MP* KERICHEN 2025-2026

DS nº2 pour les $\frac{3}{2}$

Il sera, dans la notation, tenu compte de la présentation et de la qualité de la rédaction. Les résultats devront obligatoirement être soulignés ou encadrés à la règle, le texte et les formules ponctuées, un minimum de 90% des s du pluriel et de 80% des accents est requis.

L'usage de la calculatrice est interdit.

UTILISATIONS DES MATRICES COMPAGNON

Notations et définitions :

Dans tout le problème K désigne ${\bf R}$ ou ${\bf C}$ et n est un entier naturel non nul. Par ailleur on note :

Si u est un endomorphisme d'un K-espace vectoriel E, on défini u^p , pour tout $p \in \mathbf{N}$, par récurrence :

$$u^0 = id_E, \ u^{p+1} = u^p \circ u.$$

On note:

- $K[X]_n$ la K-algèbre des polynômes de degré inférieur ou égal à n;
- $\mathcal{M}_n(K)$ la K-algèbre des matrices carrées de taille n à coefficients dans K de matrice unité I_n et $\mathrm{GL}_n(K)$ le groupe des matrices inversibles de $\mathcal{M}_n(K)$;
- $m_{i,j}$ le coefficient d'indice (i,j) d'un élément M de $\mathcal{M}_n(K)$;
- pour une matrice A de $\mathcal{M}_n(K)$, A^{\top} la transposée de la matrice A, $\operatorname{rg}(A)$ son rang, $\chi_A = \det(XI_n A)$ son polynôme caractéristique et $\operatorname{Sp}(A)$ l'ensemble de ses valeurs propres.

En outre, à tout $P = X^n + a_{n-1}X^{n-1} + \ldots + a_1X + a_0$, polynôme unitaire de $K[X]_n$, on associe

l'élément de $\mathcal{M}_n(K)$,

$$C_P = \begin{pmatrix} 0 & 0 & . & . & 0 & -a_0 \\ 1 & 0 & . & . & 0 & -a_1 \\ 0 & 1 & 0 & . & 0 & -a_2 \\ . & . & . & . & . & . \\ 0 & . & 0 & 1 & 0 & -a_{n-2} \\ 0 & . & . & 0 & 1 & -a_{n-1} \end{pmatrix}$$

(c'est-à-dire la matrice C_P est définie par $c_{i,j} = 1$, pour i - j = 1, $c_{i,n} = -a_{i-1}$ et $c_{i,j} = 0$, dans les autres cas).

Cette matrice s'appelle la matrice compagnon de P.

Les parties II. III. et IV. utilisent les résultats de la partie I. et sont indépendantes entre elles.

I. Propriétés générales

Dans cette partie on considère le polynôme $P = X^n + a_{n-1}X^{n-1} + \ldots + a_1X + a_0$ élément de $K[X]_n$ et C_P sa matrice compagnon associée.

1. Montrer que C_P est inversible si et seulement si $P(0)\neq 0$.

- 2. Calculer le polynôme caractéristique de la matrice C_P
- 3. Soit Q un polynôme de $K[X]_n$, déterminer une condition nécessaire et suffisante pour qu'il existe une matrice A de $\mathcal{M}_n(K)$ telle que $\chi_A = Q$.
- 4. On note C_P^{\top} la transposée de la matrice C_P .
 - (a) Justifier la proposition : $\operatorname{Sp}(C_P) = \operatorname{Sp}(C_P^\top)$.
 - (b) Soit λ élément de Sp (C_P^\top) , déterminer le sous-espace propre de C_P^\top associé à λ .
 - (c) Montrer que C_P^{\top} est diagonalisable si et seulement si P est scindé sur K et a toutes ses racines simples.
 - (d) On suppose que P admet n racines $\lambda_1, \lambda_2, \ldots, \lambda_n$ deux à deux distinctes, montrer que C_P^{\top} est diagonalisable et en déduire que le déterminant de Vandermonde

$$\begin{vmatrix} 1 & 1 & \cdot & \cdot & 1 \\ \lambda_1 & \lambda_2 & \cdot & \cdot & \lambda_n \\ \lambda_1^2 & \lambda_2^2 & \cdot & \cdot & \lambda_n^2 \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \lambda_1^{n-1} & \lambda_2^{n-1} & \cdot & \cdot & \lambda_n^{n-1} \end{vmatrix}$$
est non nul.

- 5. Exemples
 - (a) Soit P un élément de $\mathbf{K}[X]_n$ unitaire. Calculer $P(C_P)$.
 - (b) Déterminer une matrice à coefficients réels A (dont on précisera la taille n) vérifiant : $A^{2025} = A^{2024} + A^{2023} + 2022I_n.$
 - (c) Soit E un K-espace vectoriel de dimension n et f un endomorphisme de E vérifiant : $f^{n-1}\neq 0$ et $f^n=0$; montrer que l'on peut trouver une base de E dans laquelle la matrice de f est une matrice compagnon que l'on déterminera.
- 6. On dit qu'un élément M de $\mathcal{M}_n(\mathbf{C})$ est cyclique si il existe un élément X_0 de $\mathcal{M}_{n,1}(\mathbf{C})$ tel que $(X_0, MX_0, ..., M^{n-1}X_0)$ soit libre.
 - (a) Montrer que si M élément de $\mathcal{M}_n(\mathbf{C})$ est cyclique, alors elle est semblable à une matrice compagnon.
 - (b) Montrer que l'ensemble des matrices cycliques de $\mathcal{M}_n(\mathbf{C})$ est ouvert.
 - (c) Soit M un élément de $\mathcal{M}_n(\mathbf{C})$ diagonalisable et $\lambda_1, \lambda_2, ..., \lambda_n$ ses valeurs propre. Montrer que M est cyclique si et seulement si les λ_i , pour i = 1, 2, ..n, sont deux à deux distincts.

Indication : on pourra considérer la somme des vecteurs d'une base de vecteurs propres.

- 7. Une application
 - (a) Soient M un élément de $\mathcal{M}_n(K)$ et $P \in K[X]$ tels que :

$$P(M) = O_n$$
.

Montrer que toute valeur propre λ de M est une racine de P

(b) Soit M un élément de $\mathcal{M}_7(\mathbf{R})$ qui vérifie

$$M^3 = -M^2 - M. (1)$$

Montrer que le rang de M est inférieur ou égal à 6.

- (c) Donner un exemple d'élément de $\mathcal{M}_7(\mathbf{R})$ de rang 6 vérifiant (1).
- 8. Pour tout élément de $\mathcal{M}_n(K)$ on note K[M] l'ensemble des polynômes en M:

$$K[M] := \{ P(M), P \in K[X] \}.$$

On note $\mathcal{C}(M)$, l'ensemble des éléments de $\mathcal{M}_n(K)$ qui commutent avec M.

- (a) Soit $P \in \mathbf{R}[X]_n$ unitaire. Montrer que $\mathcal{C}(C_P) = K[C_P]$.
- (b) Soit A la matrice élément de $\mathcal{M}_{2n}(K)$

$$\begin{pmatrix} C_P & O_n \\ O_n & C_P \end{pmatrix}$$

Comparer $\mathcal{C}(A)$ et K[A] (on précisera les inclusions eventuelles entre ces deux ensembles).

II. Localisation des racines d'un polynôme

Soit $A = (a_{i,j})$ une matrice de $\mathcal{M}_n(\mathbf{C})$, on pose pour tout entier $1 \leq i \leq n$:

$$r_i = \sum_{j=1}^n |a_{i,j}| \text{ et } D_i = \{z \in \mathbf{C}, |z| \le r_i\}.$$

Pour
$$X = \begin{pmatrix} x_1 \\ x_2 \\ \cdot \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbf{C})$$
, on note $||X||_{\infty} = \max_{1 \le i \le n} |x_i|$.

6. Soit
$$\lambda \in \text{Sp}(A)$$
 et $X = \begin{pmatrix} x_1 \\ x_2 \\ \cdot \\ x_n \end{pmatrix}$ un vecteur propre associé à λ .

Montrer que pour tout entier $1 \le i \le n$ on a :

$$|\lambda x_i| \leq r_i ||X||_{\infty}$$
.

7. Soit $P = X^n + a_{n-1}X^{n-1} + \ldots + a_1X + a_0$ un polynôme de $\mathbb{C}[X]$, établir que toutes les racines de P sont dans le disque fermé de centre 0 et de rayon R, où :

$$R = \max\{|a_0|, 1 + |a_1|, 1 + |a_2|, \dots, 1 + |a_{n-1}|\}.$$

8. Application:

Soit $a,\,b,\,c$ et d quatre entiers naturels distincts et non nuls, montrer que l'équation d'inconnue n :

$$n^a + n^b = n^c + n^d$$

n'admet pas de solution sur $\mathbf{N} \setminus \{0, 1\}$.

III. Suites récurrentes linéaires

On note $E = \mathbb{C}^{\mathbb{N}}$ l'espace vectoriel des suites de complexes et si u est une suite de E, on écrira u(n) à la place de u_n pour désigner l'image de n par u.

On considère le polynôme $P = X^p + a_{p-1}X^{p-1} + \ldots + a_0$ de $\mathbb{C}[X]$ avec $a_0 \neq 0$ et on lui associe le sous-espace vectoriel F de E formé des éléments u vérifiant la relation :

$$\forall n \in \mathbf{N} : u(n+p) = -a_{p-1}u(n+p-1) - \dots - a_0u(n).$$

- 10. Montrer que si λ est racine de P alors la suite $n \mapsto \lambda^n$ est élément de F.
- 11. Soit φ l'application de F vers \mathbb{C}^p définie par : $u \mapsto (u(0), u(1), \dots, u(p-1))$, montrer que φ est un isomorphisme d'espaces vectoriels. Quelle est la dimension de F?
- 12. Pour tout entier $0 \le i \le p-1$ on définit les éléments e_i de F par : $e_i(i) = 1$ et, lorsque $0 \le j \le p-1$ et $j \ne i$, $e_i(j) = 0$.
 - (a) Déterminer pour $0 \le i \le p-1$, la valeur de $e_i(p)$.
 - (b) Montrer que le système de vecteurs $(e_0, e_1, ..., e_{p-1})$ est une base de F.
 - (c) Soit u un élément de F, établir que $u = \sum_{i=0}^{p-1} u(i)e_i$.

- 13. Si u est un élément de E, on définit l'élément f(u) de E par : f(u) : $n \mapsto u(n+1)$. Montrer que l'application f ainsi définie est un endomorphisme de E et que F est stable par f.
- 14. Soit g est l'endomorphisme de F induit par f, Déterminer la matrice de g dans la base $(e_0, e_1, \ldots, e_{p-1})$.
- 15. On suppose que P admet p racines non nulles et deux à deux distinctes : $\lambda_0, \lambda_1, \ldots, \lambda_{p-1}$.
 - (a) Déterminer une base de F formée de vecteurs propres de g.
 - (b) En déduire que, si u est élément de F, alors il existe des constantes complexes k_0 , k_1, \ldots, k_{p-1} telles que : $\forall n \in \mathbf{N}, u(n) = k_0 \lambda_0^n + k_1 \lambda_1^n + \ldots + k_{p-1} \lambda_{p-1}^n$.
- 16. Exemple: (On revient à la notation usuelle u_n)

Soit a, b et c trois réels distincts.

Déterminer une base de l'espace vectoriel des suites définies par u_0 , u_1 et u_2 et par la relation de récurrence valable pour tout $n \in \mathbb{N}$:

$$u_{n+3} = (a+b+c)u_{n+2} - (ab+ac+bc)u_{n+1} + abc.$$

IV. Matrices vérifiant : rg(U - V) = 1

Dans cette partie, pour une matrice A, on notera C_A la matrice compagnon du polynôme χ_A .

On admet le résultat suivant qui sera vu en cours d'année et dont la forme matricielle a été admise en I.5.(a) :

- Si f est un endomorphisme de \mathbf{E} , alors $\chi_f(f)$ est nul.
- 17. Une matrice A est-elle nécessairement semblable à la matrice compagnon C_A ?

Pour tout couple (U, V) de matrices de $GL_n(K)$, on considère les deux propositions suivantes, que l'on identifie chacune par un symbole :

- (*) : rg(U V) = 1
- (**) : Il existe une matrice inversible P telle que $U = P^{-1}C_UP$ et $V = P^{-1}C_VP$.
- 18. Montrer qu'un couple (U, V) de matrices distinctes de $GL_n(K)$ vérifiant (**) vérifie (*).
- 19. Déterminer un couple (U, V) de matrices de $GL_2(K)$ (n = 2) vérifiant (*) mais ne vérifiant pas (**) et déterminer le plus grand commun diviseur des polynômes χ_U et χ_V .

Dans la suite de cette partie, (U, V) est un couple de matrices de $GL_n(K)$ vérifiant (*) et tel que χ_U et χ_V sont deux polynômes premiers entre eux.

Soit E un K-espace vectoriel de dimension n et de base B, on désigne par u et v les automorphismes de E tels que U (respectivement V) soit la matrice de u (respectivement v) dans la base B.

Enfin on pose H = Ker(u - v).

- 20. Montrer que H est un hyperplan vectoriel de E.
- 21. Soit $F \neq \{0\}$ un sous-espace vectoriel de E stable par u et par v c'est-à-dire :

$$u(F) \subset F \text{ et } v(F) \subset F.$$

On notera u_F (respectivement v_F) l'endomorphisme induit par u (respectivement v) sur F.

On rappelle que χ_{u_F} divise χ_u .

- (a) Montrer que F n'est pas inclus dans H.
- (b) On suppose que $F \neq E$, montrer que F + H = E puis que l'on peut compléter une base B_F de F par des vecteurs de H pour obtenir une base B' de E. En utilisant les matrices de u et v dans la base B' montrer que l'on aboutit à une contradiction.

- (c) Quels sont les seuls sous-espaces stables à la fois par u et par v?
- 22. Pour $j \in \mathbf{N}$, on note $G_j = \{x \in E, u^j(x) \in H\}$.
 - (a) Montrer que les sous-espaces G_j sont des hyperplans vectoriels de E.
 - (b) Montrer que $\bigcap_{j=0}^{n-2} G_j \neq \{0\}$.
 - (c) Soit y un vecteur non nul de $\bigcap_{j=0}^{n-2} G_j$, on pose pour $0 \le j \le n-1$: $e_j = u^j(y)$.

Montrer que $B'' = (e_0, e_1, ..., e_{n-1})$ est une base de E.

- (d) Montrer que la matrice de u (respectivement v) dans B'' est C_U (respectivement C_V).
- (e) Conclure.
- $23. \ Application:$

Soit u et v deux automorphismes d'un K-espace vectoriel E de dimension n vérifiant : $\operatorname{rg}(u-v)=1,\ \chi_u(X)=(-1)^n\,(X^n+1)$ et $\chi_v(X)=(-1)^n\,(X^n-1)$.

Montrer que le plus petit sous groupe de GL(E) contenant u et v est fini de cardinal inférieur ou égal à (2n)!.

Fin de l'énoncé.

MP* KERICHEN 2022-2023

Correction du DS n°3

Partie I

1) En développant par rapport à la première ligne on trouve $\pm \det C_P = (-1)^{n+1}(-a_0) = (-1)^n P(0)$.

Donc C_p est inversible si et seulement si $P(0) \neq 0$.

2)

Traité en T.D. et exercice de colle.

$$\chi_{C_P} = P$$
.

3)

- \bullet Si Q est un polynôme caractéristique alors d'après le cours il est unitaire.
- Réciproquement si Q est unitaire, alors Q est le polynôme caratéristique de C_Q .

Au total : Q est un polynôme caratéristique si et seulement si il est unitaire.

4)a) Cf. cours.

4)b) on a
$${}^{t}C_{P} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & & \ddots & \ddots & \vdots \\ 0 & \dots & & 0 & 1 \\ -a_{0} & -a_{1} & \dots & & -a_{n-1} \end{pmatrix}$$
. Soit $X = \begin{pmatrix} x_{1} \\ x_{2} \\ \ddots \\ x_{n} \end{pmatrix}$ un élément de $\mathcal{M}_{n,1}(\mathbf{K})$.

 $X \in \mathcal{E}_{\lambda}(C_p^{\top})$ si et seulement si :

$$\begin{cases} x_2 = \lambda x_1, \\ x_3 = \lambda x_2, \\ \vdots \\ x_n = \lambda x_{n-1}, \\ -a_0 x_1 - \dots - a_{n-1} x_n = \lambda x_n. \end{cases}$$

Donc $X \in \mathcal{E}_{\lambda}({}^{\mathrm{t}}C_{p})$ si et seulement si :

$$\begin{cases} x_2 = \lambda^1 x_1, \\ x_3 = \lambda^2 x_1, \\ \vdots \\ x_n = \lambda^{n-1} x_1, \\ (-a_0 - a_1 \lambda - \dots - a_{n-1} \lambda^{n-1}) x_1 = \lambda^n x_1. \end{cases}$$

Or λ est valeur propre de C_p^{\top} donc $(-a_0 - a_1 \lambda - \ldots - a_{n-1} \lambda^{n-1}) = \lambda^n$. Donc

$$\mathbb{E}_{\lambda}(C_p^{\top}) = \operatorname{vect}\left(\begin{pmatrix} 1\\ \lambda\\ \vdots\\ \lambda^{n-1} \end{pmatrix}\right)$$

4c)

- Si P est scindé à racines simples alors $\chi_{C_P^\top}$ aussi et donc C_P^\top est diagonalisable.
- Réciproquement, supposons que C_P^{\top} soit diagonalisable. Alors $\chi_{C_P^{\top}}$ est scindé donc P aussi et, pour tout λ racine de P, on a $\lambda \in \operatorname{sp}(C_p^{\top})$ et la multiplicité de λ est égale à $\dim(\operatorname{Ker}(C_p^{\top} \lambda I_n))$. Or, on a vu au (b) que $\dim(\operatorname{Ker}(C_p^{\top} \lambda I_n)) = 1$. Donc P est scindé à racines simples.

Ainsi C_P^{\top} est-il diagonalisable si et seulement si P est scindé à racines simples.

4d))

- Les colonnes du déterminant sont des vecteurs propres de C_P^{\top} associées dans cet ordre à $\lambda_1, \lambda_2,...,\lambda_n$, et les valeurs propres étant deux à deux distinctes, ces vecteurs propres sont indépendants et donc le déterminant (déterminant de ces vecteurs dans la base canonique) est non nul.
- **5a)** La question tombera grâce au théorème de Cayley-Hamilton qui sera vu en février : $P(C_p) = \chi_{C_P}(C_P) = O_n$. En attendant, une solution partielle dans le cas diagonalisable était très accessible (et rémunérée). Donnons une preuve dans le cas général.

D'abord en notant $(E_1, ..., E_n)$ la base canonique de $\mathcal{M}_{n,1}(K)$ on a en regardant les n-1 premières colonnes de C_P , $C_P^i E_1 = E_{1+i}$, pour i = 1, ..., n-1 et donc, par la dernière colonne de la matrice,

$$P(C_p)E_1 = C_P^n(E_1) + \sum_{i=0}^{n-1} a_i C_P^i(E_1) = C_P(E_n) + \sum_{i=0}^{n-1} a_i E_{1+i} = C_P(E_n) - C_P(E_n) = O_{n,1}.$$

Mais alors pour i = 1, 2, ...n, on a

$$P(C_P)E_i = P(C_P)C_P^{i-1}(E_1) = C_P^{i-1}P(C_p)(E_1) = O_{n,1},$$

Donc $P(C_P)$ est nulle sur la base canonique (variante ainsi les n colonnes de $P(C_P)$ sont-elles nulles) et donc $P(C_P) = O_n$

nulles) et donc $P(C_P) = O_n$ **5b)** Posons $P(X) = X^{2025} - X^{2024} - X^{2023} - 2022$.

La matrice C_P , d'ordre 2025, vérifie par 5, (a), $\chi_{c_P}=0_{2002}$, c'est-à-dire :

$$C_P^{2025} = C_p^{2024} + C_P^{2023} + 2022I_{2025}$$

5c)Exercice de colle.

Déjà vu plusieurs fois cette année...

6)

6a) Supposons M cyclique et désignons par X_0 un vecteur cyclique associé (même notation que dans la définition). Alors $(X_0, MX_0, ..., M^{n-1}X_0)$, famille libre de cardinal n est une base \mathcal{B}_0 de $\mathcal{M}_{n,1}(\mathbf{C})$. Décomposons le vecteur M^nX_0 dans cette en :

$$M^{n}X_{0} = \alpha_{0}X_{0} + \alpha_{1}MX_{0} + \dots + \alpha_{n-1}M^{n-1}X_{0},$$

Posons alors $P_0 = \alpha_0 - \alpha_1 X - ... - \alpha_{n-1} X^{n-1} + X^n$. Alors l'endomorphisme de $\mathcal{M}_{n,1}(\mathbf{C})$ canoniquement associé à M a dans la base \mathcal{B}_0 pour matrice C_{P_0} . autrement dit : M est semblable à la matrice compagnon C_{P_0} .

6b) Soir M_0 un élément de $\mathcal{M}_n(\mathbf{C})$ cyclique et X_0 un vecteur cyclique associé. Soient \mathcal{B}_c la base canonique de $\mathcal{M}_{n,1}(\mathbf{C})$ et

$$\delta : \mathcal{M}_n(\mathbf{C}) \to \mathbf{R} : M \mapsto \det_{(\mathcal{B}_c)}(X, MX, ...M^{n-1}X).$$

On a, par définition de la cyclicité $,\delta(M_0) \neq 0$ et que δ est continue puisque polynomiale en les coordonées de la varaiable dans $[\mathcal{B}_c, \text{ donc on dispose d'un voisinage } V \text{ de } M_0 \text{ sur lequel } \delta$ est non nul. Donc pour tout $M \in V$, la famille $(X_0, MX_0, ..., M^{n-1}X_0)$ est libre et donc V est inclus dans l'ensemble des matrices cycliques.

Donc l'ensemble des éléments de $\mathcal{M}_n(\mathbf{C})$ cycliques est un ouvert.

- Supposons M cyclique. Elle est semblable à une matrice compagnon (cf. (a)), qui est donc elle aussi diagonalisable et partage avec M ses valeurs propres, donc par 4. (c) $\lambda_1, ..., \lambda_n$ sont deux à deux distinctes.
- Supposons que $\lambda_1, ..., \lambda_n$ soient deux à deux distinctes. Notons $(X_1, ..., X_n)$ une base de vecteurs propres $(X_i, \text{ pour } i = 1, ..., n, \text{ est associé à } \lambda_i)$ et posons $X = X_1 + ... + X_n$. Alors pour j = 0, 1, ..., n 1, par récurrence (et bientôt par le cours),

$$M^j X = \sum_{i=1}^n \lambda_i^j X_i.$$

Ainsi le déterminant de la famille $(X, MX, ..., M^{n-1}X)$ dans la base $(X_1, ..., X_n)$ est-il le déterminant de Vandermonde associé au λ_i , à transposition près celui de 4.(d) et est-il non nul par cette même question. Donc M est cyclique de vecteur cyclique X.

Concluons: M est cyclique si et seulement si $\lambda_1, ..., \lambda_n$ sont deux à deux distinctes.

7))

7a) Soient λ une valeur propre de M et V un vecteur propre associé. Alors par récurence, pour tout $k \in \mathbb{N}$,

$$M^k V = \lambda^k V.$$

Donc en notant $P = \sum_{k=0}^{+\infty} c_k X^k$ avce la famille c presque nulle,

$$O_{n,1} = P(M)V = \left(\sum_{k=0}^{+\infty} c_k M_k\right) V = \left(\sum_{k=0}^{+\infty} c_k M_k V\right) = \left(\sum_{k=0}^{+\infty} c_k \lambda^k V\right) = \left(\sum_{k=0}^{+\infty} c_k \lambda_k\right) V = P(\lambda)V.$$

Cette égalité sera au programme.

Comme $V \neq O_{n,1}$ on a $P(\lambda) = 0$.

7b) Posons $P = X^3 + \overline{X^2 + X}$. Ainsi $P(M) = O_n$. La question précédente veut que le spectre de M soit inclus dans l'ensemble des racines de P soit :

$$\{0, j, \bar{j}\}$$
.

Comme M est à coefficients réels, $\chi_M \in \mathbf{R}[X]$. Donc si j est racine \bar{j} l'est aussi et avec même multiplicité, or la somme des multiplicités des racines de χ_M est le nombre impair 7, donc 0 est valeur propre.

Donc $rg(M) \leq 6$.

7b) Notons $Q = (X - j)(X - \bar{j})$ la matrice C_Q est un élément de $\mathcal{M}_2(\mathbf{R})$, de polynôme caractéristique Q. Posons $A = \operatorname{diag}(C_Q, C_Q, C_Q, O_1)$.

D'abord $\chi_A = \chi_Q \chi_Q \chi_Q \chi_{O_1} = \chi_Q^3 X$. Donc les valeurs propres de A sont $0, j, \bar{j}$ de multiplicités respectives 1, 3, 3.

Ensuite comme C_Q est diagonalisable par 4.(c), A l'est aussi et donc dim(ker(A)) est la multiplicité de 0, soit 1. Donc

$$rg(A) = 7 - 1 = 6.$$

Enfin $P(C_Q) = XQ(C_Q) = C_Q Q(C_Q) = C_Q \chi_Q(C_Q) = C_Q O_2 = O_2$. Donc:

$$P(A) = \operatorname{diag}(P(C_Q), P(C_Q), P(C_Q), P(O_1)) = \operatorname{diag}(O_2, O_2, O_2, O_1) = O_7.$$

le rang de A est 6

8)

8a) Vu en exercice de colles.

8b) Comme dans la question précédente — et ce sera un résultat du cours — on a

$$K[A] \subset \mathcal{C}(A)$$
.

L'inclusion est <u>stricte</u> en effet on a trivialement $\begin{pmatrix} I_n & 0_n \\ 0_n & O_n \end{pmatrix} \in \mathcal{C}(A)$, cependant cette matrice n'est pas élément de K(A) car si elle s'écrivait Q(A) où $Q \in K[X]$, il faudrait que l'on eût, en même temps :

$$Q(C_P) = C_P \text{ et } Q(C_p) = 0_n,$$

ce qui est faux (une matrice compagnon ne saurait être nulle).

Partie II

Par hypothèse, on a pour i = 1, ..., n,

$$\sum_{j=1}^{n} a_{i,j} x_j = \lambda x_i.$$

Donc par l'inégalité triangulaire,

$$|\lambda x_i| \le \sum_{j=1}^n |a_{i,j}| \cdot |x_j| \le r_i ||X||_{\infty}.$$

7) Soit λ une racine de P, donc une valeur propre de C_P (cf. partie I) et X un vecteur propre associé à cette valeur propre. On a par 6,

$$|\lambda x_i| \le \left(\sum_{j=1}^n |C_P(i,j)|\right) ||X||_{\infty} \le R||X||_{\infty}.$$

Soit i un indice tel que $|x_i| = ||X||_{\infty}$, On a alors, puis que $||X||_{\infty}$ est non nulle que $|\lambda| \leq R$, c'est à dire : λ est élément du disque fermé de centre O de rayon \mathbf{R} .

8) Une application amusante!

Supposons pour fixer les idées que a soit le plus grand des quatre entiers a, b, c, d Posons

$$P(X) = X^a + X^b - X^c - X^d$$

La matrice C_P ne contient que des $0, \pm 1$ et on a avec les notations de la question précédente R = 2.

Les seules racines éléments de N possibles sont donc 0, 1, 2.

Or si 2 était racine de P, alors on aurait (avec par exemple c > d),

$$2^b(1+2^{a-b}) = 2^d(1+2^{c-d})$$

Ce qui est absurde puisque la valuation dyadique de $2^b(1+2^{a-b})$ est b qui est distinct de d, valuation dyadique de $2^d(1+2^{c-d})$.

Donc les seules racines dans N de $n^a + n^b = n^c + n^d$ sont 0 et 1.

Partie III

10) Supposons λ racine de P, pour tout entier $n \geq 1$:

$$\lambda^{n+p} + a_{p-1}\lambda^{n+p-1} + \ldots + a_0\lambda^n = \lambda^n P(\lambda) = 0.$$

La suite $(\lambda_n)_{n\in\mathbb{N}}$ est donc élément de F.

11)

- φ est linéaire (ses composantes sont des formes linéaires).
- φ est bijective.

En effet Soit $(a_0, a_1, ... a_{p-1})$ un élément de \mathbb{C}^p . La définition par récurrence d'un élément de F assure qu'il existe un et un seul élément u de F, qui vérifie $u(0) = a_0, ... u(p-1) = a_{p-1}$, donc un et un seul antécédent de $(a_0, a_1, ... a_{p-1})$ par φ .

Donc φ est un isomorphisme.

Donc F, isomorphe à \mathbb{C}^p , est de dimension p.

12a) Pour i = 0, ..., p - 1 on $a : e_i(p) = -a_{p-1}e_i(p-1) - ... - a_0e_i(0) = -a_i$.

12b) la famille $(e_0, e_2, ... e_{p-1})$ est l'image de la base canonique de \mathbb{C}^p par l'isomorphisme φ^{-1} . C'est donc une <u>base de F.</u>

12c)

$$u = \varphi^{-1}(u(0), ..., u(p-1)) = \varphi^{-1} \sum_{i=0}^{p-1} u(i)(\underbrace{0, 0, ...0, 1}_{i+1}, 0, ...0) = \sum_{i=0}^{p-1} u(i)\varphi^{-1}(\underbrace{0, 0, ...0, 1}_{i+1}, 0, ...0) = \sum_{i=0}^{p-1} u(i)e_i.$$

13)

f est clairement linéaire.

Soit $u \in F$. Pour tout $n \in \mathbb{N}$,

$$f(u)(n+p) = u(n+1+p) = -a_{p-1}u(n+1+p-1) - \dots - a_0u(n+1) = -a_{p-1}f(u)(n+p-1) - \dots - a_0f(u)(n),$$

et donc $f(u) \in F$.

F est stable par f.

PROGRAMME DE L'INTERROGATION

- 1. DM 1, exercice 1 et 3.
- 2. DM 2, exercice 1, question 1, 2 et 3.
- 3. DS 1, partie I, question 1, 2, 3, 4 et 7, partie III, question 1.
- 4. DS 2, partie I.
- 5. Colles, semaine 1 question 9 et 11, semaine 2 question 1.a), semaine 3 question 3, semaine 4 question 5.