty}{\to} 0$$
;

ii. Il existe une partie A de ${\bf N}$ de densité nulle telle que $a_n \underset{n \to +\infty}{\longrightarrow} 0$

Pour déduire ii. de i on considérera $A:=\{p\in \mathbf{N}^*|a_p\geq \sqrt{\alpha_p}\}$, où pour tout $n\in N$, $\alpha_n:=\sup\{S_p,p\geq n\}$.

9. Montrer que la relation

$$\begin{cases} u_0 = 1, \\ u_{n+1} = \ln(1 + u_n), \end{cases}$$

définit une suite $(u_n)_{n\in\mathbb{N}}$. Donner la limite de cette suite puis un équivalent simple de son terme général ².

10. Montrer que la relation

$$\begin{cases} u_0 = 1, \\ u_{n+1} = \frac{1}{2} \ln(1 + u_n), \end{cases}$$

définit une suite $(u_n)_{n \in \mathbb{N}}$. Donner la limite de cette suite, puis montrer que la suite $(\sqrt[n]{u_n})_{n \in \mathbb{N}}$ admet une limite à déterminer.

11. Soit S des applications f de $\mathbf R$ dans $\mathbf R$ continues telles que pour tout x et tout y réels,

$$f(x+y) = f(x) + f(y).$$

Déterminer S par une des deux méthodes suivantes au choix du colleur :

- en utilisant la densité de Q;
- en régularisant par intégration.

12. \star Soit S des applications f de **R** dans **R** continues telles que pour tout x et tout y réels,

$$f(x + y) + f(x - y) = 2f(x)f(y).$$

- (a) Soit f un élément de S non nul. Montrer que f(0) = 1 et que f est paire.
- (b) Soit f un élément de S non nul est indéfiniment dérivable. Montrer que pour tout $(x,y) \in \mathbf{R}^2$,

$$f''(x)f(y) = f(x)f''(y).$$

- (c) Montrer que tout élément de S est indéfiniment dérivable. Déterminer S.
- 13. ** Soit $f \in \mathcal{L}(\mathbf{R}^n, \mathbf{R}^p)$. Montrer que f est surjective si, et seulement si, l'image de tout ouvert de \mathbf{R}^n par f est un ouvert de \mathbf{R}^p ?
- 14. (a) **Reporté semaine 6. Soit $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions d'une partie E de \mathbb{R} , dénombrable dans \mathbb{R} , telle que pour tout $n \in \mathbb{N}$, f_n soit bornée par 1. Montrer que $(f_n)_{n \in \mathbb{N}}$ admet une suite extraite qui converge simplement 3 sur E vers une application f de E dans \mathbb{R} .
 - (b) Soit $(g_n)_{n \in \mathbb{N}}$ une suite d'applications de \mathbb{R} dans [-1,1], toutes croissantes. Montrer qu'il existe une suite extraite de $(f_n)_{n \in \mathbb{N}}$ qui converge simplement sur \mathbb{R} , (Théorème de sélection de Helly).

^{2.} Dans cet exercice et le suivant, les élèves doivent connaître la méthode sans pour le moment, en comprendre l'origine.

^{3.} On dit qu'une suite $(g_n)_{n\in\mathbb{N}}$ d'élément de $\mathbb{R}^{\mathbf{E}}$ converge simplement vers un élément g de $\mathbb{R}^{\mathbf{E}}$, si pour tout réel x la suite $(g_n(x))_{n\in\mathbb{N}}$ converge de limite g(x).

 MP^* 2024-2025

Programme de colle n°6,

19 Révision du cours sur les fonctions d'une variable réelle de MPSI

- Théorème de la limite monotone.
- Théorème des valeurs intermédiaires. Théorème de l'homéomorphisme croissant.
- Lemme de Rolle, inégalité des accroissements finis, théorème du prolongement \mathcal{C}^n .
- etc.
- Fonction. convexes.
 - Définition, interprétation géométrique en terme de corde, formule de Jansen.
 - Lemme des trois pentes, caractérisation de la convexité par la croissance des pentes.
 - Caractérisation des fonctions convexes dérivables et deux fois dérivables. Une fonction dérivable convexe est au dessus de ses tangentes, position par rapport à une sécante.
 - Inégalité de convexité $e^x \ge 1 + x$, $\ln(1+x) \le x$, inégalité de Young, Inégalité de Hölder.
 - A venir. Espace vectoriels normmés, deuxième partie.

Les questions de cours ou exercices avec un astérisque * pour : C. Brévignon, Malo Le Grognec, Augustin Ravasse, Lucas Pan, Anaël Pelé, Arthur Quendo, Noémie Manach, Martin Pina-Silas, Aiden Legal, Kevynn Boucher, Thomas Jézequel Ilies Le Marc Brieg Ollivier, Vincent Nouaille -Degorce.

Les questions de cours ou exercices avec deux astérisques ** pour : C. Brévignon, Malo Le Grognec, Augustin Ravasse.

20 Questions de cours

1. Soit f une application continue sur un intervalle I telle que sa restriction à $I \setminus \{a\}$ soit dérivable. On suppose que f' admet en a une limite épointé ℓ finie ou non. Montrer que

$$\frac{f(t) - f(a)}{t - a} \underset{t \to a, t \neq a}{\longrightarrow} \ell.$$

Cas où ℓ est un réel.

2. Lemme des trois pentes.

21 Exercices

- 1. Enoncer le théorème de DARBOUX et donner en une preuve utilisant le théorème de la borne atteinte.
- 2. Soit f une application de \mathbf{R} dans \mathbf{R} dérivable qui admet 0 comme limite en $+\infty$ et $-\infty$. Montrer que f' s'annule, par l'une des deux méthodes suivantes laissées au choix du coleurs :
 - en utilisant le théorème de la borne atteinte (et un joli dessin);
 - en effectuant un changement de variable.
- 3. * Inégalité de Kolmogorov
 - (a) Soit f une application de \mathbf{R} dans \mathbf{C} de classe \mathcal{C}^2 . On suppose que f et f'' sont bornée. On note $M_0 := \sup_{x \in \mathbf{R}} |f(x)|$ et $M_2 := \sup_{x \in \mathbf{R}} |f''(x)|$.

Montrer que pour tout réel x,

$$|f'(x)| \le \sqrt{2M_0 M_2}.$$

On pourra appliquer l'inégalité de Taylor lagrange entre x et x+h et entre x et x-h, pour tout réel h>0.

(b) ** Soient un entier naturel $n \geq 2$ et f une application de \mathbf{R} dans \mathbf{C} de classe \mathcal{C}^n . On suppose que f et $f^{(n)}$ sont bornée. Pour $k = 0, 1, \ldots, n$ on note $M_k := \sup_{x \in \mathbf{R}} |f^{(k)}(x)|$, sous réserve que l'application $f^{(k)}$ soit bornée.

Montrer que pour tout élément k de $\{0,\ldots,n\},\,f^{(k)}$ est bornée et

$$M_k \leq 2^{\frac{k(n-k)}{2}} M_0^{1-\frac{k}{n}} M_n^{\frac{k}{n}},$$
 (inégalité de Kolmogorov).

- 4. Soit f une application de \mathbf{R} dans \mathbf{R} convexe et non constante. Montrer que f tend vers $+\infty$ en $+\infty$ ou en $-\infty$.
- 5. Soit f une application de \mathbf{R} dans \mathbf{R} strictement convexe continue ⁴. On suppose que f(x) tend vers $+\infty$ lorsque x tend vers $+\infty$ et $-\infty$. Montrer que f atteint sa borne supérieure en un et un seul point a de \mathbf{R} . Montrer que si f est de plus dérivable, alors a est **caractérisé** par f'(a) = 0.
- 6. \star Soit f une application de ${\bf R}$ dans ${\bf R}$ de classe ${\cal C}^1$ dérivable et strictement convexe. On suppose de plus que

$$\lim_{x \to \pm \infty} \frac{f(x)}{|x|} = +\infty. \tag{2}$$

Montrer que f' est un homéomorphisme de \mathbf{R} sur \mathbf{R} .

Version $\star\star$ On ne suppose en plus f que dérivable et non de classe \mathcal{C}^1 .

- 7. Soient n un entier naturel supérieur ou égal à 1 et f une application d'un intervalle I dans $\mathbf R$ de classe $\mathcal C^n$. On suppose que f admet n+1 zéros comptés avec leurs ordres. Montrer que $f^{(n)}$ s'annule.
- 8. Soit n un entier naturel, et soit f une application d'un segment [a,b] (a < b) à valeurs réelles, de classe \mathcal{C}^{n+1} , soient enfin (x_0, x_1, \dots, x_n) , n+1 points deux à deux distincts de [a,b].
 - (a) Montrer qu'il existe un unique polynôme à coefficients réels de degré inférieur ou égal à n, que nous noterons P, qui coïncide avec f en chacun des points x_i
 - (b) Montrer que pour tout élément x de [a,b] il existe un élément y de [a,b] tel que :

$$(f-P)(x) = f^{(n+1)}(y) \cdot \frac{\prod_{i=0}^{n} (x-x_i)}{(n+1)!},$$

9. \star — ÉGALITÉ DE TAYLOR LAGRANGE — **REPORTÉE semaine 7.** Soit n un entier naturel, et soit f une application d'un segment [a,b] (a < b) à valeurs réelles, n+1 fois dérivable, soit enfin x_0 un point de [a,b]. Montrer que pour tout élément x de [a,b], il existe un élément y de $]x_0,x[$, tel que :

$$f(x) = \sum_{i=0}^{n} (x - x_0)^i \frac{f^{(i)}(x_0)}{i!} + (x - x_0)^{n+1} \frac{f^{(n+1)}(y)}{(n+1)!}.$$

Dans le cas où f est de classe C^{n+1} retrouver ce résultat par la formule de Taylor avec reste intégrale.

10. ★ Inégalité de Jensen —

Soit f une application d'un segment [a,b], non réduit à un point, à valeurs réelles, continue et *convexe*. Soient x une application de [0,1] à valeurs dans [a,b] continue et α une application de [0,1] à valeurs dans \mathbf{R}_+ continue telle que :

$$\int_0^1 \alpha(t) \mathrm{d}t = 1.$$

- (a) Montrer que : $\int_0^1 \alpha(t)x(t)dt \in [a,b]$.
- (b) Montrer que $f\left(\int_0^1 \alpha(t)x(t)dt\right) \leq \int_0^1 \alpha(t)f(x(t))dt$.
- 11. \star —INÉGALITÉ DE HÖFDING Soit $(X_i)_{1 \leq i \leq n}$ une suite de variables aléatoires mutuellement indépendantes centrées, et $(c_i)_{1 \leq i \leq 1}$ une suite de réels telles que pour i=1,2,...,n on ait presque sûrement $|X_i| \leq |c_i|$. On note $S_n = X_1 + X_2 + ... X_n$ et $C_n = c_1^2 + c_2^2 + ... c_n^2$.
 - (a) Montrer que pour tout $x \in [-1, 1]$ et tout réel t, $\exp(tx) \le \frac{1-x}{2} \exp(-t) + \frac{1+x}{2} \exp(t)$.
 - (b) Soit X une variable aléatoire centrée tel que $|X| \le 1$, p.s. Montrer que $\mathbb{E}(\exp(tX) \le \exp\left(\frac{t^2}{2}\right)$.
 - (c) En déduire que $\mathbb{E}\left(\exp(tS_n)\right) \leq \exp\left(\frac{t^2}{2}C_n\right)$.
 - (d) Montrer que $\mathbf{P}(|S_n| > \varepsilon) \le 2 \exp\left(\frac{-\varepsilon^2}{2C_n}\right)$.
- 12. \star Soit f une application de \mathbf{R} dans \mathbf{R} à valeurs positives ou nulles de classe \mathcal{C}^2 . Soit x_0 un zéro de f.
 - (a) Montrer que $f'(x_0) = 0$.
 - (b) Montrer que \sqrt{f} est dérivable en x_0 si et seulement si $f''(x_0) = 0$.

13. ******

- (a) Montrer qu'une fonction continue d'un segment [a,b] dans ${\bf R}$ qui admet en tout point un maximum est constante.
- (b) Soit f une application de \mathbf{R} dans \mathbf{R} . On appelle valeur maximale, tout réel y tel qu'il existe un réel x en lequel f admet un maximum local. Montrer que l'ensemble des valeurs maximales de f est au plus dénombrable.
- (c) Montrer qu'une application continue de [a, b] dans \mathbf{R} qui admet en tout point un extremum local est constante.
- 14. (a) $\star\star$ Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions d'une partie E de \mathbb{R} , **dénombrable** dans \mathbb{R} , telle que pour tout $n\in\mathbb{N}$, f_n soit bornée par 1. Montrer que $(f_n)_{n\in\mathbb{N}}$ admet une suite extraite qui converge simplement ⁵ sur E vers une application f de E dans \mathbb{R} .
 - (b) Soit $(g_n)_{n\in\mathbb{N}}$ une suite d'applications de \mathbf{R} dans [-1,1], toutes croissantes. Montrer qu'il existe une suite extraite de $(f_n)_{n\in\mathbb{N}}$ qui converge simplement sur \mathbf{R} , (Théorème de sélection de Helly).

^{5.} On dit qu'une suite $(g_n)_{n\in\mathbb{N}}$ d'élément de $\mathbb{R}^{\mathbf{E}}$ converge simplement vers un élément g de $\mathbb{R}^{\mathbf{E}}$, si pour tout réel x la suite $(g_n(x))_{n\in\mathbb{N}}$ converge de limite g(x).

 MP^*

Programme de colles n°7 Supplément spécial vacances.

22 Espaces vectoriels normés

- Normes, espaces vectoriels normés, distance à une partie non vide.
- Ouverts fermés, intérieurs adhérences. Ouverts et fermés relativement à une partie.
- Limite d'une suite à valeurs dans un espace vectoriel normé. Caractérisation de l'adhérence par les suites.
- Valeurs d'adhérence d'une suite à valeurs dans un espace vectoriel normé. Caractérisation des valeurs d'adhérence par les suites extraites.
- Limite et continuité d'une application d'une partie d'un e.v.n. à valeurs dans un e.v.n.
- Caractérisation de la continuité par les images réciproques d'ouverts (de fermés).
- Continuité uniforme, applications lipschitziennes.
- Compacité. Compacts, les compacts sont fermés bornés. Compacité des segments de $(\mathbf{R}|\cdot|)$. Les compacts de $(\mathbf{K}^n, n_{\infty})$ sont les parties fermées bornées $(\mathbf{K} = \mathbf{R} \text{ ou } \mathbf{C})$. Image d'un compact par une application continue, théorème de Heine.
- Connexité par arcs : convexes (caractérisation par le barycentre de n points), parties étoilées, composantes connexes par arcs, image par une application continue d'un connexe par arcs (théorème de la valeur intermédiaire).

Les ensembles convexes seront au centre du prochain programme

— A venir : intégrales convergentes. Chapitre III sur les e.v.n.

Les questions de cours ou exercices avec un astérisque ★ pour : C. Brévignon, Malo Le Grognec, Augustin Ravasse, Lucas Pan, Anaël Pelé, Arthur Quendo, Noémie Manach, Martin Pina-Silas, Aiden Legal, Kevynn Boucher, Thomas Jézequel Ilies Le Marc Brieg Ollivier, Vincent Nouaille-Degorce.

Les questions de cours ou exercices avec deux astérisques ** pour : C. Brévignon, Malo Le Grognec, Augustin Ravasse, Martin Pina-Silas, Lucas Pan.

23 Questions de cours

- Compacité d'un segment de (R, | · |). Par dichotomie ou par le lemme du soleil levant au choix du coleur.
- 2. Une suite d'un espace vectoriel normé $(\mathbf{E}, \|\cdot\|)$ à valeurs dans un compact K converge si et seulement si elle admet une et une seule valeur d'adhérence.

24 Récitation d'exercices

- 1. Montrer que toute application de ${f R}$ dans ${f R}$ continue et périodique est uniformément continue.
- 2. Soit f une application de [0,1] dans \mathbf{R} de classe \mathcal{C}^2 . On suppose que : f(0) = f'(0) = f'(1) = 0 et que f(1) = 1.
 - (a) En utilisant une formule de de Taylor entre 0 et 1, montrer qu'il existe un élément c de [0,1] tel que $|f''(c)| \ge 2$.
 - (b) En utilisant une formule de Taylor entre 0 et $\frac{1}{2}$ et $\frac{1}{2}$ et 1, montrer qu'il existe un élément d de [0,1] tel que $|f''(d)| \ge 4$.
 - (c) Un chien à l'arrêt s'élance en ligne droite et dix seconde plus tard, s'arrète 100 m plus loin. Montrer qu'au cours de sa course notre compagnon à quatre pattes à eu une accélération supérieure ou égale à 4 ms⁻².
- 3. Soit F une partie fermée d'un espace vectoriel normé $(\mathbf{E}, \|\cdot\|)$ de dimension finie. Soient k un élément de [0,1[, et \vec{f} une application de F dans F k-contractante. On note $(x_n)_{n\in\mathbb{N}}$ la suite des itérés d'un point \vec{a} de K par f.
 - (a) Montrer que f admet un et un seul point fixe, en utilisant ou sans utiliser les séries, au choix du colleur.

- (b) \star Montrer que le résultat demeure si l'on suppose qu'il existe un entier $N \geq 1$ tel que \vec{f}^N soit k-contractante.
- (c) \star Dans le cas ou F est un compact étoilé, montrer que le résultat demeure en ne supposant plus que f est k-contractante mais seulement 1-lipschitzienne.
- 4. Soit F un fermé d'un espace vectorel de dimension finie. Montrer que pour tout élément \vec{a} de \mathbf{E} , il existe un élément \vec{f} de \mathbf{F} tel que $d(\vec{a}, F) = ||\vec{f} \vec{a}||$.

On munit $\mathcal{M}_n(\mathbf{R})$ de la norme euclidienne canonique (norme de Frobenius). Montre que $\mathrm{SL}_n(\mathbf{R})$, ensemble des éléments de $\mathcal{M}_n(\mathbf{R})$ de déterminant 1, est un sous-groupe de $\mathrm{GL}_n(\mathbf{R})$), qui est fermé. Est-il compact ? Montrer qu'il existe un élément de $\mathrm{SL}_n(\mathbf{R})$ de norme minimale.

- 5. Théorème de Riestz. ★★ Montrer que la boule unité d'un espace vectoriel de dimension infinie n'est pas compact.
- 6. DARBOUX. \star Soit f une application d'un intervalle I de $\mathbf R$ dans $\mathbf R$, dérivable.

On note $T = \{(x,y) \in I^2, y < x\}$ et on considère $\psi : T \to \mathbf{R}; (x,y) \mapsto \frac{f(y) - f(x)}{y - x}$. Montrer que $\psi(T) \subset f'(I) \subset \overline{\psi(T)}$, en déduire que f'(I) est un intervalle.

- 7. Montrer que $GL_n(\mathbf{R})$ n'est pas connexe par arcs mais que $GL_n(\mathbf{C})$ l'est.
- 8. Montrer que $O_n(\mathbf{R})$ n'est pas connexe par arcs mais que $SO_2(\mathbf{R})$ l'est.
- 9. (a) Soit A un connexe par arcs d'une e.v.n. $(\mathbf{E}, \|\cdot\|)$. Montrer que toute partie de A relativement ouverte et fermée est soit A soit vide.
 - (b) Soit U un ouvert d'un e.v.n. $(\mathbf{E}, \|\cdot\|)$ connexe par arcs. Montrer que U est « connexe par lignes brisées ».
- 10. \star Soit K un compact d'une e.v.n. $(\mathbf{E}, \|\cdot\|)$.
 - (a) Soit ε un réel strictement positif. Montrer que K est inclus dans la la réunion d'un nombre fini de boules centrées en des points de K et de rayon ε .
 - (b) $\star\star$ Montrer que K possède une partie dense dénombrable.
- 11. \star Déterminer les composantes connexes par arcs de $GL_2(\mathbf{R})$.
- 12. ** Soit A un élément de $\mathcal{M}_n(\mathbf{R})$ non inversible. Montrer que $\mathrm{GL}_n(\mathbf{R}) \cup \{A\}$ est connexe par arcs.
- 13. \star Soit P un polynôme unitaire de $\mathbf{R}[X]$ de degré d. Montrer qu'il est scindé sur $\mathbf{R}[X]$ si et seulement si pour tout complexe z, $|P(z)| \geq |\mathrm{Im}(z)|^d$. En déduire que l'adhérence dans $\mathcal{M}_n(\mathbf{R})$ des matrices diagonalisables est l'ensemble des matrices dont le polynôme caractéristique est scindé.
- 14. Soit f une application de \mathbf{R}_+ dans \mathbf{R} , tel que pour tout $x \in \mathbf{R}_+$, $f(nx) \underset{n \to +\infty}{\to} +0$.
 - (a) On suppose f uniformément continue. Montrer que $\lim_{+\infty}=0.$
 - (b) $\star\star$ On ne suppose plus f que continue.

Soit $\varepsilon \in \mathbf{R}_{+}^{*}$. Pour tout entier $n \geq 0$, on pose $F_{n} = \{x \in \mathbf{N}; \forall p \in \mathbf{N}, p \geq n \Longrightarrow |f(px)| \leq \varepsilon\}$.

- i. Montrer qu'il existe $N \in \mathbb{N}$, tel que $F_{\mathbb{N}}$ soit d'intérieure non vide.
- ii. Conclure.
- (c) ** Donner un exemple d'application f qui n'admet pas 0 comme limite en $+\infty$.
- 15. ** Théorème de Glaeser (1963) Soit f une application de $\mathbf R$ dans $\mathbf R$ à valeurs positives ou nulles de classe $\mathcal C^2$.
 - (a) On suppose dans cette question que f(0) = f'(0) = f''(0) = 0. Soient α un élément de \mathbf{R}_+^* et $M(\alpha) = \sup_{t \in [-2\alpha, 2\alpha]} (|f''|)$.

Soit $x \in [-\alpha, \alpha]$. Montrer que pour tout $h \in [-\alpha, \alpha]$,

$$M(\alpha)\frac{h^2}{2} + hf'(x) + f(x) \ge 0.$$

On suppose que $M(\alpha)$ est non nul.

Montrer que $\frac{-f'(x)}{M(\alpha)}$ est élément de $[-\alpha, \alpha]$.

- (b) En étudiant sur $[-\alpha, \alpha]$ le signe du trinôme P, où $P = M(\alpha) \frac{X^2}{2} + Xf'(x) + f(x)$, Montrer que $f'^2(x) \leq 2f(x)M(\alpha)$, que $M(\alpha)$ soit nul ou non.
- (c) Montrer que \sqrt{f} est de classe \mathcal{C}^1 si et seulement si pour tout zéro z de f, f''(z) = 0.

Correction de la question 12

Notons r le rang de A. On dipose donc de matrices inversibles P et Q telles que :

$$PAQ^{-1} = J_r.$$

Notons $C = \operatorname{GL}_n(\mathbf{R}) \cup \{A\}$ et $C' = \operatorname{GL}_n(\mathbf{R}) \cup \{J_r\}$. Par inversibilité de P et Q on a $C = \Phi(C')$, où

$$\Phi: \mathcal{M}_n(\mathbf{R}) \to \mathcal{M}_n(\mathbf{R}); M \mapsto P^{-1}MQ.$$

Or l'application Φ est continue, bientôt on écrira « car linéaire en dimension finie » , aujourd'hui disons que ses composantes dans la base canonique sont polynomiales en les coordonnées de la variable dans la base canonique. Donc il suffit de prouver la connexité par arcs de C' pour avoir celle de C. Faisons.

On note \mathcal{R} la relation définie sur C' ainsi : un élément M de C' est en relation avec un élément M' de C' si, par définition, il existe un chemin joignant M à M' de support inclus dans C'. Le cours affirme que \mathcal{R} est une relation d'équivalence.

D'abord $J_r \mathcal{R} \text{diag}(1, 1, ..., 1, -1)$. En effet l'application

$$\Gamma : [0,1] \to \mathcal{M}_n(\mathbf{R}); t \mapsto \operatorname{diag}(I_r, tI_{n-r-1}, -tI_1)$$

relie J_r à diag(1, 1, ..., 1, -1), est continue (ses composantes dans la base canonique sont affines) et est à valeurs dans C', puisque $\Gamma(0) = J_r$ et que pour tout $t \in]0,1]$ le déterminant de $\Gamma(t)$ vaut $-t^{n-r-1}$ et est donc non nul. Ensuite sur le même principe on montre que $J_r \mathcal{R} I_n$.

Donc la clase d'équivalence pour \mathcal{R} contient I_n et diag(1,1,...,1,-1) mais comme $\mathrm{GL}_n^{\pm}(\mathbf{R})$ est connexe par arcs, elle contient $\mathrm{GL}_n^{+}(\mathbf{R})$ et $\mathrm{GL}_n^{+}(\mathbf{R})$ donc C' entier. Donc C' est connexe par arcs.

Donc C est bien connexe par arcs.

 MP^*

Programme de colles n°8

25 Espaces vectoriels normés

Révisions!

- Normes, espaces vectoriels normés, distance à une partie non vide.
- Ouverts fermés, intérieurs adhérences. Ouverts et fermés relativement à une partie.
- Limite d'une suite à valeurs dans un espace vectoriel normé. Caractérisation de l'adhérence par les suites.
- Valeurs d'adhérence d'une suite à valeurs dans un espace vectoriel normé. Caractérisation des valeurs d'adhérence par les suites extraites.
- Limite et continuité d'une application d'une partie d'un e.v.n. à valeurs dans un e.v.n.
- Caractérisation de la continuité par les images réciproques d'ouverts (de fermés).
- Continuité uniforme, applications lipschitziennes.
- Compacité. Compacts, les compacts sont fermés bornés. Compacité des segments de $(\mathbf{R}|\cdot|)$. Compacts de $(\mathbf{K}^n, n_{\infty})$. Image d'un compact par une application continue, théorème de Heine.
- Connexité par arcs : convexes, parties étoilées, composantes connexes par arcs, image par une application continue d'un connexe par arcs (théorème de la valeur intermédiaire).

26 Intégrale sur un intervalle quelconque

Il s'agit d'un premier contact les exercices doivent rester élémentaires, la prochaine semaine sera consacrée aux intégrales généralisées.

- Intégrale convergente, absolument convergente, fonctions intégrables. L'absolue convergence assure la convergence.
- Théorèmes de comparaison,
- à vanir : intégration des relations de comparaison, changement de variables et intégrations par parties dans une intégrale généralisée.

Les questions de cours ou exercices avec un astérisque * pour : C. Brévignon, Malo Le Grognec, Augustin Ravasse, Lucas Pan, Anaël Pelé, Arthur Quendo, Noémie Manach, Martin Pina-Silas, Aiden Legal, Kevynn Boucher, Thomas Jézequel Ilies Le Marc Brieg Ollivier, Vincent Nouaille -Degorce.

Les questions de cours ou exercices avec deux astérisques ** pour : C. Brévignon, Malo Le Grognec, Augustin Ravasse, Martin Pina-Silas, Lucas Pan, Thomas Jézequel.

27 Récitation d'exercices

- 1. Soit C un convexe d'un e.v.n $(\mathbf{E}, \|\cdot\|)$. Montrer que l'intérieur et l'adhérence de C sont convexes.
- 2. ** Soient X un convexe de Rⁿ non vide, a un point intérieur à X et b un point adhérent à X. Montrer que [a, b[est inclus dans l'intérieur de X.
 - Indication: Étudier pour un point x de [a,b[l'image d'une boule de centre a par une homothétie de centre x.
- 3. Soient un entier $n \geq 2$ et une application f de \mathbf{R}^n dans \mathbf{R} continue.
 - (a) On suppose qu'il existe un réel a tel que $f^{-1}(\{a\})$ soit un singleton. Montrer que f atteint en $f^{-1}(\{a\})$ son maximum ou son minimum.
 - (b) \star On supose qu'il existe un réel b tel que $f^{-1}(\{b\})$ soit compact. Montrer que f atteint son maximum ou son minimum.
- 4. PROJECTION SUR UN CONVEXE
 - (a) Soit C un convexe non vide fermé de \mathbf{R}^n , muni de sa structure euclidienne canonique. Soit z un élément de \mathbf{R}^n . Montrer qu'il existe un et un seul point c de C tel que : $||z c|| = \mathrm{d}(c, C)$. Le point c sera noté p(z).

- (b) Soit y un élément de C, montrer que : $\langle y p(z) \mid z p(z) \rangle \leq 0$.
- (c) \star Soient a et b des éléments de \mathbb{R}^n . Montrer que : $||p(a) p(b)|| \le ||a b||$.
- 5. \star On garde le cadre de l'exercice précédent. On appelle hyperplan d'appui de C en un point a de C tout hyperplan \mathbf{H} de \mathbf{R}^n passant par a tel que C soit inclus dans un des demi-espaces fermés définis par \mathbf{H} .
 - (a) On suppose que z n'appartient pas à C. Montrer que C admet en p(z) un hyperplan d'appui
 - (b) Montrer que $p(\mathbf{R}^n C) \subset \operatorname{Fr}(C)$
 - (c) Soit f un point de la frontière de C. Montrer que C admet en f un hyperplan d'appui.
- 6. $\star \star$ On garde le cadre de la question précédente.

Un point a de C est dit extrémal si $C - \{a\}$ est convexe, autrement dit si a n'est pas le milieu de deux points distincts de C.

Montrer que C est l'enveloppe convexe de ses points extrémaux (Théorème de Krein-Milman).

- 7. ** Soit K un compact d'un e.v.n. $(\mathbf{E}, \|\cdot\|)$ de dimension infinie. Montrer que $E \setminus K$ est connexe par arcs.
- 8. \star On ne suppose plus C compact mais au contraire, non borné. Montrer que C contient une demi-droite.
- 9. (a) On appelle enveloppe convexe d'une partie A non vide d'un espace vectoriel normée $(\mathbf{E}, \|\cdot\|)$, notée $\operatorname{conv}(A)$ l'intersection de tous les convexes inclus contenant A, c'est donc le plus petit convexe contenant A (on fera un dessin). Montrer que $\operatorname{conv}(A)$ est l'ensemble de tous les barycentres à coefficients positifs de points de A.
 - (b) \star On suppose **E** de dimension n. Montrer que $\operatorname{conv}(A)$ est l'ensemble de tous les barycentres à coefficients positifs de n+1 points de A (on illustrera la preuve par une figure). Montrer que si A est compact alors $\operatorname{conv}(A)$ est compact. Donner un exemple de partie A fermée telle que $\operatorname{conv}(A)$ ne le soit pas.
- 10. Étudier la convergence de l'intégrale suivante : $\int_0^{+\infty} \sin(x) \sin(\frac{1}{x}) dx$.
- 11. Montrer la convergence et donner la valeur des l'intégrales suivantes :

$$\int_0^{+\infty} \frac{\exp(-t) - \exp(-2t)}{\sqrt{t}} dt; \int_0^{+\infty} \frac{\exp(-t) - \exp(-2t)}{t} dt$$

- 12. Soit Γ la fonction de la variable réelle x définie par $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$.
 - (a) Déterminer le domaine de définition D de Γ .
 - (b) Donner pour tout $x \in D$ une relation entre $\Gamma(x+1)$ et $\Gamma(x)$.

En déduire la valeur de $\Gamma(n)$ pour tout entier n élément de D.

13. ** ÉGALITÉ DES ACCROISSEMENTS FINIS VECTORIELLE

Soit F une application d'une application d'un intervalle ouvert I non vide à valeurs dans \mathbf{R}^n de classe \mathcal{C}^1 et soient a et b des éléments de I tels que a < b. Notons d la dimension de l'espace affine engendré par F([a,b]). Alors il existe $c_1, c_2,...,c_{d+1}$ des éléments de $[a,b], \lambda_1, \lambda_2,...,\lambda_{d+1}$ des réels positifs ou nuls de somme 1, tels que

$$\frac{F(b) - F(a)}{b - a} = \sum_{i=1}^{d+1} \lambda_i F(c_i).$$

 \mathbf{MP}^* 2024-25

Programme de colles n°9

Révision sur les calculs de primitives 28

29 Intégrale sur un intervalle quelconque

- Intégrale convergente, absolument convergente, fonctions intégrables. L'absolue convergence assure la convergence.
- Théorèmes de comparaison, intégration des relations de comparaison.
- Changement de variables et intégrations par parties dans une intégrale généralisée.
- À venir espaces vectoriels normés ch. III (Applications linéaires continues, normes équivalentes, espace de dimension finie).

Les questions de cours ou exercices avec un astérisque * pour : C. Brévignon, Malo Le Grognec, Augustin Ravasse, Lucas Pan, Anaël Pelé, Arthur Quendo, Noémie Manach, Martin Pina-Silas, Aiden Legal, Kevynn Boucher, Thomas Jézequel Ilies Le Marc Brieg Ollivier, Vincent Nouaille -Degorce, Pauline Wadier.

Les questions de cours ou exercices avec deux astérisques ** pour : C. Brévignon, Malo Le Grognec, Augustin Ravasse, Martin Pina-Silas, Lucas Pan, Thomas Jézequel.

30 Question de cours

1. Soient ϕ et ψ des applications de [a,b[dans $\mathbf{R},$ à valeurs positives. On suppose que $\phi(t) = \mathop{\mathrm{o}}_{t \to b}(\psi(t))$ et que ϕ est non intégrable. Alors ψ est non intégrable et

$$\int_{a}^{x} \phi(t) dt = \underset{x \to b}{\text{o}} \left(\int_{a}^{x} \psi(t) dt \right).)$$

31 Exercices

1. (a) Montrer que pour tout entier naturel n, l'application f_n , définie par

$$f_n:]0,1[\to \mathbf{R}; x\mapsto \frac{x^n}{4\sqrt{x^3(1-x)}},$$

est intégrable.

- (b) Au choix du colleur un des deux points suivants.
 - Pour tout entier naturel n, on pose $I_n = \int_{[0,1]} f_n$. Montrer que pour tout entier naturel $n \ge 1$, on a $I_{n-1} - I_n = \frac{3}{4n-3}I_n$.

 • Calculer I_0 et en déduire l'expression de I_n pour tout entier naturel n.
- 2. Déterminer la limite éventuelle de la suite $(P_n)_{n \in \mathbb{N}^*}$, où pour tout entier naturel n non nul,

$$P_n = \left(\prod_{k=1}^n \left(1 + \frac{k}{n}\right)^k\right)^{\frac{1}{n^2}}.$$

ou version \star Déterminer la limite éventuelle de la suite $(S_n)_{n\in\mathbb{N}^*}$, où pour tout entier naturel n non nul,

$$S_n = \sum_{k=1}^n \sin\left(\frac{k}{n}\right) \sin\left(\frac{k}{n^2}\right).$$

3. — Soient ω l'application $\mathbf{R} \to \mathbf{R}$; $t \mapsto \exp(-t^2)$ Soit \mathbf{H} l'ensemble des applications f de \mathbf{R} dans \mathbf{R} continues telles que $f^2\omega$ soit intégrable.

(a) Montrer que H est un espace vectoriel qui contient les applications polynômes, et que l'application

$$\Phi : \mathbf{H}^2 \to \mathbf{R}; (f,g) \mapsto \int_{\mathbf{R}} fg\omega$$

- est bien définie et et un produit scalaire sur \mathbf{H} . On le note $\langle\cdot|\cdot\rangle$ et \mathbf{N}_2 la norme associée.
- (b) Montrer que tout élément f de \mathbf{H} , l'intégrale $\int_{\mathbf{R}} f\omega$ converge et qu'il existe un réel c tel que

$$\int_{\mathbf{R}} f\omega \le cN_2(f).$$

- 4. (a) Soit g une application d'un segment [a,b] dans \mathbf{R} , de classe \mathcal{C}^1 . Montrer que $\int_a^b g(t) \sin(nt) dt$ tend vers 0 lorsque n tend vers $+\infty$.
 - (b) \star Pour tout entier $n \geq 1$, on pose

$$J_n := \frac{1}{n} \int_0^{\frac{\pi}{2}} \frac{\sin^2(nt)}{\sin^2(t)} dt.$$

- Justifier l'existence de cette intégrale puis étudier la limite éventuelle de la suite $(J_n)_{n\in\mathbb{N}}$
- (c) Soit f une application de \mathbf{R} dans \mathbf{R} , de classe \mathcal{C}^1 intégrable. Montrer que $\int_{-\infty}^{+\infty} f(t) \sin(nt) dt$ tend vers 0 lorsque n tend vers $+\infty$.
- 5. Déterminer des équivalents simples, lorsque x tend vers $+\infty$, des quantités suivantes :

$$\int_{x}^{+\infty} \frac{e^{-\frac{1}{t}}}{t^{c}} dt, \text{ pour } c \text{ élément de }]1, +\infty[, \int_{0}^{x} e^{t^{2}} dt, \int_{e}^{x} \frac{dt}{\ln t}.$$

- * Donner un développement asymptotique à tout ordre de $\int_0^x e^{t^2} dt$, lorsque x tend vers $+\infty$.
- 6. ** Soit f une application de \mathbb{R}_+ dans \mathbb{R} , de classe \mathcal{C}^1 et intégrable.
 - (a) Montrer que f n'est pas nécessairement bornée.
 - (b) On supose de plus que f' est de carré intégrable (sur \mathbf{R}_+). Montrer que f est bornée.
- 7. Soit f une application de \mathbf{R}_+ dans \mathbf{R} , continue et bornée. On admet que $\int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi}$. Pour tout entier naturel n, justifier l'existence de $J_n = n \int_0^{+\infty} e^{-n^2 t^2} f(t) dt$.
 - (a) Montrer, par un raisonnement élémentaire que la suite $(J_n)_{n\in\mathbb{N}}$ a une limite à déterminer.
 - (b) (5/2) Reprendre la question précédente en utilisant le théorème de convergnce dominée.
- 8. ** Soient f une application de classe [0,1] dans \mathbf{R} , de classe \mathcal{C}^{∞} et ne s'annulant pas en 0. et

$$g: \mathbf{R}_+ \to \mathbf{R}; t \mapsto \int_0^1 \frac{f(x)}{1+tx} dx.$$

- Donner un équivalent simple h(t) de g(t) lorsque t tend vers $+\infty$. Montrer que $g(t) = h(t) + \mathop{O}_{t \to +\infty} \left(\frac{1}{t}\right)$.
- 9. \star Soit f une application de \mathbf{R}_+ dans \mathbf{R} , à valeurs positives ou nulles, continue. On suppose f intégrable.
 - (a) A-t-on $\lim_{t\to\infty} f = 0$?
 - (b) On suppose de surcroît f décroissante. Montrer que $xf(x) \underset{x \to +\infty}{\to} 0$. Cette dernière condition suffit-elle à prouver l'intégrabilité de f?
 - (c) Énoncer et prouver un résultat analogue pour une série à termes positifs.
 - (d) ** On ne suppose plus f décroissante. Montrer qu'il existe une suite $(x_n)_{n\in\mathbb{N}}$ de réels qui tend vers $+\infty$ telle que : $x_n f(x_n) \underset{n\to+\infty}{\to} 0$
 - En déduire que pour tout application g de \mathbb{R}_+ dans \mathbb{R} de classe \mathcal{C}^1 , et de carré intégrable,

$$\int_0^{+\infty} g^2(x) \mathrm{d}x \le 2\sqrt{\int_0^{+\infty} x^2 g^2(x) \mathrm{d}x \int_0^{+\infty} g'^2(x) \mathrm{d}x} \le +\infty$$

- 10. Pour tout entier naturel n non nul, on pose $I_n := \int_0^1 \frac{x^n}{1+x^2} dx$.
 - (a) Calculer I_2 et I_3 .
 - (b) Donner la limite de la suite $(I_n)_{n \in \mathbb{N}}$.
 - (c) Donner un développement limité à l'ordre 2, en $\frac{1}{n}$ de I_n , lorsque n tend vers $+\infty$ (c'est-à-dire une expression de la forme $I_n = a_0 + a_1 \frac{1}{n} + a_2 \frac{1}{n^2} + o\left(\frac{1}{n^2}\right) \ (n \to \infty)$).

- (d) Exprimer pour tout entier naturel $n,\,I_n$ comme la somme d'une série numérique.
- 11. \star Inégalité de Hardy —

(Inégalité de HARDY faible).

Soit $f \in \mathcal{C}^0([0,1],\mathbf{R})$ Pour tout $x \in]0,1]$, $F(x) = \frac{1}{x} \int_0^x f(t) dt$ et F(0) = f(0). Montrer que:

$$\int_0^1 F^2(x) dx \le 4 \int_0^1 f^2(x) dx.$$

12. \star Soit f un élément de $\mathcal{C}^2(\mathbf{R})$. On suppose que f et f'' sont de carrés intégrables. Montrer que f' est de carré sommable.

 MP^* 2025-26

Programme de colles n°10

32 Révision de sup sur les séries

33 Espaces vectoriels normés, fin de la trilogie

- Normes, espaces vectoriels normés, distance à une partie non vide.
- Ouverts fermés, intérieurs adhérences. Ouverts et fermés relativement à une partie.
- Limite d'une suite à valeurs dans un espace vectoriel normé. Caractérisation de l'adhérence par les suites.
- Valeurs d'adhérence d'une suite à valeurs dans un espace vectoriel normé. Caractérisation des valeurs d'adhérence par les suites extraites.
- Limite et continuité d'une application d'une partie d'un e.v.n. à valeurs dans un e.v.n.
- Caractérisation de la continuité par les images réciproques d'ouverts (de fermés).
- Continuité uniforme, applications lipschitziennes.
- Compacité. Compacts, les compacts sont fermés bornés. Compacité des segments de $(\mathbf{R}|\cdot|)$. Les compacts de $(\mathbf{K}^n, n_{\infty})$ sont les parties fermées bornées $(\mathbf{K} = \mathbf{R} \text{ ou } \mathbf{C})$. Image d'un compact par une application continue, théorème de Heine.
- Connexité par arcs : convexes (caractérisation par le barycentre de n points), partie étoilées, composantes connexes par arcs, image par une application continue d'un connexe par arcs (théorème de la valeur intermédiaire).
- Applications linéaires continues.
- Normes équivalentes; cas des espaces vectoriels de dimension finie.
- Espaces vectoriels de dimension finie, convergence des suites et des applications, continuité des applications à valeurs dans un espace de dimension finie, compacts d'un espace de dimension finie, théorème de Bolzano-Weierstrass.

Les questions de cours ou exercices avec un astérisque * pour : C. Brévignon, Malo Le Grognec, Augustin Ravasse, Lucas Pan, Anaël Pelé, Arthur Quendo, Noémie Manach, Martin Pina-Silas, Aiden Legal, Kevynn Boucher, Thomas Jézequel Ilies Le Marc Brieg Ollivier, Vincent Nouaille -Degorce, Pauline Wadier.

Les questions de cours ou exercices avec deux astérisques ** pour : C. Brévignon, Malo Le Grognec, Augustin Ravasse, Martin Pina-Silas, Lucas Pan, Thomas Jézequel.

34 Questions de cours

- 1. Continuité d'une application linéaire : quatre propriétés équivalentes.
- 2. Définition de la norme subordonnée d'une application linéaire d'un e.v.n. dans un autre (preuve complète).
- 3. ** Toutes les normes en dimension finie sont équivalentes.

35 Récitation d'exercices

- 1. Montrer que tout sous espace vectoriel \mathbf{F} de dimension finie d'un espace vectoriel normé $(\mathbf{E}, \|\cdot\|)$ est fermé.
- 2. \star Montrer qu'une forme linéaire définie sur un espace vectoriel normé $(\mathbf{E}, \|\cdot\|)$ est continue si et seulement si son noyau est fermé.
- 3. Montrer que $N: \mathcal{M}_n(\mathbf{C}) \to \mathbf{R}_+ ; A \mapsto \max_{j=1,\dots,n} \left(\sum_{i=1}^n |a_{i,j}|\right)$ est une norme subordonnées à une norme sur $\mathcal{M}_{n,n}(1)\mathbf{C}$ à préciser, lorsque l'on identifie les éléments de $\mathcal{M}_n(\mathbf{K})$ et les endomorphismes de $\mathcal{M}_{n,1}(\mathbf{C})$ canoniquement associés.

Ou bien, au choix du colleur, même question pour $N': \mathcal{M}_n(\mathbf{C}) \to \mathbf{R}_+ ; A \mapsto \max_{i=1,\dots,n} \left(\sum_{j=1}^n |a_{i,j}|\right)$.

4. \star Montrer que $N_F: \mathcal{M}_n(\mathbf{R}) \to \mathbf{R}_+, ; A \mapsto (\operatorname{tr}(M^\top M))^{\frac{1}{2}}$ est une norme d'algèbre. Est elle une norme subordonnée?

5. Par ${\bf E}$ sera désigner l'espace vectoriel des applications de [0,1] dans ${\bf R}$, continues. Soient g un élément de ${\bf E}$ et L la forme linéaire

$$\mathbf{E} \to \mathbf{R} \, ; f \mapsto \int_{[0,1]} gf.$$

On munit \mathbf{R} de $|\cdot|$. Montrer la continuité de L et déterminer sa norme dans les cas suivants.

- (a) On munit \mathbf{E} de la norme N_2 .
- (b) \star On munit **E** de la norme N_{∞} .
- (c) On munit **E** de la norme N_1 et on prend pour $g = \sin\left(\frac{\pi}{2}\right)$.
- 6. Etudier les séries : $\sum_{n \geq 2} \frac{1}{n(\ln n)^{\beta}}$, $\sum_{n \geq 2} \frac{\ln(\ln(n))}{n(\ln n)^2}$ $\sum_{n \geq 2} \frac{1}{n(\ln n)^{1/2} \ln(\ln(n))}$, $\sum_{n \geq 2} \frac{1}{n \ln n(\ln(\ln(n)))^3}$, β désigne un réel.
- 7. Nature des séries : $\sum_{n\geq 1} \frac{n^{\ln n}}{(\ln n)^n}$; $\sum \sin(\pi(2+\sqrt{3})^n)$.
- 8. (a) En comparant les sommes partielles de la série harmonique à une intégrale montrer que : $\sum_{k=1}^{n} \frac{1}{k} \underset{n \to +\infty}{\sim} \ln n.$
 - (b) \star Posons pour tout élément n de \mathbf{N}^* , $x_n := \sum_{k=1}^n \frac{1}{k} \ln n$. Montrer que pour que pour tout entier k supérieur ou égal à 1,

$$\frac{1}{1+k} \le \int_k^{k+1} \frac{\mathrm{d}t}{t} \le \frac{1}{2} \left(\frac{1}{k} + \frac{1}{1+k} \right).$$

En déduire que la suite $(x_n)_{n \in \mathbb{N}^*}$ converge vers un réel γ supérieur ou égal à $\frac{1}{2}$.

- 9. Soit $(u_n)_{n\in\mathbb{N}}$ une suite décroissante qui converge vers 0. Montrer que la série $\sum u_n$ converge si et seulement si $\sum 10^n u_{10^n}$ converge (On utilisera la théorie des famille sommables). En déduire la nature des la séries $\sum_{n\geq 2} \frac{1}{n(\ln(n))^a}$ et $\sum_{n\geq 2} \frac{1}{n\ln(n)(\ln(\ln(n)))^a}$, où a est un réel.
- 10. Soit f une application de]0,1] dans \mathbf{R} , continue, décroissante et intégrable.

Déterminer la limite de la suite $(I_n)_{n \in \mathbb{N}}$, où pour tout entier $n \geq 1$ on a posé $\frac{1}{n} \sum_{i=1}^{n} f\left(\frac{i}{n}\right)$.

11. ** Notons $\mathbf{E} = \mathcal{C}^0([0,1], \mathbf{R})$. Soient un réel C > 0 et \mathbf{F} un sous espace vectoriel de \mathbf{E} tel que :

$$||f||_{\infty} \le C||f||_2,\tag{3}$$

pour tout élément f de \mathbf{F} .

- (a) Montrer que les restrictions de $\|\cdot\|_2$ et $\|\cdot\|_{\infty}$ à **F** sont équivalentes.
- (b) Montrer que \mathbf{F} est de dimension finie inférieure ou égale à \mathbb{C}^2 .
- (c) Donner un exemple de sous-espace vectoriel **F** de **E** de dimension n et vérifiant (3) avec $C = n^{\frac{1}{2}}$.

12. :

(a) $\star\star$ On note E l'ensemble des applications de ${\bf R}$ dans ${\bf R}$ continues. Soient u et v des éléments de ${\bf E}$. On suppose u bornée et v intégrable. Montrer que uv est intégrable.

On suppose que pour tout élément w de ${\bf E}$ intégrable, uw est intégrable. Montrer que u est borné. $Raisonner\ par\ l'absurde$

(b) \star Soient u et v des éléments de $\mathbf{R}^{\mathbf{N}}$. On suppose u bornée et v sommable. Montrer que uv est sommable

On suppose que pour tout élément w de $\mathbf{R^N}$ sommable, uw est sommable. Montrer que u est borné.

Raisonner par l'absurde

13. ** Soit $(H, \langle \cdot | \cdot \rangle)$ un espace préhilbertien dans lequel toute séries absolument convergent converge. On munira \mathbf{H} de la norme euclidienne $\| \cdot \|$ associée au produit scalaire.

Soit f un endomorphisme continue de H tel qu'il existe un réel $\alpha > 0$ tel que : $\forall x \in \mathbf{H}, \ \alpha ||x||^2 \le \langle f(x)|x\rangle$.

- (a) Montrer que $\operatorname{im}(f)$ est fermée Et que $(\operatorname{im}(f))^{\top} = \{0_{\mathbf{H}}\}$
- (b) En déduire que f est un automorphisme.
- (c) Montrer que f^{-1} est continu et que $||f^{-1}||_{op} \leq \frac{1}{\alpha}$.

 MP^* 2025-26

Programme de colles n°11

36 Processus sommatoires discrets

- Définition de la convergence d'une série à valeurs dans un e.v.n. $(\mathbf{E}, \|\cdot\|)$. Dans un espace vectoriel de dimension finie la convergence absolue assure la convergence.
- Séries à termes positifs. Caractérisation de la convergence par la suite des sommes partielles. Théorèmes de comparaison directe, sommation des relations de comparaisons. Règle de d'Alembert, comparaison avec une intégrale.
- Espace vectoriel des séries convergentes, des séries absolument convergentes.
- Séries réelles, plan d'étude d'une série réelle. Séries alternées.
- Exemples de séries dans $\mathcal{M}_n(\mathbf{K})$, séries géométriques et exponentielles.
- Famille sommables de termes positifs ou nuls. Lien avec les séries à termes positifs ou nuls, théorème de sommation par paquets, théorème de Fubini Tonelli.
- Famille sommables de réels ou complexes. Lien avec les séries, théorème de sommation par paquets, théorème de Fubini-Lebesgues, théorème de sommation par paquets, application au produit de Cauchy de deux séries.
- Définition d'une probabilité sur un univers Ω dénombrable, caractérisation d'une probabilité par ses valeurs sur les événements élémentaires, variable aléatoire sur Ω , espérance d'une variable aléatoire, exemple la loi de Poisson.
- $A\ venir$: Fonctions vectorielles, Calcul différentiel.

Avertissement pour les colleurs : les familles sommables figurent au programme pour fonder rigoureusement les probabilités, elles ne doivent pas faire l'objets d'exercices autres qu'élémentaires. Les élèves ne sont pas sensés connaître autre chose en probabilités que le cours de MPSI (Ω fini) et la définition donnée cette semaine, il y aura un chapitre entier consacré aux probabilités en fin d'année, les exercices doivent rester très élémentaires.

Les questions de cours ou exercices avec un astérisque * pour : C. Brévignon, Malo Le Grognec, Augustin Ravasse, Lucas Pan, Anaël Pelé, Arthur Quendo, Noémie Manach, Martin Pina-Silas, Aiden Legal, Kevynn Boucher, Thomas Jézequel Ilies Le Marc Brieg Ollivier, Vincent Nouaille -Degorce, Pauline Wadier, Virgile Marrec.

Les questions de cours ou exercices avec deux astérisques ** pour : C. Brévignon, Malo Le Grognec, Augustin Ravasse, Martin Pina-Silas, Lucas Pan, Thomas Jézequel.

37 Exercices

- 1. Donner en utilisant le théorème de sommation des équivalents :
 - un équivalent de $\sum_{k=1}^{n} k^{k}$;
 - un développement limité en $\frac{1}{n}$, à l'ordre 2 de $\sum_{k=1}^{n} \frac{1}{k^2}$.
- 2. Montrer que $\sum_{k=1}^{n} \frac{1}{k} \sim \ln n$. Montrer que la suite $\left(\sum_{k=1}^{n} \frac{1}{k} \ln n\right)_{n \in \mathbb{N}}$ est convergente. On note γ sa limite.
 - * Donner un équivalent simple, lorsque n tend vers $+\infty$, de $\sum_{k=1}^{n} \frac{1}{k} \ln n \gamma$.
- 3. On Munit de la norme $\mathcal{M}_n(\mathbf{R})$

$$\mathcal{M}_n(\mathbf{R}) \to \mathbf{R} + ; M \mapsto \sqrt{\mathrm{Tr}({}^{\mathrm{t}}MM)}$$

on admet que que pour tout A et tout B éléments de $\mathcal{M}_n(\mathbf{R})$,

$$||AB||_F \le ||A||_F ||B||_F.$$

Définir l'exponentielle d'une matrice. Calculer l'exponentielle des matrices $\begin{pmatrix} 1 & 5 \\ 3 & 3 \end{pmatrix}$, $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ et $\begin{pmatrix} 3 & -1 \\ 0 & 3 \end{pmatrix}$.

4. SÉRIES SANS PARAMÈTRE — Étudiez en utilisant des développements limités au sens fort, les séries de terme général :

$$u_n = (-1)^n \left(e - \left(1 + \frac{1}{n} \right)^n \right)$$
, etc.

- 5. SÉRIES À PARAMÈTRE Etudiez en utilisant des développements limités (au sens faible) la série de terme général $u_n = \sin\left(\frac{(-1)^n}{n^{\alpha}} + \frac{1}{n^{5\alpha}}\right)$, où α est un réel strictement positif, etc., etc., etc..
- 6. (le retour) Montrer que que la relation de récurrence

$$\begin{cases} u_0 = 1, \\ u_{n+1} = \sin(u_n), \end{cases}$$

définit bien une suite $(u_n)_{n\in\mathbb{N}}$, montrer que cette suite converge vers 0.

Donner lorsque n tend vers $+\infty$, un équivalent de u_n , de la forme cn^{γ} , avec c et γ réels.

Pour tout élément n de \mathbb{N} , on pose $a_n := u_n - cn^{\gamma}$. Donner un équivalent de a_n , lorsque n tend vers $+\infty$.

Les élèves doivent savoir justifier la forme de la suite téléscopique utilisée en illustrant par un dessin la comparaison à une intégrale.

- 7. \star Soit $(u_n)_{n \in \mathbb{N}}$ une suite de réels strictement positifs. On note pour tout entier naturel n, S_n sa somme partielle d'ordre n et l'on suppose que $\sum u_n$ diverge. Prouvez que $\sum \frac{u_n}{S_n^{\alpha}}$ converge si et seulement si $\alpha > 1$.
- 8. ** Etudier la série de terme général $u_n = \sin(n!\pi e)$.

ABEL: COUPER-RÉINDEXER-RECOLLER

9. \star Soit $(a_n)_{n \in \mathbb{N}}$ une suite croissante de réels strictements positifs qui tend vers $+\infty$. Soit $(x_n)_{n \in \mathbb{N}}$ une suite de nombres complexes telle que la série $\sum \frac{x_n}{a_n}$ converge. Montrer que $\frac{1}{a_n} \sum_{k=0}^n x_k$ tend vers 0, lorsque n tend vers $+\infty$.

Indication : considérer la quantité $R_n = \sum_{k=n}^{+\infty} \frac{x_n}{a_n}$.

- 10. Soit X une variable aléatoire définie sur Ω (cf. 1.) à valeurs dans \mathbf{N} , d'espérance finie. Montrer que $\mathrm{E}(X) = \sum_{n \geq 0} \mathbf{P}(X > n)$. au choix du colleur :
 - (a) En utilisant une transformation d'Abel.
 - (b) En utilisant le théorème de Fubini (on fera un joli dessin).
- 11. Soient $(X_n)_{n \in \mathbb{N}^*}$ une suite de variables aléatoires à valeur dans \mathbb{N} , de même loi, définies sur un même univers dénombrable Ω , et T une variable aléatoire définie sur Ω et à valeurs dans N^* . On suppose que pour tout $n \in \mathbb{N}^*$ on a $X_1, ..., X_n, T$ mutuellement indépendantes et que X_1 et T admettent des espérances finies. On définit alors la variable aléatoire $S = X_1 + X_2 + ... + X_T$.

Montrer que $E(S) = E(T)E(X_1)$.

- 12. $\star\star$ Soit $(E, \|\cdot\|)$ un **R**-espace vectoriel normé.
 - (a) Montrer qu'un hyperplan H de $(\mathbf{E}, \|\cdot\|)$ est soit fermé, soit dense.
 - (b) Soit H un hyperplan de ${\bf E}$ Montrer que ${\bf E}\setminus H$ est connexe par arcs si et seulement si H n'est pas fermé.
- 13. *** Soit $(A, \|\cdot\|)$ une C-algèbre normée, sur laquelle telle que toute série absolument convergente converge. On note e l'unité de A et on note pour tout $x \in A$, $\sigma(x)$ l'ensemble des éléments λ de C tels que $(\lambda e x)$ soit non inversible.
 - (a) Montrer que pour tout réel x, l'ensemble $\sigma(x)$ est un compact.

On admet pour tout $x \in A$, la non vacuité de $\sigma(x)$.

- (b) On suppose que tout élément non nul de A est inversible. Déterminer A à isomorphisme près.
- (c) Dans le cas où $A = \mathcal{M}_n(\mathbf{C})$, comparer pour M et N éléments de $\mathcal{M}_n(\mathbf{C})$, les quantités $\sigma(MN)$ et $\sigma(NM)$
- (d) Soient x et y des éléments de A et $\lambda \in \mathbf{C}$ non nul.

Montrer que $\lambda \in \sigma(xy)$ si et seulement si $\lambda \in \sigma(yx)$.

(e) On suppose que 0 est élément de $\sigma(xy)$. A-t-on $0 \in \sigma(yx)$? (Envisager le cas où A est de dimension finie.)

 MP^*

Programme de colles n°12

38 Fonction d'une variable réelle à valeurs vectorielles

- Dérivation d'applications à valeurs vectorielles.
 - Dérivée d'une fonction à valeurs dans un e.v. de dimension finie F, propriétés de la dérivation.
 - Arcs paramétrés : définition, points réguliers, tangentes en un point régulier (aucune autre connaissance spécifique).
 - Dérivées d'ordres supérieurs, espace vectoriel $\mathcal{C}^k(I, \mathbf{F})$, algèbre $\mathcal{C}^k(I, \mathbf{C})$, formule de Leibni(t)z. Dans le cas d'une application numérique, généralisation à une application bilinéaire, formule de Taylor-Young vectoriel à l'ordre n pour une application de classe \mathcal{C}^n (avec un petit o).
- Intégrale l'intégrale a été provisoirement introduite par l'intégrale des composantes dans une base, une construction intrinsèque sera donnée dans un prochain chapitre
 - Propriétés de l'intégrale.
 - Inégalité des accroissements finis pour une application de classe \mathcal{C}^1 à valeurs dans \mathbf{F} .
 - Formule de Taylor avec reste intégrale (vectorielle), inégalité de Taylor-Lagrange, formule de Taylor-Young à l'ordre n pour une application de classe C^{n+1} (avec un grand O).

39 Calcul différentiel

Il s'agit du début du cours, le programme s'arrête avant la différentiation d'applications composées.

Toutes les applications sont définies sur un ouvert U d'un \mathbf{R} -espace vectoriel \mathbf{E} , de dimension finie p à valeurs dans un \mathbf{R} -espace vectoriel \mathbf{F} , de dimension finie n. \mathbf{E} sera le plus souvent vu comme un espace affine.

— Dérivées directionnelles, dérivées partielles dans une base. Une application \vec{f} ayant dans une base p applications dérivées partielles définies et continues sur U vérifie, pour tout point a de U:

$$\vec{f}\left(a+\vec{h}\right) = \vec{f}(a) + \sum_{i=1}^{p} h_i \cdot D_i \vec{f}(a) + o\left(\|\vec{h}\|\right), \ \left(\vec{h} \to \vec{0}_{\mathbf{E}}\right)$$

$$\tag{4}$$

- Une application ayant dans une base p applications dérivées partielles définies et continues sur U, admet des dérivée dans toutes les directions continues, et des dérivées partielles dans toute base continues : on dit qu'elle est de classe C^1
- Notion d'applications différentiables. Une application différentiable admet des dérivées directionnelles selon tout vecteur, en tout point de U. Expression de la différentielle au moyen des dérivées partielles dans une base. Interprétation géométrique dans le cas où \mathbf{E} est \mathbf{R}^2 (plan tangent).
- Une application est de classe \mathcal{C}^1 si et seulement si elle est différentiable et sa différentielle est continue.
- À venir Composition d'applications différentiables, matrice jacobienne, dérivation d'ordre supérieur.

Les questions de cours ou exercices avec un astérisque * pour : C. Brévignon, Malo Le Grognec, Augustin Ravasse, Lucas Pan, Anaël Pelé, Arthur Quendo, Noémie Manach, Martin Pina-Silas, Aiden Legal, Kevynn Boucher, Thomas Jézequel Ilies Le Marc Brieg Ollivier, Vincent Nouaille -Degorce, Pauline Wadier, Virgile Marrec.

Les questions de cours ou exercices avec deux astérisques ** pour : C. Brévignon, Malo Le Grognec, Augustin Ravasse, Martin Pina-Silas, Lucas Pan, Thomas Jézequel.

40 Questions de cours

- 1. Formule de Taylor reste intégral (pour une fonction vectorielle), on donnera deux expression du reste. On évitera la récurrence et privéligiera le détail des premières étapes.
- 2. Différentielle d'une forme linéaire, d'une application bilinéaire.
- 3. ** Soit \vec{f} une application d'un ouvert U d'un \mathbf{R} -espace vectoriel \mathbf{E} , de dimension finie p à valeurs dans un \mathbf{R} -espace vectoriel \mathbf{F} , de dimension finie n. On suppose qu'il existe une base \mathcal{B} de \mathbf{E} dans laquelle \vec{f}

admet p applications dérivées partielles dans \mathcal{B} continue. Montrer que pour tout $a \in U$:

$$\vec{f}(a + \vec{h}) = \vec{f}(a) + \sum_{i=1}^{p} h_i \partial_i \vec{f}(a) + \vec{o}(\|\vec{h}\|); \ (\vec{h} \to \vec{0}_{\mathbf{E}}).$$

- 4. Sous les hypothèses de la question précédente montrer l'équivalence des deux propositions :
 - i. L'application \vec{f} admet sur U des applications dérivées directionnelles dans toutes les directions continues.
 - ii. Il existe une base $\mathcal B$ de $\mathbf E$ dans laquelle $\vec f$ admet p applications dérivées partielles continues.

41 Récitation d'exercices

42 Exercices

- 1. ★★ FORMULE SOMMATOIRE D'EULER-MACLAURIN—
 - (a) Montrer que la relation de récurrence suivante suivante défini bien une suite $(P_n)_{n \in \mathbb{N}}$ de polynômes à coefficients rationnels : $P_0 = 1$, $\forall n \in \mathbb{N}^*, P'_n = nP_{n-1}, \int_0^1 P_n(t) dt = 0$. On vérifiera qu'en posant pour tout $n \in \mathbb{N}$, $B_n := P_n(0)$, $P_n = \sum_{k=0}^n \binom{n}{k} B_{n-k} X^k$
 - (b) En comparant P_n et $P_n(1-X)$ montrer que pour tout $k \in \mathbb{N}^*$ on a $B_{2k+1}=0$.
 - (c) Soit $p \in \mathbf{N}$. Établir pour $f \in \mathcal{C}^{2p+1}([0,1],\mathbf{R})$, le formule

$$\int_0^1 f(x) dx = \frac{f(1) + f(0)}{2} - \sum_{k=1}^p \frac{B_{2k}}{(2k)!} (f^{(2k-1)}(1) - f^{(2k-1)}(0)) - R_p,$$

où
$$R_p = \frac{1}{(2p+1)!} \int_0^1 f^{(2p+1)}(x) P_{2p+1}(x) dx.$$

- 2. Soit f une application d'un segment [a,b] dans \mathbf{C} , continue. Donner une condition nécessaire et suffisante pour que $\int_{[a,b]} |f| = |\int_{[a,b]} f|$. Ou bien cas d'égalité dans l'inégalité triangulaire pour n complexes.
 - \star En plus : soit \vec{f} une application de [a,b] un espace euclidien \mathbf{E} , continue. Donner une condition nécessaire et suffisante pour que $\int_{[a,b]} \|\vec{f}\| = \|\int_{[a,b]} \vec{f}\|$, où $\|\cdot\|$ est la norme euclidienne.
- 3. (a) Soient U un ouvert non vide de \mathbf{R}^2 et f une application de U dans \mathbf{R} à valeurs positives ou nulles, de classe \mathcal{C}^1 . On suppose qu'il existe un réek k > 0 tel que pour tout $m \in U$:

$$\|\vec{\nabla}f(m)\| \le kf(m). \tag{5}$$

Soient [a, b] un segment non réduit à un point et $\gamma : [a, b] \to \mathbf{R}^2$ un arc paramétré de classe \mathcal{C}^1 tel que $\gamma([a, b]) \subset U$. Enfin, on pose $m_0 = \gamma(a)$ et $m_1 = \gamma(b)$.

Montrer que l'application $f \circ \gamma$, notée g, est de classe C^1 et montrer que pour tout élément t de [a,b],

$$g'(t) \le k \|\overrightarrow{\gamma}'(t)\| g(t).$$

En déduire que

$$f(m_1) \le f(m_0)e^{k\ell},$$

où ℓ désigne la longueur de l'arc γ .

- (b) On suppose que U est l'ensemble $\{(x,y) \in \mathbf{R}^2 | 1 < ||(x,y)|| < 2\}$. Montrer que si f s'annule en un point a de U alors f est nulle.
- (c) $\star\star$ Reprendre la question précédente avec pour U un connexe par arcs.
- 4. On munira \mathbf{R}^2 de sa structure euclidienne canonique, par $\langle \cdot | \cdot \rangle$ on désignera le produit scalaire canonique, par $\| \cdot \|$ la norme associée. Soient ε un élément de $\{-1,1\}$, A un point de \mathbf{R}^2 et F une application d'un intervalle I, ouvert et non vide, dans $\mathbf{R}^2 \setminus \{A\}$ de classe \mathcal{C}^2 , telle que pour tout réel t,

$$\vec{F}''(t) = \varepsilon \frac{\overrightarrow{AF}(t)}{\|\overrightarrow{AF}(t)\|^2}.$$

(a) Soit l'application $\sigma: I \to \mathbf{R}; t \mapsto \det_{\mathcal{B}_c} \left(\overrightarrow{\mathrm{AF}}(t), \overrightarrow{\mathrm{F}}'(t)\right)$. Montrer que σ est constante.

(b) Dans cette question on suppose que $\varepsilon = 1$. Soient a et b des éléments distincts de I tels que F(a) = F(b). En considérant

$$\frac{1}{2} \int_{a}^{b} \|\vec{\mathbf{F}}'(t)\|^{2} dt,$$

- montrer que $\vec{F}'(a) \neq \vec{F}'(b)$. Interpréter.
- (c) Dans cette question on suppose que $\varepsilon = -1$. Soit $R \in \mathbf{R}_+^*$. Déterminer une valeur de F telle que le support de l'arc paramétré (I, F) soit un cercle de rayon R.
- 5. Étudier la continuité en (0,0) de $f: \mathbf{R}^2 \to \mathbf{R}; (x,y) \mapsto \begin{cases} \frac{x^4 + 3xy^2 5y^3}{x^2 + y^2}, & \text{pour } (x,y) \neq (0,0), \\ 0, & \text{pour } (x,y) = (0,0). \end{cases}$ de

$$g: \mathbf{R}_{+} \times \mathbf{R}_{+} \to \mathbf{R}; (x,y) \mapsto \begin{cases} \frac{x^{2} - 3xy^{2}}{x+y}, & \text{pour } (x,y) \neq (0,0), \\ 0, & \text{pour } (x,y) = (0,0). \end{cases}$$

Soit l'application $f: \mathbf{R} \times \mathbf{R} \to \mathbf{R}; (x,y) \mapsto \begin{cases} \frac{xy^2}{x^2+y^4}, & \text{pour } (x,y) \neq (0,0), \\ 0, & \text{pour } (x,y) = (0,0). \end{cases}$ Montrer que f admet

- en (0,0) dans toute direction une dérivée directionnelle. Est-elle continue en ce point ?
- 6. Soit $\delta : \mathcal{M}_n(\mathbf{R}) \to \mathcal{M}_n(\mathbf{R}) ; M \mapsto \det(M)$. Montrer que δ est de classe \mathcal{C}^{∞} . Donner sa différentielle, au moyen du produit scalaire canonique sur $\mathcal{M}_n(\mathbf{R})$:
 - en calculant les dérivées partielles ;
 - -- \star en utilisant la densité de $GL_n(\mathbf{R})$.
- 7. \star Soit f une application de \mathbf{R}^n dans \mathbf{R} avec $n \geq 1$. On suppose f homogène de degré 1, c'est à dire que pour tout réel t strictement positif et tout $X \in \mathbf{R}^n$, f(tX) = tf(X). Montrer que f est différentiable en l'origine si et seulement si f est linéaire. Qu'en conclut-on pour une norme.
- 8. Soit l'arc paramétré (\mathbf{R}, F) de \mathbf{R}^2 , muni de sa structure euclidienne canonique, $\begin{cases} x = 2t^3, \\ y = 3t^2, \end{cases} t \in \mathbf{R}.$
 - (a) Déterminer l'ensemble D des réels t tels que le point de paramètre t de l'arc soit régulier et pour un élément t_0 de D une équation cartésienne de la tangente T et de la normale au point de paramètre t_0
 - (b) Montrer que pour tout $t \in D$ il existe un et un seul élément t' de D tel que les tangentes à l'arc aux points de paramètres t et t' soient orthogonale.
 - (c) Montrer qu'il existe deux et seulement deux éléments de D, t_1 et t_2 tels que les tangentes aux points de paramètres t_1 et t_2 soient aussi des normales à la courbe.
- 9. ** Soit l'arc paramétré (\mathbf{R},F) de \mathbf{R}^3 où, pour tout $t\in\mathbf{R},\,F(t)=\left(\frac{2t}{1+t^4},\frac{t^3}{1+t^4}\frac{1-4t^4}{1+t^4}\right)$.
 - (a) Montrer que F est injective.
 - (b) Soient quatre réels deux à deux distincts $t_1; t_2, t_3$, et t_4 . Donner une condition nécessaire et suffisante pour que les points $F(t_1), F(t_2), F(t_3)$ et $F(t_4)$ soient coplanaires.
 - (c) Soient trois réels $t_1; t_2, t_3$. À quelle condition les points F(t-1), F(t) et $F(t_3)$ sont ils alignés?
- 10. **★★**
 - (a) Soient un réel $\alpha > 2$ et $(z_n)_{n \in \mathbb{N}}$ une suite de complexes non nuls tels que pour tout couple d'entiers naturels distincts,

$$|z_p - z_q| > 1.$$

(b) Montrer la série $\sum \frac{1}{|z_n|^{\alpha}}$ converge.

Indication. Considérer pour tout $N \in \mathbb{N}$, $C_N = \left\{ z \in \mathbb{C} \mid |\operatorname{Re}(z)| \leq \frac{N}{\sqrt{2}}, |\operatorname{Im}(z)| \leq \frac{N}{\sqrt{2}} \right\}$.

(c) Construire une suite de complexes $(z_n)_{n\in\mathbb{N}}$ telle que la série $\sum \frac{1}{|z_n|^2}$ diverge et qui vérifie

$$|z_p - z_q| \ge 1$$
,

pour tout couple (p,q) d'éléments distincts de \mathbf{N} .

Indication pour la question 6, second point et 7. 6.(b)

• Remarquons qu'a priori l'application δ est de classe \mathcal{C}^1 . En effet les n^2 applications

$$\mathcal{M}_n(\mathbf{R}) \to \mathbf{R} \; ; \; M \mapsto m_{i,j} \; ; \; (i,j) \in [[1,n],]$$

sont de classe \mathcal{C}^1 car linéaires. Donc δ est de classe \mathcal{C}^1 comme sommes et différences de produits de ces applications.

• Ceci étant, soit $G \in \mathcal{M}_n(\mathbf{R})$.

Prenons U un élément non nul de $\mathcal{M}_n(\mathbf{R})$.

Alors, pour tout t élément de \mathbb{R}^* ,

$$\delta(G + tU) = \det(G) \det(I_n + tG^{-1}U) = t^n \det(G) \left(\frac{1}{t}I_n + G^{-1}U\right) = t^n \det(G)\chi_{-G^{-1}U} \left(\frac{1}{t}\right)$$

$$= t^n \det(G) \left(\left(\frac{1}{t}\right)^n - \operatorname{tr}(-G^{-1}U) \left(\frac{1}{t}\right)^{n-1} + \operatorname{o}_{t\to 0} \left(\frac{1}{t^{n-1}}\right)\right) = \det(G) + t \det(G)\operatorname{tr}(G^{-1}U) + \operatorname{o}_{t\to 0}(t)$$

$$= \det(G) + t \operatorname{tr}((\operatorname{com}(G))^\top U) + \operatorname{o}_{t\to 0}(t).$$

D'où l'existence de $D_U\delta(G)$, que nous donnait déjà le caractère \mathcal{C}^1 de δ , et

$$D_U \delta(G) = \operatorname{tr} \left((\operatorname{com}(G))^\top U \right) = \langle \operatorname{com}(G) | U \rangle,$$

où $\langle \cdot | \cdot \rangle$ désigne le produit scalaire canonique sur $\mathcal{M}_n(\mathbf{R})$ (identifié à $\mathbf{R}^{(n^2)}$.

• Soit à présent $M \in \mathcal{M}_n(\mathbf{R})$. On dispose d'une suite $(G_p)_{p \in \mathbf{N}}$ d'éléments de $\mathrm{GL}_n(\mathbf{R})$ qui converge vers M (par exemple une suite extraite de $\left(M - \frac{1}{2^p}I_n\right)_{p \in \mathbf{N}}$ par suppression des termes d'indices p, tels que $\frac{1}{2^p}$ soit dans le spectre de M.)

Le caractère C^1 de δ assure la continuité de $D_U\delta$ et donc que :

$$D_U \delta(G_p) \underset{p \to +\infty}{\longrightarrow} D_U \delta(M)$$
.

La continuité de = $\langle \cdot | U \rangle$ (linéaire en dimension finie) et de $M \mapsto \text{com}(M)$ (polynomiale en les coordonnées dans la base canonique) veulent que :

$$\langle \operatorname{com}(G_p)|U\rangle \underset{p\to+\infty}{\longrightarrow} \langle \operatorname{com}(M)|U\rangle.$$

Par ces deux points,

$$D_U \delta(M) = \operatorname{tr}((\operatorname{com}(M))^\top U) = \langle \operatorname{com}(M) | U \rangle.$$

Donc pour tout $A \in \mathcal{M}_n(\mathbf{R})$,

$$d\delta(A) : \mathcal{M}_n(\mathbf{R}) \to \mathbf{R}; H \mapsto \langle \operatorname{com}(A)|H\rangle.$$

7) Observons pour commencer que $f(0_{\mathbf{R}_n}) = f(2 \cdot 0_{\mathbf{R}_n}) = 2f(0_{\mathbf{R}_n})$ de sorte que $f(0_{\mathbf{R}_n}) = 0$. Ceci étant supposons f différentiable, on a donc, pour tout réel t > 0,

$$tf(X) = f(tX) = f(0_{\mathbf{R}_n}) + \mathrm{d}f(0_{\mathbf{R}_n}) \cdot (tX) + ||tX|| \varepsilon(tX) = t \left(\mathrm{d}f(0_{\mathbf{R}_n}) \cdot (X) + ||X|| \varepsilon(tX)\right),$$

où ε est une application de \mathbf{R}^n dans \mathbf{R} de limite nulle en $0_{\mathbf{R}^n}$. Donc, par divison par t dans la précédente éfalité puis en laissant tendre t vers 0,

$$f(X) = \mathrm{d}f(0_{\mathbf{R}_n}) \cdot (X).$$

Donc f est l'application linéaire $df(0_{\mathbf{R}_n})$.

Toute norme est 1-homogène, cependant aucune ne peut prétendre à la linéarité puisque un vecteur non nul (il en est $n \neq 0$) et son opposé partageant la même norme non nulle.

Aucune norme sur \mathbb{R}^n n'est différentiable en l'origine. Il en est du reste de même sur tout espace vectoriel de dimension finie non nulle.