LyCEE KERICHEN 2025-2026 MP*

Travaux dirigés n° 1

I. Matrices et endomorphismes nilpotents

Soit n un entier strictement positif et M une matrice d’ordre n a coefficients dans un sous-
corps K de C. Nous dirons que M est nilpotente si, par définition, il existe un entier strictement
positif, k, tel que : M* = 0,,. Quand M est nilpotente, on appelle ordre de nilpotence de M le
plus petit élément de I’ensemble des entiers strictement positif k , tels que M* = 0,.

Soit E un espace vectoriel sur K de dimension n, et v un endomorphisme de E. Nous
dirons que wu est nilpotente si, par définition, il existe un entier strictement positif, k, tel que :
uF = 0z(g)- Quand u est nilpotente on appelle ordre de nilpotence de u le plus petit élément de
I'ensemble des entiers strictement positifs k, tels que u* = Oz(E).-

1. Montrer que si M est la matrice de u dans une base de E, alors M est nilpotente d’ordre
p si et seulement si u est nipotent d’ordre p.

2. Nous supposons dans cette question que u est de rang 1, montrer que u est diagonalisable
ou bien est nilpotent.

3. Pour tout entier naturel i on pose N; = Ker(u') et I; = Tm(u’).

a) Montrer que les suites (IV;);en et (I;);en sont monotones, pour I'inclusion, on préci-
Mont 1 ites (N, t (1 t t inclusi éci
sera leur monotonie.

ontrer qu'il existe un entier naturel j tel que N; = N,.;. Montre alors que pour

b) Mont il exist tier naturel j tel que N; = Nj4;. Montre al
tout entier ¢ > j, NZ = Ni+1 et [Z = Ii+l-

c) Soit j un entier naturel non nul. Montrer que N; = N;,; si et seulement si N;®1; = E.
Soit j ti turel 1. Mont Nj = Nj4 siet seul tsi N;dl; = E

n suppose u nilpotent d’ordre p. On note jj le plus petit entier j tel que N; = N1,

d) O ilpotent d’ord On note jj le pl tit entier j tel N; = Nj;

que vaut jo et Nj,.

4. Montrer que si M est triangulaire supérieure stricte alors elle est nilpotente. Donner une
matrice nilpotente qui n’est ni triangulaire supérieure stricte ni triangulaire inférieure
stricte.

5. Nous supposons que M est nilpotent d’ordre n (n désigne toujours la dimension de E).

0O 0 -« --- 0
1 0 " 0

Montrer que M est semblable & la matrice | o 1 0
0
0 0 1 0

6. Montrer que I’élément de My(R),

o = O O
_ o O O
o O OO
o O OO

est nilpotent d’ordre 2. Déterminer une autre élément de My(R), nilpotent d’ordre 2,
non semblable au précédent.

La fin du I est réservée a un public averti



Notons pour tout entier k > 1, J;, I'élément * de My (K)

0 0 0
1 0 0
0 1 O

0
0 0O 1 0

et convenons que J; = Oj.

FIGURE 1 - CAMILLE JORDAN 1838-1922.
Professeur a I’Ecole polytechnique puis au Collége de France ; on lui doit en autre la forme réduite
des matrices qui porte son nom ainsi que la notion d’arc réctifiable.

Nous supposons que M est nilpotente d’ordre p > 2. On prend £ = M,,;(K) et 'on
note u 'endomorphisme de E canoniquement associé¢ a M. Par r nous désignerons le
rang de M.

7. Montrer que p < n.
8. CAs p=2
On suppose dans cette question que p = 2.
(a) Montrer que 2r < n.
(b) Montrer que M est semblable & la matrice dig(Ja, Ja, .....J2, 0—2,)
t
r termes

9. FORME DE JORDAN DES MATRICES NILPOTENTES
On revient au cas général.

(a) Montrer que Im(u) est stable par u et que 'endomorphisme induit par u sur Im(u)
est nilpotent d’ordre p’ & déterminer.
(b) Montrer qu'il existe un entier naturel & > 1, un élément (aq, sy, ..., a;) de (IN*)*
vérifiant :
ap << ... <a, etagtas+...t+ap=mn,

1. Le J est en I'honneur de Camille Jordan (1838-1922), et cette notation ne doit pas étre confondue avec
celle du cours J, pour I’élément de M, (R), diag(I, Op—y)



tel que M soit semblable a la matrice
diag(Jay, Jags -5 Jay,)-

Indication : raisonner par récurence sur ’ordre de nilpotence de w.
10. UNICITE DE LA FORME DE JORDAN

(a) Déterminer pout tout entier j > 2 et tout entier v > 1 déterminer de J,7. En déduire
la valeur de a;.

(b) On suppose qu'il existe un entier naturel h > 1, un élément (8, Bs, ..., B,) de (N*)?
vérifiant :

Pr<Bo< . B, et i+ Bt ..+ By =mn,

tel que M soit semblable a la matrice
diag(ng, J52, ey Jﬁh)'

Montrer que h = k puis que (81, B2, ..., Br) = (a1, @, ..., ay).
Indication : étudier successivement le rang de M°, M, ... MP~!
11. Montrer que M, 2M et *M sont semblables.

Nous reprendrons cette étude dans un prochain T.D. en vue d’établir la réduction de Jordan
d’une matrice quelconque
IT. Matrices semblables

1. Les matrices suivantes, éléments de M3(R) sont-elles semblables 7

1 1 2 0 1 1
A= -20 2 |, B=| -2 0 1
3 4 -1 1 -3 2

2. Méme question pour

11 -1 0 1 1
C=100 0 , D= -2 0 1 |.
1 4 -1 1 =30
3. Méme question pour les éléments de My(R) :
1 2 3 4 1100
0123 0110
E= 0012’ F= 0011 ]
0001 0001
4. Méme question pour les éléments de M3(R) :
11 1 010
G:= 0o 0 O , H= 0 0 0 ].
-1 -1 -1 000

G et H sont-elles semblables ?

5. Montrer que E est semblable & sa transposée.



ITI. Equivalence a J,
1. Montrer que tout hyperplan de M,,(R) rencontre GL,(R).
2. Pour tout couple (A, B) d’éléments de M,,(R) on note

PA,B : R—)R, )\r—>det(B+/\A)

(a) Montrer que pour tout couple (A, B) d’éléments de M,,(R), P4 p est une application
polynomiale.

(b) Soit A € M,(R). Montrer que rg(A) = max{degP4 5|B € M,(R)}.

(¢) Montrer qu'un endomorphisme de M, (R) qui conserve le déterminant conserve le
rang.

IV. Espace vectoriel de matrices nilpotentes, pour 5/2

Soit n € IN*.

1. Déterminer les éléments nilpotents de S,,(R).

2. Déterminer la plus grande dimension d’un sous-espace vectoriel de M,,(R) ne contenant
que des matrices nilpotentes.

3. Déterminer la plus grande dimension d’un sous-espace vectoriel de M,,(R) ne contenant
que des matrices diagonalisables.

V. Sous-espace vectoriel de matrices

Par n on désigne un entier naturel non nul. Les éléments de R™ seront notés en colonne.

On s’intéresse aux sous-espaces vectoriels F de M,,(R) tels que F \ {O,} soit inclus dans

GL,(R).

1. On suppose dans cette question et seulement dans cette question que n = 2. Exhiber
un sous-espace vectoriel F de My(R) de dimension 2 tels que F \ {O,} soit inclus dans
GL2(R).

Dans toute la suite F désigne un sous-espaces vectoriels de M,,(R) tels que F\ {O,,}
soit inclus dans GL, (R).
2. (a) En considérant
¢ F=>R"; M — MX,,
ou Xy est un élément non nul de R™, montrer que dim(F) < n.
(b) Retrouver ce résultat en considérant 'ensemble H des éléments de M,,(R) dont la
premiére colonne est nulle.

3. (5/2 trés provisoirement...) On suppose que n est impaire. Montrer que dim F < 1.

* %
*

VI. Conjugaisons isométriques pour la norme de Frobenius
Par n sera désigné un entier naturel supérieur ou égal a 2.

1. Montrer que I'application
¢ : M,(R)=R; M+— /Tr(*M M)

est une norme.
2. Soient i et j des éléments de {1,...,n} et A € M, (R). Calculer E; ;A et AE, ;.
3. Déterminer les éléments P de GL,(R) tels que pour tout M € M, (R),

O(PMP™Y) = d(M).



LYCEE KERICHEN 2025-2026 MP*

Travaux dirigés n° 2

I. PRELUDE

Soient A un élément de R[X] et B un élément de R[X] de degré n + 1, scindé a racines
simples. Soit application ¢ de R[X],, dans lui-méme qui & un polynéome P, élément de R[X],,,
associe le reste dans la division euclidienne de AP par B.

1. Montrer que ¢ est un endomorphisme.

2. Déterminer les valeurs propres et les espaces propres de .

II. MATRICES COMPAGNONS

Nous allons étudier des matrices d’une forme particuliére qui jouent, comme nous le verrons,
un role important en mathématiques. Nous verrons leur utilisation dans une preuve du théoreme
de Cayley-Hamilton. Elles se rencontrent également dans l'étude des équations différentielles
linéaire d’ordre n a coefficients constants.

Par K on désigne indifféremment le corps des nombres complexes ou celui des nombres réels.
Soient n un réel supérieur ou égal a 2 et ag,ay,...a, 1 des éléments du corps K. On désigne
par A l'élément de M, (K) suivant

o 1 0 ... 0

0 1 0 0
A=

: o1 0

0 ... ... ... 0 1

apg ap cee eee o Qp—92 Qp—1

1. Calculer le polyndéme caractéristique de la matrice A.
2. Soit A une valeur propre de A. Déterminer E) I'espace propre associé.

3. On suppose ue K = C. Montrer que la matrice A est diagonalisable si et seulement si
toutes ses valeurs propres sont d’ordre de multiplicité 1.

4. APPLICATION AUX SUITES A RECURRENCE LINEAIRE. Soit I’ensemble
S = {U & CN‘VI{? - N, Uk+n + Qp1Ukan—1 + ...+ a1 Uk+1 —+ Aol = 0} .

Soit uw € CV. On pose U la suite a valeurs dans M,, ;1(C) dont le terme d’indice k est

(uk’a Uk41, -+ uk+n—1)T~

(a) Donner une condition nécessaire et suffisante portant sur U pour que u soit élément
de S.

(b) On suppose A diagonalisable. Déterminer S. Montrer que S est un sous-espace vec-
toriel de CN dont on précisera la dimension et dont on fournira un base.

ITI. Théoréme de Kronecker (5/2)

Les 3/2 admettront le résultat suivant qui sera vu trés prochainement. Si le spectre d’un
élément M de M, (C) est {\, X, .. \p}, alors celui de M* est, pour tout entier k > 0,
A A, .o, )\’;}. 1l le vérifierons pour une matrice diagonalisable cependant.

3



. Soient zq, 29,...,2, des nombres complexes, et P le polynome

P=(X—2)(X—2)...(X —2z,)

On suppose que P est a coefficients entier. Soit un entier ¢ > 2. Montrer que
Q = (X = 2)(X = 28)... (X - 21).

est a coefficients entiers.

On se propose de montrer le théoréme de Kronecker : Soit P un polyndéme unitaire de
Z[X] dont les racines complexes sont toutes de module inférieur ou égal & 1. on supppose
de plus que P(0) # 0. Montrer que toutes les racines de P sont des racines de ['unité.

2. Exprimer les coefficients de P au moyen de ses racines.

3. Montrer que I'ensemble de tels polynémes est fini.

4. On note zq, 23,...z, les racines de P. Montrer que

(X — 2N (X —25). (X =29

n

vérifie pour tout £ € N*, les propriétés de P.

Montrer que toutes les racines de P sont des racines de 'unité.

IV. ENDOMORPHISME DE M, (R)
Soit A un élément de M,,(R).
Soit I'application

8.

AR e

by M, (C) = M, (C); M— AM.
Montrer que @4 est un endomorphisme.
Donner le rang de ®4 en fonction de celui de A.
En déduire que ® 4 est diagonalisable si et seulement si A I'est.
(5/2) Retrouver ce résultat grace au cours sur les polynomes d’endomorphisme.
Donner la trace de ®4.

Donner xg,.

Soient A et B des éléments de M,,(C). On se propose de montrer que I’équation
d’inconnue X,

AX - XB=Y (1)

admet une solution dans M,,(C), quel que soit I’élément Y de M,,(C), dans M,,(C) si
et seulement si A et B n’ont pas de valeurs propre commune.

On suppose A et B sans valeur propre commune. On considére I'endomorphisme de
M, (C),
d . X— AX — XB.

(a) Montrer que xa(B) et xp(A) sont inverisbles.

(b) Soit Z un élément du noyau de ®. Montrer que x5(A)Z = Zxp(B). En déduire que
® est injectif.

(¢) Montrer que pour tout Y € M,,(C)l’équation (1) admet une solution.

On suppose que A et B ont une valeur propre A en commun. Et soit X; (resp. X3) un
vecteur propre de A (resp. B) associé a \.

6



(a) En considérant M = X; X, montrer que le noyau de ® est non nul.

(b) Montrer qu'’il existe des éléments Y € M,,(C) tels que 'équation (1) n’admette pas
de solution.

9. Conclure.

Par A on désigne toujours un élément de M,,(C). On considére I'endomorphisme de
M, (C),
Uy X — AXA.

10. Montrer que W 4 est diagonalisable si et seulement si A est diagonalisable.

11. En supposant A réelle, montrer que ’endomorphisme de M,,(R) induit par ¥, est une
isométie pour la norme euclidienne canonique, si et seulement si A est orthogonale.

VI. METHODE DES PUISSANCES POUR LE CALCUL DE VALEURS PROPRES
Par n on désigne un entier supérieur ou égal a 2. Les ¢léments de R™ sont notés en colonne.
et R" est muni de la norme euclidienne canonique, notée || - ||.
Soit M un élément de M, (R) ayant n valeurs propres réelles distinctes Aj, Ag,...,\, non
nulles dont les modules sont classés dans I'ordre inverse :

0< ’)‘n| < |)\n—l| <...< |)‘2| < |)\1|

Pour i =1,...,n V; désigne un vecteur propre unitaire associé¢ a \;.
On se propose de calculer numériquement A\; et V;
Soit A un élément de R™ qui n’est pas élément de vect(Vs, Vs, ..., V)2

1. Montrer que (V1, V3, ..., V},) est une base de R™. On note a; la i® coordonnée de A dans
la base (V1,Va,...,V,,), pour i = 1,2,....n.
2. On définit les suites (Xy)ren (Yi)ken €t (rr)ren par :
X(0)=A4,Y, = H§_2H’ ro =' Yo MY, et pour tout entier k > 1,

Xi = J)\?(kal%
Yie =0

Exprimer Y}, pour tout entier naturel & au moyen des a; et de || X7 || Xs||...|| Xk||-
3. Etudier le comportement de Y} lorsque k£ tend vers +oc.

4. Montrer que r; tend vers A\ lorsque k tend vers 4oc.

2. Il y a trés peu de risque que A, choisi au hasard ne vérifie pas cette condition et les erreurs d’arrondie de
tout maniére sont ici une chance



VII. LEMME DE SCHUR (pour un public averti)
Notons A = M,,(C) et E = C™. Soit G un sous-groupe fini de GL,,(C). Pour tout B € G,
on note i(B)l’application :

gy . { Mn(C) — M, (C)
i(B): { M BB

Soit I’ un sous-espace vectoriel de E. On dit que F est stable par G si quels que soient M € G,
X e F,onaMX € F et on dit que E est irréductible pour G si ses seuls sous-espaces stables
par G sont E et {Og}.

1.

Montrer que i : B — i(B) est un morphisme de groupes de G dans GL(M,,(C)), et
que 7 est injectif si et seulement si G ne contient pas d’homothéties autres que l'identité.

On note G 'image par i de G et M,,(C)C I'ensemble des matrices M € A telles que
i(B)(M) = M pour tout B dans G.

. Soit M € ./\/ln(C)é Démontrer que ker(M) et im(M) sont des sous-espaces stables par

G.

. On suppose que E est irréductible pour G. Soit M € ./\/ln(C)é ; démontrer que M est soit

nulle, soit inversible. En déduire que M,,(C)% est un sous-espace vectoriel de M,,(C)
de dimension 1.

. Soient M, N € M,,(C). On considére 'endomorphisme de M,,(C) suivant,

O: X+— MXN

Démontrer que Tr(®) = Tr(M)Tr(N).

. Soit P = — B.
|G| Z

BeG
(a) Démontrer que P?> = P. En déduire que P est diagonalisable.
(b) On note E¢ Pensemble des éléments de E invariant par tout élément de G :

“={X e€EVMcG,MX = X}.

Démontrer que Im(P) = E et en déduire que dim (EY) = |G| Z trB.

BeG
~ 1
6. Démontrer que dim (Mn(C)G> = @ Z tr (B~") tr(B). On pourra considérer d’abord
BeG
le cas ou ¢ est injectif.
* %



LYCEE KERICHEN 2025-2026 MP*

Travaux dirigés n° 4

Par K on désigne le corps des réels ou celui des complexes.

I. NORMES n, SUR K"
Soient (ay,...,ay,) et (by,...,b,) des n-uplet de réels positifs.
Soient p et ¢ des réels conjugués, ¢’est-a-dire tels que

Sro=1
poq

1. Montrer que pour tout a et tout b réels positifs,

abP b
ab < — + — (inégalité de Young).
p q

Cette inégalité trouvera place dans le cours sur les fonctions convexes.
Pour k € R, on considére

exp(kIn(t) sit >0,
0 sinon,

Ok R+—>R;tr—>{

cette application est continue et pour tout réel ¢ > 0, la quantité ¢y (t) sera noté simple-
ment t*.

2. Montrer que :

z”: a;b; < (z”: af) : (i: bf) q (inégalité de Holder).

Que dire du cas p=q =27

3. En déduire que pour tout réel p strictement supérieurs a 1,

n 5 n 5 n 5
a; +b;)P | < a | + b? inégalité de Minkowski).
i i g
i=1 i=1 i=1
4. Montrer qu’avec les notations du cours, n, est une norme sur K".

5. Montrer que pour tout élément Z = (1, xo, ..., z,) de K",

lim n,(Z) = neo (7).
p+oo

II. NORMES N, SUR (°([a,b],C) —
Soient p un réel strictement supérieur a 1, a et b des réels tels que a < b;

1. Montrer, qu'avec les notations du cours, N, est une norme sur C° ([a, b], K), en utilisant
la partie 1.3, pour prouver 'inégalité triangulaire.

2. Montrer I'inégalité triangulaire en reproduisant pour l'intégrale le raisonnement fait en
[.1, 1.2 et 1.3.



3. Montrer que pour tout élément f de C°([a, b], K),

lim N, (f) = Noo(f)-

pt+oo

4. Soient f et g des éléments de C° ([a,b], K) et p et ¢ des réels conjugués. Montrer que :

/ f<t>g<t>dt] < N,())Ny().

5. (5/2)) Soient ¢ et f des applications de [a, b] dans R continues. On supose ¢ a valeurs
dans R% et f a valeurs dans R,. On pose pour tout entier n > 0, I,, = f[a b of".

(a) Montrer que le suite ({/1,)nen converge de limite a déterminer.

(b) Montrer que le suite (%) converge de limite & déterminer.
"/ neN

II. FONCTIONS HOLDERIENNES —

Pour tout réel « > 0, on notz E, ensemble des fonctions f de [0,1] dans C telles qu’il
existe K, réel positif, tel que pour tout (z,y) € [0, 1%,

|f(x) = fly)] < K|z —y|™
Soit o € R},

1. Montrer que E, est un espace vectoriel.

2. Soit g un élément de E,. Montrer que I’ensemble

{k € Ri|¥(z,y) € [0,1,|f(z) — f(y)| < klz—y|*.}

admet un plus petit élément noté k. (f).
3. On supose que « > 1 . Déterminer E,.
Dans la suite a €]0, 1[.
Vérifier que C'([0,1],C) C E, C C°([0,1], C).
Donner une fonction élément de E, qui n’est pas de classe C'.

Soit B un réel tel que 0 < a < 8 < 1. Comparer E, et Eg.

NS ot e

Montrer que 'application :
Ha : Ea_>R+; f'_> |‘f”oo+ka(f)

est une norme. On la notera || - ||,

8. Soit (f,)nen une suite d’éléments de E, telle que pour tout ¢ € R il existe ng € N tel
que :
V(p,q) € [no, +oof, | fp — fella < €. (suite de Cauchy).

Montrer que (f,)nen converge vers un élément f de E, dans (E,, || - ||a)-

10



Complément pour g averti.

III Autour du Théoréme de Baire

1. THEOREME DE BAIRE —

Soit E un espace vectoriel de dimension finie; on désignera par || - || une norme sur E.
Soit (Up)nen une suite d’ouverts denses de E. Montrer que () U, est dense.
neN
Commentaires :

(a) Une intersection dénombrable d’ouverts, (qui en général n'est pas ouverte) s’appelle
un Gg. Le théoréme dit qu’une intersection dénombrable d’ouverts denses d’un espace
vectoriel de dimension finie est un Gs dense.

(b) Le théoréeme de Baire bien que d’énoncé simple admet des conséquences trés impor-
tantes en analyse. Nous donnerons quelques applications dans la suite

2. Montre qu’'un G4 dense de E n’est pas dénombrable.

3. Soit (F},)nen une suite de fermeés de E telle que |J F,, = E. Montrer que |J F, est un

neN neN
ouvert dense.

o
Indication : On poura montrer que le complémentaire de |J F;, est d’intérieur vide.
neN

4. — CONTINUITE D’UNE DERIVEE —

(a) Soit (f,) une suite d’applications de R dans R continues, qui converge simplement
vers une application f, ¢’est-a-dire que pour tout réel z la suite (f,,(x)),en converge
vers f(x). Montrons que f est continue sur un Gy dense.

i. Soit € un élément de R . Pour tout entier nnaturel n, on pose

Foe={z€RNpeN,(p2n)=(fulr) - fo(z)] < &)}

Q. = U Zg’mg.

neN

et

Montrer que €). est un ouvert dense.
ii. Montrer que tout élément a de (2., admet un voisinage V' tel que pour tout élément
zde V., [|f(z) — fla)] < 3e.
iii. Conclure.
(b) Soit g une application de R dans R dérivable. Montrer que 1’ensemble des points de
continuité de ¢’ contient un G dense.

Commentaires : Une dérivée est donc < assez > continue. On rapprochera ce résul-
tat du théoréeme qui dit qu’une dérivée, vérifie le théoréme de la valeur intermédiaire,
ce qui constitue un premier pas vers la continuilé.

5. — CONTINUITE ET CONTINUITE PARTIELLE — On se propose de montrer le résultat :

Théoréme — Soit f une application de [0,1]* dans R. Si en tout point de [0,1]?,

f est continue en la premiére et en la seconde variable, alors il existe un résiduel G de
R tel que f soit continue en tout point de [0,1] x G.

Soit un réel ¢ strictement positif. Pour tout entier naturel n non nul, on note £,
'ensemble des éléments y de [0, 1] tels que, pour tout x et tout 2/, éléments de [0, 1]? si
‘(L’ —ZL’/| S % alors |f<l’,y) - f(l’/,y>| S €:

Foi= {w € 0.1] Vo € 110" € 011 o =2/ < % = [flw) - f' )] < 2

11



(a) Montrer que pour tout n € N*, F,, est un fermé de [0, 1].
(b) Montrer que |J F., =[0,1].

neN*

(c) Montrer que |J F est un ouvert inclus dans [0, 1] dense dans [0, 1].
neN* &n
On le notera €)..

(d) Soient yo un élément de Q. et xzy € [0,1]. Montrer qu’il existe un voisinage W de
(20, 50) tel que pour tout (z,y) € W N [0,1]%, |f(z,y) — f(zo,y0)| < 2¢.

(e) Posons G := () 1. Montrer que I’'ensemble G est un résiduel inclus dans [0, 1].
neN* "
Soit (z1,y1) un point de [0, 1] x G. Montrer la continuité de f en (x1,y;). Conclure.

6. THEOREME DE BANACH STEINHAUSS —
Il s’agit sans doutes d’une des applications les plus spectaculaires de Baire, qui
conduit & bon nombre de résultats d’analyse tout a fait remarquables.
Soit (F, || - ||g) un e.v.n., L.(E,F) sera muni de || - || norme subordonnée a || - || et
| - ||g. Soit A une partie de L.(E, F), non vide. Montrer que :

(a) ou bien il existe un réel M tel que pour tout £ € A, ||¢]< M ;
(b) ou bien il existe un G5 dense de E, tel que pour tout élément & de ce Gy,

sup [|(Z)[|r = +o0.
leA
En anglais ce théoréme porte le nom plus évocateur de théoréeme de la < bornaison > uniforme.
(a) Posons, pour tout élément k de N, O, = {Z € E,sup |{(Z)||lr > k}. Montrer que
ZeA
pour tout élément k de N, (2 est un ouvert.
(b) Montrer que si, pour tout élément k de N, €. est dense, alors, pour tout élément ¥

—

de () Q, sup [[{(Z)]|r = +o0.
keN leA

(c) Montrer que sl existe kg € N, tel que €, ne soit pas dense, alors il existe un réel
M. tel que pour tout £ € A, ||{| < M.

(d) Conclure.

(e) Soit a une suite réelle telle que pour toute suite réelle b, élément de (2 la série Y a,b,
converge. Montrer que a € (2.

Indication. Considérer I'ensemble {L,,,n € N} des formes linéaires sur % défini
par :

VneN,L, : > > R; bHZakbk

k=0

12



Indications pour la question I1.8
Soit € € R%. L’hypothése sur (f,,)nen nous fournit ny € N* tel que :

Y(p,q) € [no, +oo, | f, — falla < e. (suite de Cauchy). (2)

ETAPE 1. La suite (f,)nen converge simplement.
e Soit = € [0, 1]. Par (2) , pour tout p € N,

[fo(@)| < max{|fu, ()| + &, [fo(@)], ., [fro-1(2) ]}

la suite (f,(x))pen est donc bornée.

e Soient ¢ et ¢’ des valeurs d’adhérence de (f,(z))pen. On considére des extrac-
trices ¢ et ¥ telles que

ffb(p)(x) — (et f¢(p)(37) — U

p——+o00 p——+o00

quitte a remplacer ¢ par ¢o1, autre extractrice, il est loisible de supposer de surcroit
¢ > 1. L'inégalité (2) veut que pour tout entier p > no,

| fom) (@) = Lo (@) < 1 fow) — fomlloe < 1 fow) — femlla < e,

puisque ¢(p) > (p) > p > ny. Laissons tendre p vers +00, nous obtenons :
-0 <e.
Le caractére arbitraire de € exige que £ = /.

De ces deux points, et parce que R est de dimension finie, vient que (f,(x))pen
converge.

D’otu la convergence simple de (f,),en ; nous noterons f la limite simple de cette
suite.

ETAPE 2. L’application f est élément de E,.
Soient x; et xy des éléments de [0, 1]. Pour tout entier p > ng

|fo(@1) = fp(@2)| <|fro(@1) = fao (@2)[ + [(fp = fao)(@1) = (fp = fao) (22)] <
(ka(fro) + Eka(fp — fro))|71 — x| < (3)
(ka(fno) +€)|m1 — 22|

Donc en laissant tendre p vers +oo, on a :
|f(21) = fla2)| < (kal(fno) +€)|w1 — 22|
Donc f est élément de E,.

ETAPE 2. La suite (f,)yen converge vers f dans (Ea, | - |a)-
e, pour tout p et tout ¢ entiers tels que p > g > ng, on a :

Vz € [0,1], [/p(2) = o) < N fp = falloo < W fo = falla < e,

et en laissant p tendre vers 400, pour tout entier ¢ > ng et tout z € [0, 1]

|f(Z) - fq(z)| <eg,

13



Donc, la borne supérieure étant le plus petit des majorants, pour tout entier ¢ > ng.

1f = falle <&

e Par ailleurs pour tout p et tout ¢ entiers tels que p > g > ng, on a

ka(fp - fq) < ||fp - fq”a <g,

et donc

[(fp = fo)(w) = (fp = f) ()] < elu —v]”
pour tout u et v éléments de [0, 1]. En laissant une nouvelle fois tendre p vers +o0,
vient que pour tout entier g > ny,

Y(u,v) € [0, 1% 1(f = fo)(u) = (f = fo) ()] < elu—o]*.

Donc pour tout entier ¢ > ng on a k. (f — f,) <e.

De ces deux points, il vient que pour tout entier g > ny,

If = fallo < 2¢.

Donc la suite (f,),en converge vers f dans Ue.v.n. (Eq, || - ||a)-

14



LYCEE KERICHEN 2025-2026 MP*

Travaux dirigés n° 5

Exemples de suites des itérés d’une fonction croissante,
rapidité convergence .

I. THEOREMES D’ERNESTO CESARO

Soit (Z)nen une suite & valeurs dans un e.v.n. (E, || - ||), admettant une limite £. Soit alors
la suite (,),,cn définie par,

. 1 .
n — Tk,
Y n+1kz:;k

pour tout entier naturel n.

Cette quantité s’interprete comme la moyenne des n+1 premiers termes de la suite initiale, du
moins lorsque cette derniére est a valeurs dans R, dans le cas général v, en est plus exactement
parlant le barycentre, B étant muni de sa structure canonique d’espace affine. Le théoréeme de
Cesaro affirme que la suite (4,),cn tend vers (s on a coutume de dire que la suite (%0) hen
converge < en moyenne > ou < au sens de Cesaro > vers (. Ce résultat est conforme a notre
intuition. En effet, la suite (T,,), o prend des valeurs qui tendent a se confondre avec Z, lorsque
n croit, face auzr nombre toujours plus grand de termes entrant dans le calcul de 1/, les premiers
termes y jouent un role de plus en plus négligeable, conférant ainsi a la moyenne une valeur
proche de ‘.

La preuve se calque sur cette démarche heuristique.

1. Prouver ce résultat. Que dire de la réciproque ?

2. Généralisation. Sous les hypothéses du 1. on considére une suite (o), de réels stric-
tement positifs, telle que la série Y ay, diverge, ¢’est-a-dire telle que :

n

E o — +00.
n—-+00

k=0

Soit alors la suite (Z,,), . définie par,

pour tout entier naturel n (moyenne pondérée de la suite (), cn)-
Déterminer la limite de cette derniére suite.

Le théoréle de Cesaro est rentré au programme dans le cas de suites réelles.
II. PREMIER EXEMPLE
Soient a un élément de ]0, 5[, K un élément de ]0, 1].

1. Montrer que la relation de récurrence suivante définie bien une suite réelle (u,), . :

Ug 1= @, Unp41 = K sinu,, pour tout n >0 (4)
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2. Montrer que cette suite converge vers 0.
On se propose maintenant d’étudier la rapidité de convergence de cette suite.
3. Représenter sur un graphique les premiers termes de la suite pour K = 0.25, K = 0.5 et
K = 1. Que constater ?

U

+L est définie pour tout entier naturel n et que :

n
Un

4. Montrer que la quantitée

Un+1
n — K.
Unp, n—-+oo

5. CAS DE CONVERGENCE RAPIDE
On supose dans cette question que K < 1.
Pourn grand, d’apres la question précédente, la suite se comporte donc a peu prés comme
une suite géométrique de raison K, d’ot pour préciser son comportement l'idée d’étudier

la limite de /u,, .

a) On note pour tout entier naturel n, w, := In [ ==t ) . Montrer que la suite (w,
u

n

neN
a une limite que 'on déterminera.

n
b) En étudiant la suite suite (z, , définie par : z, = — 3" wy, pour tout entier
neN n+1

naturel n, déterminer la limite de la suite ({'/un)n N

(c) Réservé aux 5/2. Donner la forme d’un équivalent du terme général de la suite
(Un>neN-
6. CAS DE CONVERGENCE LENTE
On supose dans cette question que K = 1.

(a) Déterminer un réel 3 tel que la suite (wy,), . définie par w, := ul | —uf, pour tout
entier naturel n, admette une limite finie non nulle 3.

n
b) En étudiant la suite suite (z, , définie par : z, = —— " wy, pour tout entier
neN n+1

naturel n, donner un équivalent de u,,, lorsque n tend vers +oo, de la forme cn? ou
c et p sont des réels.

(c) Réservé aux 5/2. Donner un équivalent simple de u,, — cn? lorsque n tend vers
+00, (pour les valeurs de ¢ et de p précédemment trouvées).

ITI. DEUXIEME EXEMPLE.

Soient a un réel strictement positif.

1. Montrer que la relation de récurrence suivante définie bien une suite réelle (u,), o :
Uy := @, Upy1 = Uy + —, pour tout n >0 (5)
Up,

2. Déterminer la convergence de cette suite.

3. Donner un équivalent du terme général de cette suite.

IV. DERNIER EXEMPLE

Soit a un ¢lément de ]0, 1.

3. L’introduction d’une telle suite, traditionnelle dans les problémes, semble trés artificielle et relever d’une
intuision fertile, nous verons dans un prochain chapitre, la source, bien naturelle, d’une telle idée; pour le
moment retenons la recette !

16



1. Montrer que la formule de récurrence

Uy -— a
6
{unH = 1/2 (1 — 41— un) , pour tout entier n > 0, (©)

définie bien une suite réelle (u,),cn-
2. Déterminer la limite de cette suite.
3. Montrer que la suite (u,), N a une limite /, indépendante de a, a déterminer.
4. Réservé aux 5/2. Donner la forme d’un équivalent du terme général de la suite la suite

(Un>neN-

FIGURE 2 — Ernesto Cesaro 1859-1906
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; 5
Complément pour 3

V. THEOREME DE TAUBER

Soit Y a,x™ une série entiére de la variable réelle z, de rayon de convergence égal a 1. On

note S sa somme :
—+oc0o

S:]-1,1] -R; z — Zanxn.
n=0
On suppose de plus qu’il existe un réel L tel que

S(x) — L.
r—1
<1
On s’intéresse a la convergence de la série ) a,,.
1. Donner un exemple de suite (a,)nen telle que > a,, diverge.

2. On suppose jusqu’a la fin que a, = o (%) (n — +00).

(a) Prouver que pour tout élément x de | — 1, 1], et tout entier N supérieur ou égal a 1,
N 1 N 1
S(Jf)_nzo(ln SN(l—x)N;|nan|+msgg|nan\

(b) Conclure!

Le résultat demeure en supposant simplement que a,, = O(n) (n — 400), mais ¢’est bien plus
difficile.

VI. CESARERIES
1. (X.) On dit qu’une partie A de N est de densité nulle si
A 1,...
card(AN{0,1,...,n}) =0

n n—-+oo

Soit (ay,)ne, une suite de réels positifs, majorée. On note pour tout entier n > 1,

1 n
S":E;ak

On se propose de montrer ’équivalence des deux propositions suivantes :

i. S, — 0;
n—-+0o
ii. Il existe une partie A de N de densité nulle telle que a,, j 0

ngA
(a) On suppose ii.; Montrer i.
(b) On suppose i. Pour tout n € _ N on note o, := sup{S,, p > n}. Montrer que la suite
(an)nes, tend vers 0. On considére A := {p € N*|a, > ,/a,}. Montrer que A est de
densité nulle, en déduire que ii. est vraie.

2. Soit f une application de R dans R continue. Pour tout réel a, on définit la suite
(vn(a))nen par : vo(a) = a; pour tout n € N,v,41(a) = f(v,(a)). Enfin pour tout entier

naturel 1 on pose : uy(a) = =5 > vp(a).
k=0

(a) On suppose qu'il existe un réel a tel que la suite (u,(a)),en soit bornée. Montrer que
f admet un point fixe.

(b) Trouver un exemple de fonction f de R dans R continue, ayant un unique point fixe
xs et telle que pour tout réel a distinct de x7, (u,(a))nen converge vers une limite
distincte de zy.
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LYCEE KERICHEN 2025-2026 MP*

Travaux dirigés n° 6

Interpolation

I. Polynoémes d’interpolation de Lagrange

1. Soit m un entier naturel, et soit f une application d’un segment [a,b] (a < b) & valeurs
réelles, soient enfin (zg,z1,...,2,) , n+ 1 points deux & deux distincts de [a, b]. Montrer
qu’il existe un unique polyndéme a coefficients réels de degré inférieur ou égal a n, que
nous noterons P, qui coincide avec f en chacun des points z; :

P(z;) = f(z;), pouri=0,1,...,n.

Pour 1 =0,1,2..,n., on pose :

[T (X—)

J=0,mm; j#i
Li =

[1 (zi — ;)

j:07“’n; j#l

Exprimera P au moyen des polynémes Lg, Ly, ... L,.
P s’appelle le polynome d’interpolation de Lagrange de f aux points (zg, x1, ..., Zy,).
2. On suppose dans cette question que f est de classe C"! Soit = un élément de [a,b] et g

I’application :
n

[](t—m)

[a,b] = R; ¢ — (f—P)(t)—A.%,

ol A est un paramétre réel.

(a) Montrer que si x n’est pas élément de 'ensemble {zg,x1,x2,...,2,}, il existe une
valeur de A pour laquelle g(x) = 0. Montrer que pour ce choix de A, il existe un
élément y de [a, b] tel que g (y) = 0.

(b) En déduire qu’il existe un élément y de [a, b] tel que :

(n+1) .1_[0 o)
- P — fln+l =
(= P) o) = £ ()
(que x soit ou non élément de {xg, 1,22, ..., T,}).

3. METHODE DES TRAPEZES — Dans cette question f est seulement supposée de classe
C2. Pour tout naturel non nul n, en notant a; := a + zb_T“ , pour © = 0,1,2,...,n, on
considére 'application T;, de [a, b] dans R, affine par morceaux, continue, qui prend en q;
la valeur f(a;), pour i =0,1,2,...,n et qui est affine sur chacun des intervalles [a;, a;1],
pour i =0,1,2,...,n — 1; on note enfin I, I'intégrale de T,, sur [a,b] :

b
I, = / T, (t) dt.
a
(a) Donner I'expression de I,,, pour tout entier naturel non nul n.
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(b) En utilisant la question 2., donner une majoration de |1, —fab f(t)dt|, pour tout entier
naturel non nul n, en fonction de n et de || f”||oo-

4. METHODE DE SIMSON — Dans cette question f est supposée de classe C3. Pour tout
entier naturel non nul n, en notant : et a; := a + zbz_—n“ ,pour © = 0,1,2, ..., 2n, on définit
I'application S,, de [a,b] dans R, par

(a) Pour k =0,1,2,...,n — 1, T,, coincide sur [agy, aski2| avec le polynome Py d’inter-
polation de f en agy, agkr1, Gokte, (A°(P) < 2);

(b) Sn(a2n> = f(a2n) )
on note enfin J, lintégrale de S, sur [a, b].

(a) Donner I'expression de J,,, pour tout entier naturel non nul n.

(b) Donner une majoration de |.J,, — fab f(t)dt|, pour tout entier naturel non nul n.

II. Polynémes d’interpolation d’Hermite

Nous avons vu qu’il existe un unique polynéme de degré inférieur ou égal & n, qui coincide
en n + 1 points avec une application donnée. Nous allons généraliser en faisant coincider en
certains points non seulement les valeurs du polynome et de I'application, mais aussi celles de
leurs dérivées successives (interpolation d’Hermite).

Soit k un entier naturel. Soient xg, z1, ..., xx, k+ 1 points distincts d’un segment [a, b], , et
k + 1 entiers naturels ng, nq,...,ng. Nous noterons n la quantité

7

k
=0

Soit f une application de [a,b] dans R, admettant pour i = 0, 1,2, ...k, une dérivée d’ordre n;
au point x;.

1. Montrer qu’il existe un unique polynéome () a coefficients réels tel que pour tout élément
i de {0,1,...,k} et tout élément ¢ de {0,1,...,n;},

QY (z;) = U (z,) .

On prend dans cette question, k = 1 et g = 0, z1 = 1, ny = ny = 1, donc n=3.
Déterminer dans ce cas particulier le polyndéme Q).

2. Revenons au cas général, et supposons de surcroit que f est de classe C" L. Soit = élément
de [a, b], montrer qu’il existe un élément y du plus petit intervalle contenant zg, x1, ...., T

et x, tel que :
k

O A I0))

f(x)—Q(l’):mio

3. On suppose maintenant que k = 0. Déterminer alors (). Quel résultat connu devient
alors le résultat de la question 4.7

ITI. Construction des polynémes d’interpolation de Lagrange

On se replace dans le cadre de la premiére partie, dont on reprend les notations. On cherche
a construire numériquement et de sorte assez < économique >le polyndme P qui interpole f
aux points xg, x1,...,T,.

On note pg, pour k = 0,1,2,...,n, le polynome qui interpole f aux points xg, x1,..., g,
ainsi P = p, ; on désigne par f[zrg,z1,..., x| le coefficient de degré k de py.
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1. (a) Montrer pour k =1,...,n, que
Pk — Pk—1 = f[l’o,l’l, ce ,JI]CKX — Sl,’g)(X — xl) Ce (X — l’k,l).

(b) Déduire du (a) que :

P = f(x0) +Zf[x0,x1,...,xk](X —20)(X —x1) ... (X —xp1).

k=1
2. On se propose de donner une méthode algorhitmique de calcul des f[zg, x1, ..., zg]. Soit
ke{l,2,...,n}.
(a) Montrer :
f[.’lfo,xl, o ,.Tk] _ f[xlax%' . 7Ik] - f[x(]?xl" -y Ll—1 .
Tk — 2o

(b) Déterminer pour i =0,1,...,k, f[z,].
(c) Donner un algorithme de calcul de p,, utilisant les résultats (a) et (b), qui fournit

flzol, flxo, 1), -+, flro, x1, -2, oo, flro, o1, o 2]

IV. Intégration approchée d’une fonction convexe
Soit f une application de R, dans R de classe C! et convexe.
Soit un entier n > 2. Montrer que :
1
0 < ZHO) -+ F)+ )+ ot fln= 1)+ 500 = [ ) < S0 - 7O,
V. Pseudo dérivée d’ordre 2

Soit f une application continue de R dans R. On dit que f admet une pseudo dérivée
d’ordre 2 en un point xy de R, si

f(xo+h) + f(wg —h) +2f(z0)

14
h2 h—0,h£0

si c’est le cas £ est appelé pseudo dérivée d’ordre 2 en g et est noté f2(z).
Si f admet en tout point une pseudo dérivée d’ordre 2 f2 : R — R; x — fP(x) est
appelée (fonction) pseudo dérivée d’ordre 2.

1. Montrer que si f est de classe C? alors f admet en tout point une pseudo dérivée d’ordre
2 & déterminer. Donner un exemple d’application admettant en 0 une pseudo dérivée
d’ordre 2, mais pas de dérivée d’ordre 2.

2. On suppose dans cette question que f admet en un point o de R un minimum local. Si
f admet une pseudo dérivée d’ordre 2 en x( que dire de son signe ?

3. On suppose que f@ existe et est nulle, on veut montrer que f est affine.

(a) On suppose encore f réelle. Soient [a,b] un (vrai) segment et ¢ € R* et les applica-
tions
g+ : R=>R; z— f(x)— f(a) — (x —a) £e(x —a)(x—0b).

Etudier les signes de g, et g_ sur [a,b]
(b) Conclure.

4. On suppose que f2 existe et est positive strictement, montrer que f est convexe
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VI. Régularité des fonctions convexes (réservé a un public averti)
Soit f une application d’un intervalle I d’intérieur non vide a valeurs réelles, convexe.

1. Montrer que f admet une dérivée a gauche et une dérivée a droite en tout point intérieur
de I. Comparer la dérivée a droite et celle & gauche en un point intérieur a /.

2. Montrer que f est continue en tout point intérieur & /. Donner un exemple d’application
convexes non continue.

3. L’intervalle I est supposé dans cette question ouvert. Montrer que si f est convexe alors
elle est continue et admet une dérivée a droite sur I croissante.

4. On suppose que f est continue et admet une dérivée a droite sur [ croissante. On se
propose de montrer que f est convexe.

(a) Soit g une application d’un intervalle I non réduit a un point, dérivable a droite et
continue. On suppose que ¢, est positif montrer que g croit.

(b) Soient xo un point de I'intérieur de I et T Iapplication « affine tangente a droite en
To»
T :I—=R;y— f(y)— f(@o) — (y — o) f3(o).
Montrer que T est dérivable & droite et continue.
(c) Montrer, en étudiant le signe de T', que :

Vy € Iy, +ocl, fifan) < LU0,
Y —To
Montrer que :
f(y) — [(=o)

Yy € IN| — ! >~ 7
y € IN] = 00, o], fa(x0) = Y — &

(d) soient z, y, z trois points de I tels que z < y < z, montrer que :

fly) = flz) _ f(2) — f)
y—r T z-y

Conclure.

5. Montrer qu’une fonction localement convexe est convexe.

6. Soient @ un point intérieur a I et m un réel. Montrer que la droite D,, de R? d’équation :
Dy, y= f(a)+m(z —a)

est au dessous du graphe de f si et seulement si f;(a) < m < fj(a).
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Correction de V. 4.
On admet le lemme suivant :

Lemme Soit g une application d’un intervalle I non réduit & un point, dérivable a droite
et continue. Si g/ est positif alors g croit.

Soit xy un point de l'intérieur de et T' I'application « affine tangente a droite en xg ».

T :I—=R;y— f(y)— f(xo) — (v — o) f3(20).

L’application hérite de la dérivabilité a droite de f et de sa continuité et 1), = f/, — fi(zo).
Donc par le lemme et la croissance de f}, on a que T croit sur IN|xg, +0o[. Comme 7" est nulle
en xg, T est positif sur IN]zg, +oo[ et donc :

Vy € IN]xo, +o0l, f(zo) < w-
— o
De méme
Yy € IN] — o0, 2], fi(x0) > %ﬁ:s%)-

Donc si z, y, z sont trois points de [ tels que x < y < z, on a alors :

fly) = fl=) _ f(2) — )
y—r T z-y

La convexité en résulte. Redonons la preuve semblable a celle du cours qui dit que si la
fonction pente croit, alors la fonction est convexe. Soit y et z des points de [ tels que z < z.
Soit t €]0,1[ On pose

y=tr+(1—1)z.

Par le cours de 4° sur les barycentres du siécle passé : t = = et (1 —t) = 2= Par ailleurs,
la propriété des pentes que ’on vient de prouver donne :

Flu) — (&) _ ()~ F ()
A
ce qui s’écrit : ) ”
z—x flx f(z
((yt—a:xz—ya) T =y =e 2y

Donc, par positivité de (y, — z)(2 —y:) et 2 —x, on a :

@) + (1) + B f(2) = () + (1 - 1) (2).

zZ—XT z— X

flz+ (1 =1)z) = f(y) <

Voila prouvée la convexité de f.

Preuve du lemme Soient a et b des points de I tels que a < b. Soit ¢ € R’.. Posons
E. = {t € [a,b]lg(t) > g(a) —e(t —a)}*
Comme a € E. et que b majore cet ensemble, F. admet une borne supérieure inférieure ou
égale & b, que nous baptiserons c. La continuité de g veut que E. soit fermé et donc que ¢ € F..
En fait ¢ = b. supposons le contraire Comme ¢/,(¢) > 0 Il existe un h > 0 tel que pour tout
t €le,e+h NI,
g(t) — g(c) _

_67
t—c

4. L’objectif est de montrer que b € E, la définition de la dérivée & droite comme limite d’un taux d’accrois-
sement montre que E. contient un voisinage a droite de a.
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quitte & diminuer h supposons ¢ + h < b. On a alors,
g9(c) — g(a) > —&(c — a),

gle+h) —g(e) =2 —(h),

par sommes de ces inégalités :
glc+h)—gla) >e(c+h—a)

ce qui fait de ¢ + h un point de E., contredisant la définition de c.
Donc ¢ =b et on a g(b) > g(a) — (b — a). Comme ¢ est quelconque :

9(b) = g(a).

Voila prouvée la croissance de g.
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Travaux dirigés n°® 7

Compacité

On utilisera le résultat suivant que nous allons voir en cours :
Dans un espace vectoriel de dimension finie, toute partie fermée bornée est compacte.

I UN THEOREME DU POINT FIXE COMPACT

Soit K un compact d'un e.v.n. (B, |.||) et f une aplication de K dans K vérifiant pour tout
T et tout ¥, éléments distincts de K :

10.

. En considérant la suite (dw(n)ﬂ)

—

F@—-F@| <1z -a. ™)

. Montrer que f admet un unique point fixe.

INDICATION : Pour l’existence, étudier 'application g : K — R, &+ Hf(f) - f” .

. Soit ¢ un point quelconque de K. On définit la suite (7)), PAr

{f@zc
fnJrl:f(fn) n =0

Pour tout entier naturel n on pose d, = ‘f(fn) — Ty

. Montrer que la suite (dn),cn
converge, nous noterons ¢ sa limite.

Montrer qu’il existe une sous suite (f¢("))neN de la suite (), qui converge vers un

=7

élément @ de K, et montrer que Hf(c?) - c?’

nen Imontrer que ¢ =0.

. Montrer que la suite (), . converge vers 'unique point fixe de f

Déduire de ce qui précéde une méthode numeérique pour résoudre I’équation :
tanx —x = k.

Donner un exemple d’application f vérifiant (7), mais pour laquelle il n’existe pas de
réel k , élément de ]0, 1], tel que f soit k-contractante.

Montrer que si K est seulement fermé, (mais pas compact) alors f n’a pas nécessairement
de point fixe.

Nous supposons maintenant que K est un compact étoilé de RP ol p est un entier
strictement positif, et que ¢ est une aplication de K dans K vérifiant pour tout et tout
i, éléments de K :

lg (@) —g W) < llz —yll. (8)
Montrer que g admet au moins un point fixe. L’application ¢ peut-elle admettre plusieurs
points fixes ?

Prenons une feuille de papier non perforée, posons la sur une table et dessinons sur la
table le rectangle correspondant au pourtour de la feuille. Puis froissons sauvagement
la feuille et reposons la dans le rectangle de sorte que chacun des points de la feuille
ainsi froissée se projette orthogonalement dans le rectange. Montrer qu’'un des points
de la feuille au moins se projette orthogonalement sur sa position initiale. Le résultat
demeure-t-il pour une feuille perforée ?
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II THEOREME DU POINT FIXE DE PICARD
Soit F' une partie fermée d'un espace vectoriel normé (E, || -||) de dimension finie. Soient k
un élément de [0, 1], et f une appli(iation de F' dans F', k-contractante.
On se propose de montrer que f admet un et un seul point fixe.
1. Montrer que f admet au plus un point fixe.
2. Soit @ un élément de F. On considére la suite (Z,,),en des itérés de @ par f, ¢’est-a-dire
(/(@))nen

(a) Montrer que pour tout p et tout g entierss tels que p > g,

17 = 7| < 177 = o]

—1—-k
(b) Montrer que (Z,)nen est bornée.

(¢) Montrer que (Z,)nen converge vers un élément ¢ de F.
(d) Conclure.

3. (5/2) On se propose de passer par un autre biais. Montrer que,la série Y &, 1 — 2, est
absolument convergente. Conclure.

4. Montrer que pour tout entier n > 0, || /(@) — £|| < £~ || f(a@) — @||.

ITI DISTANCE A UN COMPACT

On admet le résultat que nous allons prochainement voir en cours : Toute partie fermée
bornée d’un espace vectoriel normé de dimension finie est compacte.

1. LE CAS GENERAL : Soient A une partie non vide, compacte d’un e.v.n. (E, |[.||) et ¢un
élément de E. Montrer qu’il existe au moins un élément a de A tel que :

d(¢A) = lla—el.

2. Montrer que le résultat demeure si A est seulement un fermé non vide et E de dimension
finie.

3. APPLICATION : On munit M, (R) de la norme euclidienne canonique (norme de Frobe-
nius). Montre que SL,(R), ensemble des éléments de M,,(R) de déterminant 1, est un
sous-groupe de GL, (R)), qui est fermé. Est-il compact ? Montrer qu'’il existe un élément
de SL,(R) de norme minimale. A suivre...

4. Montrer que le résultat demeure si 'on remplace A, par un sous-espace vectoriel F de
E, de dimension finie, (E étant de dimension quelconque).

5. UN CAS PARTICULIER : Soit [a,b] un segment de R et E un sous-espace vectoriel de
F ([a,b], R) qui contient les applications polynomiales, muni d’une norme notée ||.||. Pour
tout entier naturel n, P, désigne I'ensemble des applications polynomiales de [a, b] dans
R de degré inférieur ou égal a n.

a. Montrer que pour toute application f élément de E, il existe au moins un élément
pn de P, tel que :

Nous appellerons p,,, < polynome de meilleure approrimation de f de degré n >.

b. Prenons pour E, I'ensemble des applications f de [—1,1] dans R, continues par
morceaux, qui vérifient :

i. pour tout élément x de |—1,1[, f(z) = 5 (f (=) + f (z7)),
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i f(1)=f07), f(=1) = f(=17).

Vérifier que E est bien un espace vectoriel. Montrer que I'application
1
NGESR £ [ 1F 0]
-1

est bien une norme sur E.
. - Soit f I’élément de E, défini par :

f(x)=—1, pour x < 1,

f(x) =+1, pour z > 1.

Déterminer tous les polynémes de meilleure approximation de degré 0 de f.
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IV CONTINUITE UNIFORME

1. Soit f une application uniformément continue de R dans R. Montrer I'existence de deux
réels a et b tels que pour tout réel z, | f (z)] < alx|+b

2. Notons E = C°([a, b], R), on munit cet espace vectoriel de la norme || - || . Soient ¢ une
application de R dans R, continue et

K :E—-E f—ypof.

Montrer que K est continue.

3. Soit f une application de R, dans R uniformément continue®. On suppose que pour
tout x € R la suite (f(nx))n,en converge vers 0.

montrer que f(x) +00.

N
T—r+00

Compléments pour public averti...

V UNE CARACTERISATION DES COMPACTS

Soit (E;|| - ||) un espace vectoriel normé tel que toute série & valeur dans E absolument
convergente soit convergente °.

Nous allons donné une caractérisation « géométrique » des compacts

Adoptons la définition suivante :

DEFINITION. Une partie A de E est dite plate si pour tout € € RY, il existe un sous-espace
vectoriel F de E, de dimension finie, tel que A C F., ot F. = F 4 B¢(0g, ¢), (e-grossissement
de F) .

Nous allons prouver :

PROPOSITION. Soit une partie A de E. Alors les propriétés suivantes sont équivalentes :

(i) L’ensemble K est un compact.
(ii) L’ensemble K est fermé, borné et plat.

On désigne dans la suite par A une partie de (E, || - ||).

1. PRECOMPACITE.

(a) On suppose dans cette question la partie A compacte. Montrer que pour tout réel
e > 0, il existe des boules fermées de rayon ¢, en nombre fini, B, By, ... B, telles que

p
A C | B. On dit que A peut étre recouverte par un nombre fini de boules fermées
i=1
de rayon e.
(b) Application Montrer que tout compact K de (E,|| - ||). posséde une partie dense

dénombrable.

(¢) On suppose que pour tout réel € > 0 la partie A peut étre recouverte par un nombre
fini de boules fermées de rayon £7.

Soit (Z,)nen une suite d’éléments de A.

Montrer qu’il existe une suite (@, )men+ d’applications ¢, de N dans N stricte-
ment croissantes telle que pour tout entier m > 1, la suite (Zy, 05000 (n) )JneN SOit &

1

valeurs dans une boule fermée de rayon .

En déduire que la suite (z,),en admet une suite extraite (mw(p))peN convergente.
(d) Montrer que A adhérence de A est compacte si et seulement si pour tout réel ¢ > 0,
la partie A peut étre recouverte par un nombre fini de boules fermées de rayon e.

5. Le résultat demeure lorsque f n’est que continue, mais sa démonstration est difficile.
6. De tels espaces vectoriels normés sont dits de Banach ou complets.
7. On traduit cette propriété en disant que A est précompacte.
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2. On suppose la partie A compacte. Montrer que A est fermée bornée plate.

3. On suppose A fermée, bornée et plate.
Soit € € RY.

(a) Montrer que sans perte de généralité, on peut supposer que K C B¢(0g, 1)

Soit € € R
(b) Par hypothése de platitude on dispose de F sous-espace vectoriel de dimension finie
tel que F. contienne K. On note By la boule unité fermée de F.

Montrer qu'il existe d’'un entier N. € N* et de (yy,...,yn.) € FN¢ tels que :

Ne
Ber C U Bt r(yi, €).

i=1
(c) On suppose que ¢ est inférieur a 1. Déduire de la précédente sous-question, que A
est recouvert par N, boules fermées de rayon 3e.
(d) En déduire que A est compact.

VI COMPACTS ET RECOUVREMENT PAR DES OUVERTS (X, ENS)
Soit (E, || -||) un e.v.n. Nous nous proposons de montrer qu'une partie K de (E, || -||) est
compact, si et seulement si pour toute famille (O;);c; d’ouverts telle que K C .UI O;, il existe
1€

une partie finie J de I telle que A C ‘UJ O;. On traduit cette derniére propriété en disant que
1€

de tout recouvrement de K par des ouverts on peut extraire un sous-recouvrement fini.

1. On suppose que K est un compact de (E, | - [|).

(a) Montrer que pour tout € € R? ; il existe un recouvrement fini de K par des boules
ouvertes de rayon .
Indication : Raisonner par ’absurde.

(b) Soit (O;)ier une famille d’ouverts telle que K C U O;. Montrer qu’il existe un réel
1€

e > 0, tel que pour tout = € K, il existe i € I tel que Bo(x,e) N K C O;.
Indication : Raisonner par 1’absurde.

(c) Montrer que de tout recouvrement de K par des ouverts on peut extraire un sous-
recouvrement fini.

2. Montrer que si de de tout recouvrement de K par des ouverts, on peut extraire un
sous-recouvrement fini, alors K est compact®.

3. Montrer que K est compact si et seulement si pour toute famille de fermés de (E, || - ||),

(F})ier telle que K N ('ﬂl E) = (), il existe une sous-famille finie (F});c; telle que :
1€

Kn (_m E) = (.
i€

8. C’est cette propriété, qui dans le cas de topologies ne dérivant pas d’une distance, sert & définir un compact.
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Travaux dirigés n° 8

Connexité par arcs, convexité

I. CONVEXES

Soit C' un convexe non vide fermé de R™, muni de sa structure euclidienne canonique. le
produit scalaire canonique est noté (-|-), || - || la norme associée.

On appelle hyperplan d’appui de C' en un point a de C tout hyperplan H de R™ passant
par a tel que C soit inclus dans un des demi-espaces fermés définis par H. Un point a de C

est dit extrémal si C' — {a} est convexe, autrement dit si a n’est pas le milieu de deux points
distincts de C.

1. Enveloppe convexe. Soit A une partie de R™ non vide.

L’enveloppe convexe d’une partie, comme les sous-espace vectoriels ou sous-groupes

engendrés par une partie, peut se définir de deux maniéres :
— par intersection ;
— au moyen d’opérations sur les éléments de la partie.

(a)

(b)

(d)

(e)
(f)

Montrer que 'intersection d’une famille non vide de convexes est convexe. En déduire
qu’il existe un plus petit convexe contenant A. On 'appelle enveloppe convexe de A,
on notera conv(A).

Montrer que conv(A) est 'ensemble B (A) des barycentres d'un nombre quelconque
d’éléments de A affectés de coefficients positifs quelconques.

Soit p un point de conv(A) barycentre a coefficients positif de d points ay, ..., aq,
affectés des coefficients respectifs (aq, ..., ag). On suppose que d > n + 2.
Montrer que le noyau de 'application linéaire suivante est non trivial

d d
d: R R"xR; (z1,...,29) — <inai,2xi>
i=1 i=1

En considérant un élément (21, ...z4) du noyau de L non nul et les applications
R—R;t— a;+1tz,

pour ¢ = 1,2, ...d, montrer que p est barycentre i coefficients positifs de d — 1 points
de A.

THEOREME DE CARATHEODORY —

Montrer que conv(A) est 'ensemble des barycentres de n+1 éléments de A affectés
de coefficients positifs quelconques.

On suppose que la partie A est compacte. Montrer que son enveloppe convexe,
conv(A), est aussi compacte.

L’enveloppe convexe d’'un fermé est-elle fermée.

2. PROJECTION SUR UN CONVEXE

(a)

Soit z un élément de R™. Montrer qu’il existe un et un seul point ¢ de C' tel que :
|z — ¢|| = d(c,C). Le point ¢ s’appelle projection de z sur C' et sera noté p(z). On
dispose ainsi d’une application p de R™ dans R™ a valeurs dans C'.
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(b) Soit y un élément de C, montrer que (y — p(z)|z — p(z)) < 0.
Indication : Considérer un point du segment [p(a), 7).
Quelle interprétation géométrique donner de ce résultat ?
(c) Soient a et b des éléments de R™. Montrer que ||p(a) — p(b)|| < |la — b||. Que dire de
I'application p?
3. On suppose que z n’apartient pas a C. Montrer que C' admet en p(z) un hyperplan
d’appui
4. Montrer que p(R" — C) C Fr(C)
5. Soit f un point de la frontiére de C. Montrer que C' admet en f un hyperplan d’appui.
Indication : Considérer une suite d’éléments de R™ \ C' qui converge vers f.
6. THEOREME DE KREIN-MILMAN
On suppose dans cette question que C' est compact.
(a) Soit H un hyperplan d’appui de C' en un point a. Montrer que a est un point extrémal

de C si et seulement si il est un point extrémal de C' N H (on justifiera que C N H
est un convexe fermé.
(b) Montrer que tout point y de C' est barycentre & coefficients positifs de points de la
frontiére de C.
Indication : On pourra considérer 'intersection de C' et d’une droite passant par y.
(c) Montrer que C est 'enveloppe convexe de ses points extrémaux (Théoréme de Krein-
Milman).
7. On ne suppose plus C' compact mais au contraire, non borné. Montrer que C contient
une demi droite.

8. Soient X un convexe de R" non vide, a un point intérieur a X et b un point adhérent a
X. Montrer que [a, b] est inclus dans U'intérieur de X.
Indication : Etudier pour un point x de [a, b] 'image d’une boule de centre a par une
homothétie de centre x.

9. EGALITE DES ACCROISSEMENTS FINIS VECTORIELLE

(a) Rappeler I'égalité des accroissements finis pour une application d’un intervalle I de
R a valeurs dans R. Montrer que si I’'on remplace dans I’énoncé ’ensemble d’arrivé
R par R?, alors le résultat est faux.

Donnons un généralisation a R™ de ’égalité des accroissements finie.

Soit F' une application d’une application d’un intervalle ouvert I non vide a
valeurs dans R".

Soit A une partie de R". Le sous-espace affine engendré par A est le plus petit

sous-espace affine de R” contenant A, ¢’est aussi 'ensemble des barycentres de points
de A.

Théoréme 1. Supposons F' dérivable et soient a et b des élément de I tels que
a < b. Notons d la dimension de l’espace affine engendré par F([a,b]). Alors il existe
C1, Co,...,Cap1 des éléments de Ja, b, A1, Aa,...,Aay1 des réels positifs ou nuls de somme

1, tels que
F(b) — F(a) d+1
b—a — Aik(c:)

Ce théoréme est assez délicat, nous allons en donner une forme faible : nous

supposerons F' de classe C! et nous contenterons pour les ¢; de 'apppartenance a
[a,0].
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(b) Montrer que 'on ne restreint pas la généralité en supposoant que Ogn est élément
de F([a,b]) et que dans ce cas le sous-espace affine engendré par F([a,b]) est le
sous-espace vectoriel engendré par F([a, b]).

F(b)=F(a)

(c) Montrer que — est limite d’une suite de barycentres a coefficients positifs

d’éléments de F'([a, b]).
(d) Conclure.

II. CONNEXITE PAR ARCS
Soient un entier n > 2 et une application f de R"™ dans R continue.

1. On suppose qu'il existe un réel a tel que f~'({a}) soit un singleton. Montrer que f
atteint en f~!'({a}) son maximum ou son minimum.

2. On supose qu'il existe un réel b tel que f~1({b}) soit compact. Montrer que f atteint
son maximum ou son minimum.

IIT . RECOUVREMENT D’UN COMPACT (pour un public averti)
L’espace vectoriel R? est muni d’une norme || - ||. Soit K un compact de R

1. Soit € € R’.. Montrer qu'il existe un ensemble finie P’ de K tel que K soit recouvert par

les boules ouvertes de rayon € centrées sur les points de P : K C |J Bo(p, ¢).
peP

2. Montrer que K posséde une partie dense dénombrable.

3. Pour tout réel ¢ > 0, on dit qu’'une partie A de K est e-séparée si la distance entre deux
points distincts de A est supérieure ou égale a e.

(a) Soit ¢ € R%. Montrer qu’il existe un entier M (e) tel que toute partie e-séparée soit
de cardinal inférieur ou égal a M (e) et tel qu'il existe une partie e-séparée de cardinal
M (e).

(b) Dans le cas paticulier ou la norme choisie est la norme euclidienne canonique et ou
K est inclus dans la boule fermée de centre l'origine et de rayon R > 0 donner un
majorant de M(e)

(c) Soit f une application de K dans K qui conserve la distance. Montrer que f est
surjective.

4. Soit € € R%.. Soit I une partie de K, finie. On dit que F' recouvre K a € prés si :

K C U Bs(a,e).

acF

(a) Montrer qu’il existe un entier m(e) tel que toute partie qui recouvre K a e prés soit
de cardinal supérieur ou égal & m(e) et tel qu'il existe une partie qui recouvrent K
a e prés de cardinal m(e).

(b) Notons P, I'ensemble des parties qui recouvrent K & € prés de cardinal m(e).
Montrer que I'application

PSR P Z |z — ||

(z,y)eP?

atteint sa borne inférieure.
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Travaux dirigés n° 9

I. Préambule
Montrer I'existence et donner la valeur de I'intégrale suivante :

/0 * (sin(a)ds

Indication : on pourra introduire la quantité J = fog In(cos(z)dx que 'on comparera a 1.
IT. Développements asymptotiques d’intégrales

1. Montrer qu’il existe une suite de réels (ay)ren+ & déterminer, telle que pour tout élément
k de N*,

Tode a1x n Qs P apT N x oy
— = — S 0 T 0.
e Int Inz  (Inz)? (Inz)* (Inz)k )’

2. Montrer qu’il existe une suite de réels (by)ren+ & déterminer, telle que pour tout élément
k de N*,

too b b b 1
2 _ 2 0 1 k
/x exp(—t )dt—exp(—a: ) (;"‘——F....—FW—FO(W)) , T — +00.
I1I. Moyenne pondérée le retour de Cesaro

1. Soit f un élément de C°([0,1], R). On se propose d’étudier la limite éventuelle de la suite
(I)nen, ou pour tout entier naturel n,

1
n:n/o " f (t)dt

tn

(a) Représenter pour diverse valeurs de n les applications [0,1] = R; t — TTdr
0

(b) Montrer que :

1 /1
—— | Fdt — f(1).
fOl tndt Jo ( ) n—-+o00 ( )

En déduire que la suite ([,),en @ une limite a déterminer.

2. Soit f une application de R, dans R, continue et bornée.

(a) Pour tout entier naturel n, justifier 'existence de :

+oo
Iy = n/ e ™ f (t)dt.
0

On se propose d’étudier la limite éventuelle de la suite (J,)nen-

e—nt

O+°° entdt’

(b) Représenter pour diverses valeurs de n les applications Ry — R; t —
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(c) Montrer, en raisonnant comme précédemment que la suite (J,,)nen a une limite &
déterminer.

(d) (Réservé 2.) Reprendre la sous question précédente par changement de variable et

en utilisant le théoréme de convergnce dominée.

IV. Lemme de Lebesgue

1. Soit g une application d’un segment non trivial [a, b] & valeur réelles de classe C! Déter-
miner la limite en +o00 de de I'application

R—R; \— gsin(n-).
[a.b]

2. On ademet le lemme de Lebesgue (question 1) en ne supposant g seulement continue
(voir cours.)

Soit f une application de R dans R intégrable de classe C!. Pour tout réel \, montrer
I’existence de

L) = /_ () sin(M)dt.

Déterminer la limite de L(\) lorsque A tend vers +oo.

3. Soit f un élément de C'([0,1], R). Montrer pour tout entier naturel n, 'existence de

(" (@) sin(nt)dt
I, = /0 LOSAmE,

Etudier la limite éventuelle lorsque n tend vers oo de la suite (I,,)nen-
4. (a) Montrer que l'intégrale f0+°° th” dt est convergente. On admet (jusqu’a un prochain
+00 gint oz
TD) que fO ST dt = bR
(b) Soit f un élément de C!([0,1], R). Montrer pour tout entier naturel n, I'existence de

[ F(t)sin(nt)
e [ 000

Etudier la limite éventuelle lorsque n tend vers +oo de la suite (In)nen-
(c) Pour tout entier n > 1, on pose

Jy o= / ssin’(nh) o,
0

n sin?(¢)

Justifier I'existence de cette intégrale.
(d) Etudier la limite éventuelle de la suite (J,)nen-
Indication : On pourra utiliser une intégration par parties.
VI Compléments de programme.
LEBESGUE ENCORE
Soit T' € R
Soit h une application continue de R dans R, T-périodique. On pose :

1 T
h>= — h(t)dt.
<h> T/O (t)
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1. Montrer que pour tout réel x et tout entier n,
1 z+nT

T /. h(t)dt =< h > .

2. Soit f une application de classe C' sur un segment [a,b] non réduit & un point. Montrer

—+00

b b
/f(t)h(nt)dtn—> <h>/ f(t)dt.

3. Reprendre I'exercice avec f seulement continue par morceaux.

CESARO TOUJOURS
Soient f une application de [0,1] dans R continue et telle que f(0) # 0, et

1
g:R+—>R;/M:dx.
o 1+tw

1. Donner un équivalent de g(t) lorsque t tend vers +o0.
2. On suppose de plus f de classse C!; Majorer la différence entre cet équivalent et f au
voisinage de 4o00.

UNE INTEGRALE CELEBRE —
On se propose de calculer I'intégrale suivante, qui intervient notamment dans le calcul d’un

champ éléctrostatique créé par une densité invariante rotation autour d’un arc et par translation
dans la direction de cette axe :

/ In(1 + 2z cos 6 + x%)de.
0

1. Montrer que pour tout réel z, la quantité [ In(1 + 2z cos 0 + 2?)d6 est bien définie.
Nous allons donner la valeur de cette intégrale.
Dans la suite on désigne par f ’application

f:R—=R; 2z In(l+2wcoshd+ 2?)dd.

2. Premiére méthode

(a) (5/2) Montrer que I'application f est continue. Les 3/2 admettront ce résultat.

(b) pour tout réel x distinct de 1 et de —1, calculer f(z) en utilisant les sommes de
Riemann.

(¢) Conclure.

3. Seconde méthode
(a) Pour tout réel z étudier f(—z), f(2?) et pour  de plus non nul f ().
(b) En déduire f.
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Normes d’application linéaire

Travaux dirigés n° 10

I. PREMIER EXEMPLE
Soit L l'application linéaire de R?, noté en colonne, dans lui-méme définie par,

pour tout élément X de R2.

1. Montrer que L est continue de (R? ny) dans lui-méme et donner sa norme.

. . 1 2
2. Généraliser en substituant a ( 3 ) un élément quelconque de M, (R)quelconque.

II. ETUDE DE NORME SUR M, (K)

ST ) >

x; le terme de la ¢° ligne de X, pour 1 <17 < n.
Pour A € M,,(K), on pose p(A) = max {|A\|; A € sp(A)}, quantité appelée rayon spectral.

1. Soit les application

=1,...,

----- n

N : Mn<K) _>R+> ;A’_)Z_irllax <Z|ai,j‘)

j=1
Montrer directement que N et N’ sont des normes.

2. Montrer que N et N’ sont des normes subordonnées a des normes sur M _,(1)K a
préciser, lorsque I'on identifie les éléments de M,,(K) et les endomorphismes de M,, ; (K)
canoniquement associés. On traitera le cas plus délicat K = C.

Donc en particulier N et N’ sont des norme d’algébre (dans le cas de M, (K) on
parle de « normes matricielles ».
3. (a) Montrer que pour tout matrice A élément de M,,(K), p(A) < N(A).
dans la suite K = C.
(b) Soit @ € M,,(C) une matrice inversible.

Ng @ M,(C) = Ry, ;A N(QTAQ).

Vérifier que Ny est une norme matricielle sur M, (C).

(c) Soient A € M,(C) et ¢ € R, montrer qu'il existe une norme matricielle NV, telle
que

N.(A) < p(A) +¢.
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4. Derechef K = R. Montrer que
Nr : Mu(R) = Ry, ;A (te(MTM))2

est une norme.
On lappelle norme de Frobenius.

5. Montrer que N est une norme d’algébre (on dit aussi matricielle).

6. La norme N est-elle une norme subordonnée.
III. ETUDE D’UNE APPLICATION LINEAIRE

Par E sera désigner 1'espace vectoriel des applications de [0, 1] dans R, continue.
Soient g un élément de E et L la forme linéaire

E—-R;f— qgf.
[0,1]

1. On munit E de la norme N, et R de | - |. Montrer que L est continue et déterminer sa
norme d’opérateur.

2. On munit E de la norme N; et R de | - |.

) Montrer que L est continue.
Montrer que atteint sa borne supérieure en un point a de |0, 1].
g
Dans le cas ou a €]0, 1|, déterminer la norme d’opérateur de L.
) ? p
(d) Conclure dans le cas général.
)

On considére la restriction L; de L a I’espace vectoriel E; des applications de [0, 1]

dans R de classe C!. On prend pour g lapplication sin (g ) Montrer que L; est

continue et déterminer sa norme d’opérateur lorsque E; est muni de la restriction de

Ny et Rde |-].

3. On munit E de la norme N, et R de |- |. Montrer que L est continue et déterminer sa
norme d’opérateur.

IV. ETUDE D’UNE APPLICATION LINEAIRE
1. Soit f une application linéaire sur (R3 n;) dans un espace vectoriel normé (F, || - ||). On
note B la boule unité fermé de (R3 ny).

(a) Montrer que B est I'intersection de 8 demi-espaces fermeés de chacun desquels ont on
donnera une équation. Représenter B.

(b) Soient Py, P, ..., P les 8 plans affines délimitant ses demi-espaces. Les points de B.
qui appartiennent a 3 de ces plans, distincts, sont appelés sommets de B. Déterminer
les sommets de B.

(¢) On appelle face de B, les ensembles P, N B, i = 1,2...,8. Combien il y a t-il de
sommets par faces?

2. Montrer qu'il existe un sommet s de B tel que ||f]| = [|/(5)e-
3. Application : déterminer || f], pour (F, || - [|g) = (R2,n,) et f définie par :
f(z,y,2) = (8 + 5y + 42,2z — 3y),

pour tout triplet de réels (x,y, 2).

4. Soit ¢ une application linéaire de R" dans (F, || - ||). On munit R™ d’une norme N. Avec
les notrations du TD 8 montrer qu’il existe un point x extrémal de la boule unité fermée
de (R™, N) tel que : ||£] = N(¢(z)).
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Pour public averti et téméraire

V. EQUIVALENCE DE NORMES.
Notons E = C°([0, 1], R). Soient un réel C' > 0 et F un sous espace vectoriel de E tel que :

[ flloo < CIIfl2; (9)

pour tout élément f de F.
1. Montrer que les restrictions de || - ||z et || - ||oo & F sont équivalentes.
2. Montrer que F est de dimension finie inférieure ou égale a C?.
3. Donnef un exemple de sous-espace vectoriel F de E de dimension n et vérifiant (9) avec
C =nz.
>VI. APPLICATION INVERSIBLE DANS UN HILBERT.

Soit (H, (-]-)) un espace préhilbertien dans lequel toute séries absolument convergent converge
(on dit que c’est un espace de Hilbert). On munira H de la norme euclidienne || - || associée au

produit scalaire.
Soit f un endomorphisme continue de H tel qu’il existe un réel « tel que :

Vo € H, afz|* < (f(2)]2).

1. Montrer que im(f) est fermée Et que (im(f))" = {Ou}
2. En déduire que f est un automorphisme.

3. Montrer que f~* est continu et que || f7|[op < L.
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Travaux dirigés n° 10

I. EQUIVALENTS DE RESTES ET DE SOMMES PARTIELLES DE SERIES

Nous avons vu comment déterminer au moyen des théorémes de sommation d’équivalents,
des restes et des sommes partielles de séries a termes positifs. Nous allons aller plus loin !

1. ETUDE DE RESTES

(a) Soit un réel a > 1. Donner un équivalent lorque n tend vers 400, de

“+oo
1
ne’
k=n

+o0o
1
b) Donner un développement limité a 'ordre 3 en < — > de —.
(b) velopp - D

k=n

2. ETUDE D’UNE SOMME PARTIELLE, CONSTANTE D’EULER

1
(a) Montrer queE Tl Inn.
n—-—+0oo
k=1

Posons pour tout élément n de N*, z,, := — — Inn. Montrer que la suite (z,),en

k
k=1

converge vers un réel v, appelé constante d’Fuler.

(b) Montrer que

+ ! + ! (n — 400)
Ty = — 4o —],n .
v 2n n >0
II. SUITES ITEREES : TOUJOURS PLUS LOIN!

Nous allons reprendre un exercice déja étudié, avec des outils plus puissants, le généraliser,
et mieux comprendre le sens de la méthode précédemment empoyée.
Soit @ un élément de 0, 7[. Nous avons montré que la relation de récurrence

Ug = a,
Ups1 = sin(uy,),

définit bien une suite (u,),en €t montré que cette suite converge vers 0.
. . . -2 -2 .
1. Nous avons montré que la suite : (u,?; — u, )neN admet une limite non nulle .
D’ou vient I'idée de considérer cette quantité ?

2. En utilisant les théorémes de sommation des relations de comparaisons pour des séries
a termes positifs, donner lorsque n tend vers +o0o, un équivalent de u,,, de la forme cn?,
avec c et vy réels.

3. pour tout élément n de N, on pose a,, := u,, —cn”. Donner un équivalent de a,, lorsque
n tend vers +oo.

III. POUR ETRE SUR D’AVOIR COMPRIS
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1. (a) Montrer que la relation de récurrence

Ug = 57
1
Up4+1 = Up + =,

Un

définit bien une suite (uy,)nen
) Montrer que (uy,)nen admet +00 comme limite
) Montrer que u,, ~ +/n.
n—-+o0o
) Montrer que w090 € [45, 45, 1].
)

Montrer que la relation de récurrence

Vg = a,
Unt1 = Up + eXp<_Un)7

définit bien une suite (v,),en. Montrer que (vy,)nen admet +0o0 comme limite

(b) Donner un développement asymptotique de v, a deux termes, lorsque n tend vers
+00.

3. (a) Soit b un élément de |1, +oo[. Montrer que la relation de récurrence

Ty = b,
Tp+1 = Tp + ln(xn)a

définit bien une suite (z,),en. Montrer que cette suite converge vers +00.
(b) Donner un équivalent simple de In(x,,), lorsque n tend vers +oo, puis de z,.

n
4. Soit (¢,)nen une suite de nombres réels telles que lim ¢, Y ci = 1. Déterminer un
n—4o0o k=0

équivalent de ¢, lorsque n tend vers +oo.
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IV. TRANSFORMATION DE NIELS HENRIK ABEL

La méthode suivante de sommation, qui est ’analogue discret de I'intégration par parties,
est hors programme mais doit se retrouver rapidement.

Soient (ay),cn €t (bn),en des suites réelles. Posons pour tout entier naturel n, u, = a,b,

n
et S, = > uy.
=0

1.

AN

n

On pose B,, := > by, pour tout entier naturel n. Montrer pour tout n et tout p entiers
k=0

naturels que :

P

p
E Untk = E (an-‘rk - an+k+1>Bn+k + [an+p+an+p - a'n-l—an]
k=1 k=1

. On suppose que la suite (B,).en est bornée et que la suite (a,),en tend vers zéro en

décroissant. Montrer que pour tout réel € > 0 il existe un entier ngy tel que pour tout
n € N, tout £k € N si n > ng, alors :

‘Sn+k- — Snl < g,

(suite de Cauchy).

Montrer que la suite (S,)men est bornée.

Montrer que la série converge.

Déduire de ce qui précéde le théoréme spécial des séries alternées.

Soient ¢ un réel et a un réel strictement positif. Etudiers les séries
eint

cos(nt sin (nt
S g conlnn) g sin o)

n>1 n>1 n>1

Soit Y v, une série de réels convergente. Montrer que lorsque n tend vers +o0,

Z kvg = o(n).

Soit, (w,)nen Une suite croissante de réels strictements positifs qui tend vers +oo. Soit

(5 )nen une suite de nombres complexes telle que la série E ~ converge de somme L.
Wn

n
Montrer que win >z, tend vers 0, lorsque n tend vers +o0.
k=0

+o00
Indication : Considérer la quantité R, = > o=
k=n

V. RECHERCHE D’EQUIVALENT

Soient a un réel > 0 et (z,),en+ une suite de réels définie par rcurrence par : z; = a et pour

n
tout n € N, en désignant par S, = Y xy,

1.
2.

k=1
Tptl =T+ 35 -
Sn

Montrer que la suite (z,),en diverge vers +oo.

Déterminer un équivalent de x,,, lorsque n tend vers +oo.
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VI. SUITE DEFINIE IMPLICITEMENT
Montrer qu’il existe une et une seule suite réelle (u,),en telle que pour tout n € N

u? 4+ nu, — 1 =0. (10)

Donner un développement asymptotique & deux terme de (uy)neN-
VII. CALCUL DE SOMMES

- . -
1. Montrer la convergence et calculer la somme de la série de terme général u,, = % On

pourra évaluer pour commencer fol t*dt.
n
2. (a) Montrer que la suite (u,),en, o pour tout n € N, u,, = > lnTp —2(In(n))? converge.
p=1

(b) En déduire la valeur de
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Travaux dirigés n°® 12

I. CAS DOUTEUX DANS LA REGLE DE D’ALEMBERT
Soit une série a termes strictement positifs, > ", , & laquelle on peut associer deux réels a
et b, avec b > 1 tels que :

Un+1:1_ﬂ+o(i) (n — o0)
n

Up nb

1. Montrer que si a < 0, alors la série diverge grossiérement.

2. Montrer en utilisant la comparaison indirecte (cf. exercice du cours) a la série harmonique
que si a < 1, alors la série diverge.

FExemple : étudier la série de terme général

Up = \/Ei[lsin <%)

p

3. Dans le cas général montrer le résultat hors programme suivant :
1l existe un réel k strictement positif tel que

k

Indication : On poura étudier la série téléscopique Y In(up41) — In(u,).

4. Application donner la nature de la série de terme général :

5. Nous souhaitons établir la formule de Stirling : n! ~ v2mn 2= (n — oo)

n

(a) Posons pour tout entier naturel n, u, := n!n~".e", montrer qu’il existe un réel k tel

que u, ~ k/n.
(b) Posons, pour tout entier naturel n, I,, ;= Oﬂ/2 sin” ¢ dt.
Calculer pour tout entier naturel p, Iy, et Iy, ;.
(¢) Prouver que pour tout n € N,

[n+2 < In+l
I, = I

<1

(d) En déduire que IT}—“ tend vers une limite que l'on déterminera, lorsque n tend vers
+00.
(e) Déduire de la question précédente la valeur de k et conclure.

IT PRODUITS INFINIS

n
Soit (an)nen une suite réelle. On pose pour tout entier naturel n, P, := [] a.
k=0

Nous dirons que le produit infini associé, noté [[ a, converge si la suite (P,), . converge
vers une limite non nulle.
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1. Montrer que si [] a, converge alors la suite (P,), . converge vers 1.

On suppose dans la suite cette condition réalisée.
Pour tout entier naturel n, on pose u, = a, — 1 et 'on suppose que u, # —1.

2. Montrer qu il existe un entier naturel ng, tel que pour tout entier n > ng, la quantité
In(1 + u,) soit définie. Montrer que le produit [ a, converge si et seulement si la série
> In(1 + u,) converge.

n>ng
3. On suppose en outre, dans cette question, que la suite (u,),en €st positive & partir d’'un
certain rang. Montrer que le produit [] a, et la série ) u, sont de méme nature.

4. On ne suppose plus la suite (u,),en positive a partir d’un certain rang, mais que la série
>~ u,, converge. Montrer que [] a, converge si et seulemement si la série Y u2 converge.

ITI. ECRITURE DECIMALE D’UN REEL

Quitte a retrancher a x sa partie entiére, pour alléger I’écriture nous supposeros que x €
[0, 1].

Rappelons qu’un nombre décimal d, c’est-a-dire un réel de la forme g5 ot a est un élément
de Z et N de N peut se mettre sous la forme :

r = +ag+ a1 10" + a210% + ...aNlON.,

ou ag, a1a...,ayn sont des entiers naturels. On note alors ¥ = +ag, ayas...an cette derniere forme
est appelée écriture décimale de x, ['entiers naturel a; la i° décimale de x, pour 1 =1,...,N.

Nous nous proposons de fournir a tout réel x une écriture similaire. Quitte a retrancher a
x sa partie entiére, pour alléger I’écriture, nous supposeros que x € [0, 1].

Soit « un élément de [0, 1[. On définit les suites réelles (z,)nen* (Yn)nen+ €t (an)nen+ par,
pour tout entier n supérieur ou égal a 1,

Ty = 107" [10"2], Yy == 2 + 107" et a, := [10"z] — 10 [10"'z]).

1. UN EXEMPLE

On prend pour z le réel 0,123456, c¢’est-a-dire, on le rappelera dans la suite, le réel
6

5~ 4107". Déterminer pour ce choix de x les suites (,)nen (Yn)nen+ €t (an)nen-
i=1

2. ECRITURE DECIMALE

(a) Montrer que pour tout entier n > 1, x,, < z < y,,.
On appelle z,, (resp. y,,) valeur approchée de x par défaut (resp. par excés) a 10"
prés.
(b) Montrer que les suites (Z,)nen+ €t (Yn)nen+ sont adjacentes. Quelle est leur limite ?
(c) Montrer que pour tout entier n > 1,

T, = 2”: a;107%.
i=1

Le réel x est donc la somme de la série > a,107". La suite (a,)nen+ s’appelle la
n>1
suite des décimales de x.

3. ETUDE DE LA SUITE DES DECIMALES DE x
On note S 'ensemble des suites (ay,)nen+ d’éléments de {0,1,...,9}, qui ne sont pas
constamment égales a 9 a partir d’un certain rang, c’est-a-dire, que pour tout élément
N de N*, il existe un entier n tel que n > N et a, # 9.
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(a) Montrer que pour tout élément x de [0,1], la suite (a,)nen+ de ses décimales est
élément de S.

(b) Montrer que I’application d qui & un élément x de [0, 1 associe la suite de ses décimales
est une bijection de [0, 1] sur S.

Le caractére bijectif de ¢ autorise a noter un élément de [0, 1], z = 0, ajazazay . .. ay, . . .,
ou (an)nen+ désigne la suite de ses décimales. On dit qu’un élément x de [0, 1] est décimal,
si par définition, la suite de ses décimales est nulle & partir d’un certain rang. Si §(z) est
nulle & partir du rang ng, on notera simplement = = 0,a1as . .. anp,—_1.

4. Caractérisation des rationnels

(a) Montrer que le nombre 0, 777777777 ... (la suite des décimales est constante égale a
7) est rationnel.

Méme question pour les nombres 0, 17891789...1789... et 0,12345292629...29....

(b) Soit z un élément de [0, 1], on suppose que la suite de ses décimales (a,)nen+ est
périodique a partir d’'un certain rang, c’est-a-dire qu’il existe des entiers ng et p
strictement positifs tels que pour tout entier n supérieur ou égal a ng, anip = ap.
L’entier p est appelée période de la suite. Montrer que x est rationnel.

(c) Montrer, réciproquement que pour tout élément x de [0, 1[ rationnel, §(x) est pério-
dique a partir d’un certain rang.

5. Montrer que I’ensemble R n’est pas dénombrable.

IV. Nombres de Liouville

Compléments pour public averti
On dit qu'un nombre réel est algébrique si, par définition, il est la racine d’un polynéome a

coefficients entiers. Par exemple 29 ou v/2 sont algébriques. Nous étudierons un peu en exercice
les nombres algébriques dans un chapitre suivant. Un nombre qui n’est pas algébrique est dit
transcendant, c’est par exemple le cas de m ou e. Nous allons montrer qu’il existe beaucoup de
nombres transcendants.

Soit « un réel.

1. On suppose que x est racine du polynéme & coefficients entiers de degré m > 1,

P=a X"+ X" 4+ Fay,

, 7 =1,2,...,m. Montrer que toute racine

Soit, M le plus grand des nombre réels ‘Z_f)
de P a un module strictement inférieur & 1 + M.

2. On suppose toujours x racine de P. Soit §> avec p € Z et ¢ € N* une valeur rationnelle
approchée de x a % prés, qui n’est pas une racine rationnelle de P.

(a) Montrer qu’il existe un réel a vérifiant |o| < M + 2 tel que :

() ro

(b) En déduire l'existencence d’un entier K > 0 qui ne dépend que des coefficients de P

tel que :
1
=[P (2]
qm q
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3. Soit un entier naturel m’ > 1. On suppose que I'ensemble des entiers ¢’ > 1 tels qu’il
existe p’ € Z tel que :

/
p

xr — E S q/m/+17
est infini. Montrer que = n’est pas racine d’un polyndome a coefficient entiers de degré

m'.

1

4. NOMBRES DE LIOUVILLE
Soit le réel donné par son écriture décimale

o0
—n!
o= E a, 107",
n=1
ol (an)nen+ est une suite a valeurs dans {0, 1,...,9} qui n’est pas a partir d’un certain

rang constante & 0. Un tel nombre réel est dit nombre de Liouville.

(a) En étudiant la valeur approchée par défaut de «v a ﬁ prés, pour m entier naturel,
montrer que « est transcendant.
(b) Montrer que 'ensemble des nombres de Liouville est en bijection avec |0, 1].
Il y a < beaucoup » de nombres de Liouville et plus encore de nombres transcendants !
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IV. Fractions continues

Soit o un réel. On définit la procédure suivante.

Procédure P

e “Etape 0’
i=0; z:=a; a:=FE(z);

e “Etape 7’
tant que v —a # 0 faire :
1=1+1; a::xlTa; a=FEx);

fin (de boucle ‘‘tant que”’).
Fin de procédure

En notant z; et a; les valeurs respectives de x et a fournies par la i¢ étape de la procédure, on
dispose donc, soit de suites (z;);en et (a;)ien, soit de suites finies (zo,...,x,) et (ag,...,a,),
selon que la procédure ne se termine pas ou se termine a 1’étape n.
1. Soit n un élément de N*. On suppose que la procédure s’est déroulée jusqu’a I’étape n.
Vérifier que :

1 1
a:a0+—,a:a0+—1,...,&:ao+ 1 y
L1 CLl‘i‘x—2 CL1++—1—
ao —_—
1

2. EXEMPLES
Déterminer les suites (finies ou non) (a;);>0, pour @ = 222 et a = /2.

3. CAS RATIONNEL

(a) Montrer que si la procédure se termine, alors « est rationnel.

(b) On suppose que « est rationnel. Il existe donc (p,q) éléments de Z x N*) tels que
a = § et p et ¢ premiers entre eux. Donner une procédure calculant les termes de
la suites (a;);>0, & partir de p et g. montrer que cette procédure se termine. De quel
algorithme s’agit-il en fait ?

(¢) Conclure que la suite (a;);>o est finie si et seulement si « est rationnel.

4. CAS IRRATIONNEL
On Suppose dans la suite que « n’est pas rationnel. Pour tout élément n de N on note

R,, le rationnel :
1
R, = ag+ T ,
+ =71
at

...a_n

On dit que R, est la (fraction continue) réduite d’ordre n de . On se propose de montrer
que la suite (R,)nen tend vers a.
On définit les suites d’entiers (P,)nen et (Qn)nen par

Py = ao, Qo =1,
Py = apa; + 1, Q1 = uy,
P, =P, 1a,+ P, Qn = Qn—lan + Qn—Qa pour tout n > 2.
: P,
(a) Montrer que pour tout entier naturel n, R, = 0.
n
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(b) Montrer que pour tout entier n > 1,

PnQn—l - P’n—lQTL = (_1)n (11)

P,
(c) Montrer que pour tout entier naturel n, —- est une fraction irréductible.
n

(d) Montrer que pour tout entier n > 1,

o — annJrl + Pnfl
Qn$n+1 + Qn—l '

(12)

En déduire que

by
o — —

@n

Pn+1 Pn
QnJrl Qn

<

(e) Conclure.
(f) Montrer que

+oo n
P -1
a=D0 4y =0
Qo 2= QuQuis
Discuter suivant les valeurs de n si la réduite d’ordre n est une approximation par

excés ou par défaut de a.

5. Montrer que si la suite (a;);>o est périodique a partir d’un certain rang, alors « est racine
d’un polynome du second degré a coefficients entiers.

Indication : On pourra commencer par le cas ou (a;);>o est périodique.

V. Irrationnalité de =

On suppose que 7 est rationnel. Il existe donc (a,b) € N x N* tel que m = ¢. Pour tout
¢lément n de N, on considére le polynome : p, = LX"(bX —a)".

1. Montrer que pour tout n € N, les dérivées successives de p,, prennent des valeurs entiéres
en 0 et en 7.

2. Pour tout élément n de N, on pose I,, := [ pn(t) sintdt. Montrer que la suite (I,)nen
converge vers (.

3. Montrer que pour tout élément n de N, I,, est un entier.
4. Conclure a lirrationnalité de .

Adpasdicijetelefaissavoir !
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Travaux dirigés n°® 13

1. REGULARITE D’APPLICATIONS
1- Soit F lapplication de R? dans R?
rsiny —ysinx

F:R*=R; (z,9)— 22 + 12 , pour (z,y) # (0,0),
0, pour (z,y) = (0,0).

a) Montrer que F est de classe C°.
b) Montrer que F' est de classe C.
¢) Est-ce que F est de classe C* 7

2- Soit ¢ une application de R dans R de classe C!. Soit F' I'application :

g(x)—g(y)
FiR2GR: (ny) s { o_y  POWTAY
g'(z), pour z =y.

a) Montrer que F' est continue.
b) Montrer que si g est deux fois dérivable en un point a de R, alors F est différentiable en

(a,a).
II. REGULARITE DE QUELQUES NORMES

Soient n un entier naturel non nul. On considére les applications suivantes de R"™ dans R :

Noo : (37173727'“’3771)'_> sSup |x2|>
i€[1,n]

n 2
Ny @ (21,29,...,2,) — <Z|xz|2> ,

i=1
n

Nl : (xl,xz,...,xn) — Z‘.’I:Z’
i=1

1—- Montrer que les applications N, Ny et Ny sont continues.

2— Pour n = 2 représenter les graphes de ces trois applications.

A partir de la on pourra se limiter a n = 2.

3— En quel point de R” chacune de ces applications admet-elle des dérivées partielles d’ordre
1, par rapport aux n variables. On pourra commencer par le cas n = 2.

4— Déterminer le plus grand ouvert U, tel que la restriction de Ny & U soit de classe C!.
Déterminer la différentielle de No en un élément @ de U. Exprimer pour h élément de R”,
dNy (@) - h grace au produit scalaire canonique de d par H.

5- Déterminer le plus grand ouvert U tel que la restriction de N; a U soit de classe C!.
Méme question pour N..

6— Soit N une norme sur un espace vectoriel E de dimension finie non nulle. Montrer que
N n’est pas différentiable en k.

ITII. DIFFERENTIABILITE D’UNE DISTANCE

Soit d une distance sur un espace vectoriel de dimension finie E et €2 un ouvert de E.
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On se propose d’étudier la différentiabilité de
§; Q* = R; (m,n) — d(m,n).

On suppose que ¢ est différentiable sur 22 et I'on considére (mg,ng) un point de 22

1. Que vaut ddo(mg,mg) 7

2. En déduire que pour tout vecteur & de E, D(ﬁ70E)5(m07 ng) = 0.

3. En déduire que ¢ est non différentiable sur Q2.

IV. DIFFERENTIABILITE DE LA DISTANCE A UN FERME
(réservé a un publique averti)

Soient n un entier naturel non nul et F un fermé de R™ non vide. On notera €2 le com-
plémentaire de F. On munit R” de sa structure euclidienne canonique, (-|-) désigne le produit
scalaire canonoique et || - || la norme euclidienne associée.

1. Montrer que I'application distance a F/,
d: R"=>R; m—dim,F)
est continue.
2. Montrer que pour tout point m de €2, il existe au moins un élément f de F' tel que
If = ml|l = d(m, F).
Dans la suite, pour tout élément m de € on note A(m) := {f € F||f —m| =
d(m, F')}. Et on se propose d’étudier la différentiabilité de I'application
¢ : Q; m—dm, F)?
3. Montrer que ¢ est différentiable en un point m de €2 si et seulement si dq L'est.
4. Supposons que ¢ soit différentiable en un point mgy de Q. Soit f un point de A(my).
Montrer que ?gb(mg) =2(mgy — f).

5. En déduire une condition nécessaire sur A(m) pour que ¢ soit différentiable en un point
m de €.

6. Soit my un point de Q. On suppose que A(mg) est un singleton : A(mg) = {fo}.
(a) On se propose de montrer que d(fy, A(mg + h)) — 0.

h—)OE

Supposons que d(fo, A(mg + 1)) ne tende pas vers 0.

i. Montrer qu’il existe un réel § > 0 et une suite (p,)nen d’éléments de E qui tend
vers myg tel que d(fo, A(pn)) > 0 pour tout n € N.
ii. On note G = {y € F|||fo — y|| > §}. Montrer que ¢(p,) = d(p,, G)*.
iii. En déduire que ¢(p,) ne tend pas vers ¢(myg), lorsque n tend vers +oco.
iv. conclure.

(b) On se propose d’en déduire que ¢ est différentiable en my.

i. Montrer que pour tout vecteur h de E tel que mg+ h soit dans Q, et tout élément
fh de A(mo + h)

¢(mo + h) > d(mo) + 2(mo — fulh) + [|1]]*

ii. Montrer que pour tout vecteur h de E tel que mg + h soit dans Q,
d(mo + h) < ¢(mo) +2(mo — fIR) + 1A]]>.

iii. Conclure

(c) Donner une condition nécessaire et suffisante pour que ¢ soit différentiable en un
point m de €.
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Compléments pour I’X et les ENS

IV. INJECTIVITE LOCALE (5/2)

Soient U un ouvert de R™ et , f une application de U dans R™ de classe C! et a un point
de U tel que la différentielle en a soit un isomorphisme. Démontrer qu’il existe un voisinage V'
de a tel que la restriction de fa V soit injective.

VI. THEOREME D’INVERSION LOCALE

Théoréme d’inversion locale : Soit ) un ouvert d’un espace vectoriel E de dimension
finie et f une application de Q dans un espace de dimension finie F de classe C*. Si il existe
a élément de Q) tel que df(a) soit un isomorphisme, alors il existe un voisinage U de a un
voisinage V de f(a) tels que f induise un C' difféomorphisme de U sur V.

1.

Montrer qu’il suffit pour prouver le théoréme, de montrer, avec ses notations le résultat
pour F = E a =0, f(a) = 0 et df(a) = idg, chose qui sera faite dans la suite. On
considérera également une norme | - || sur E.

RESULTAT TECHNIQUE ET CLASSIQUE —
Montrer que GL(E) est ouvert et que

Z : GL(E) —» GL(E); £+ ¢!

est continue.

On pose g : Q — E; o — x — f(x). Montrer qu’il existe un réel > 0 tel que pour
tout tout élément = de B¢(0,2r), ||lg(x)]| < 7.

. Soit y élément de B¢(0, 7). On considére I'application h : B¢(0,2r) — E; z — y+ g(x).

Montrer que h est a valeurs dans B¢(0, 2r) et %—contractante. En déduire que f induit
une bijection d'un voisinage ouvert de 0 inclus dans By (0, 2r) sur une partie de B¢(0,r),
noté f.

5. Montrer que f~! est 2-lipschitzienne.

Montrer que f‘l est différentiable sur B,(0,r), donner sa différentielle au moyen df et
de 7.

Conclure.

8. On se propose de montrer la forme du théoréme des fonctions implicites suivante :

Théoréme des fonctions implicites : Soient n et p des élément de N*. Soit F
une application d’un ouvert Q de R™P identifié a R"™ x RP, a valeurs dans RP de classe
Ccl:

F ooy, y) = (e, @Yy U)o (@1 T Yty -3 Yp)s )

Soit (a,b) un point de R™ x RP tel que F(a,b) = 0 et det <8fj-

Oy (a’b))ilzl D 7£ 0. AZO7”S7

j=l..
il existe un voisinage U dans R™ de a, un voisinage V' dans RP de b et une application

¢ de U dans RP, de classe C' et a valeurs dans V tels que
e UxV CQ;
e Pour tout élément (z,y) de U x V, F(x,y) =0 si et seulement si y = p(x).

-----

(a) On considére 'application f; : Q@ — R" x R?; (z,y) — (z, F(x,y)). Montrer que
dfi(a,b) est inversible.
(b) Déduire de la sous-question précédente le théoréme des fonctions implicites.
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VII. EQUATION AU D’ERIVEES PARTILLES

Soit en entier n > 2. On considére une application F' de R" dans R", de classe C!,
fi, fay .., fn désigne la premiére la deuxiéme,..., la n® composante de F'. On s’intéresse a I’équa-
tion aux dérivées partielles

9y %
8331 axn

Une solution de (13) est par définition, toute application g d'un ouvert U de R"™ dans R de
classe Ct, telle que : fla% +- 4+ fna% = Op_r. On considérera aussi le systéme différentiel :

fi(zy, . xy) + o+ fulz, ) (13)

xll - fl(l’l,l‘g, B 7xn)7
xé:fg(l'l,l'g,...,l'n), (14)
= foz1, 29, ..., 2T0),

que nous écrirons encore de maniére condensée : X’ = F(X). On admet que pour tout élément
Xo de R™ il existe une et une seule solution maximale de (14) qui prenne en 0 la valeur Xy
(théoréme de Cauchy). On admet de plus que F est telle que tout solution maximale soit définie
sur R.

1. Soit g une solution de (13) sur un ouvert U, montrer que g est une intégrale premiére de
(14), ¢’est-a~dire que pour toute solution ® de (14) a valeurs dans U, go ® est constante.

2. Soient U un ouvert de R"™ et h un élément C' (U, R) dans R qui est une intégrale premiére
de (14). Montrer que h est solution sur U de (13).

3. Soient U un ouvert de R™ et hy, ho, ..., h,_1 des éléments C1 (U, R), intégrales premiéres
de (14). Montrer que pour toute application G élément de C'(R"! R),

U—R; X Glhi(X), ha(X), ..., har(X))

est solution sur U de (13).

Si 'on suppose de plus que que pour tout X € U, rg(dhi(X),...,dh, (X)) =n—1,
alors nous allons montrer que toute solution sur U de (13) est de la forme précédente au
voisinage d’un point A en lequel le champ F ne s’annule pas. On aurait pu ausst établir
Pexistence de telles intégrales premiéres au voisinage de tout point de R"™. Nous allons
examiner dans la suile le cas n = 2.

4. On suppose dans cette question que n = 2 et que h est une intégrale premiére de (14)
et qu’il existe A point de U tel que F(A) soit non nul et rg(dh(A)) = 1, c’est-a dire
telle que dh ne s’annule pas en A. On considére f5 une forme linéaire sur R? telle que
(dh(A), l) soit une base de (R?)*, dual de R?.

5. Montrer qu’il existe un voisinage V de A inclus dans U tel que pour tout X € V
rg(dh(X), ly) = 2.

6. Montrer ¢’il existe un voisinage W de A inclus dans V' tel que W = (h, ¢5) induise un
C!'-diffecomorphisme de W sur W(W).

On note @ le diffeomorphisme réciproque de (W) sur W.

7. Soit g un élément de C'(W, R). Posons g = g o @, c’est-a-dire :

g UY(W) = R; (ug,uz) = g(P(ur,ug)) g : W —=R; (x1,22) = g(h(xy, 22), la(x1, 22)).

Montrer que g est solution de (13) si et seulement si ;—52 est nulle sur ®(W).
8. En déduire au voisinage de A la forme générale des solution de (13).

9. Généraliser ce résultat pour n quelconque.
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Travaux dirigés n° 13

EQUATION DE REFERENCE.
L’équation auxr dérivées partielles la plus simple est O1f = 0. Par ailleurs, on résoud le plus
souvent les équations plus complexes en se ramenant a cette équation. Toutefois en dépit de son
apparente simplicité, la résolution d’une telle équation est loin d’étre triviale. En particulier, il
est faut se garder de croire, que les solutions sont toujours les applications < qui ne dépendent
pas de x >, comme on ’entend souvent. En fait tout dépend du domaine sur lequel on résout
[’équation, comme le montre le présent exercice.

1- Soit f une application de R? dans R de classe C'. montrer que 9;f = Og2_g, si et
seulement si, il existe une application g de R dans R de classe C!, telle que pour tout (z,y),
élément de R2,

f(z,y) = h(y).

2- Posons U = R? — {(0,y),y € R, }; et soit f l'application,

0, pour y < 0,
f:R*=R; (z,y) =< 0, poury>0etx<0,
y3 pour y > 0 et > 0.

Montrez que f est de classe C! et que 9, f est nulle.

Ainsi f est-elle une application de classe C, qui dépend de x, en effet f(—1,1) # f(1,1),
et telle que 3 af =

2- Soit f une application d’un ouvert U de R? dans R, de classe C!, telle que 0, f soit nulle.
f peut-elle dépendre ou non de x dans les cas suivants :

a) U est le disque ouvert unité : U = {(z,y) € R? 2% +y? < 1}.

b) U = {(x,y) € R* 2? — y? < 1}.

¢) U={(z,y) € R*y* —a* < 1}.

I . EQUATONS AUX DERIVEES PARTIELLES LINEAIRES A COEFFI-
CIENTS CONSTANTS

On s’intéresse auz équations auzr dérivées partielles de la forme,

P 8f

6 =0, a, €R, pouri=1,...p.

i=1

dire que [ est solution revient a dire que Dy = 0, ou U désigne le vecteur (a1, as,...,ap).
Considérons alors une base B' de RP, dont le premier vecteur est U. Si f est < 'expression de
f > dans les coordonnées (uy, us, . .., u,) dans la nouvelle base B, la condition Dzf = 0, devient

naturellement, comme le montrera un calcul élémentaire ad = 0. On est rammené a résoudre
une équation du type éludier dans le paragraphe précédent. Exemple
1- On se propose de déterminer ensemble S des éléments f de C' (R? R) tels que, pour
tout élément (z,y) de R?,
of of

28—(1’ y)+ 3a—y($7y) = 0.
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a) Posons ¥ = (2,3) et @/ = (0,1)?, de sorte que (7, ) soit une base de de R? notée B'.
Soit L I'application de R?* dans R? qui a tout élément (z,y) de R? associe le couple (uy,us) de
ses coordonnées dans B’. L est un isomorphisme de R? sur R?. Expliciter L et L.

b) Soit f un élément de C'(R2, R), on note f application,

f : R2 — RZ, (’Lbl,UQ) — f(Lil('U,l,UQ)),

autrement dit, f = f o L~'. Montrer que f € C'(R%R).
Soit

T:C'R*R)—=CYR*R); frs foL L.

Montrer que Z est un isomorphisme dont on précisera l'isomorphisme réciproque 7.

¢) Soit f un élément de C'(R? R), on note f application, f o L~!. Calculer, pour tout

0

élément (ug,us) de R, a—f(ul, uy) en fonction des dérivées partielles de f au point L™ (uy, us).
Uy R

En déduire que Z induit une bijection de S sur I'ensemble S des éléments g de C* (R?, R), tels

que, pour tout élément (u;,us) de R?,

0
a—ugl(ul, Ug) =0.

d) En déduire S.

2-Déterminer ensemble S’ des éléments f de C' (R? R) tels que, pour tout élément (z,y)
de R?,

of of _

3-Déterminer 'ensemble S” des éléments f de C! (R? R) tels que, pour tout élément (x,y)
de R?,

) 0
28—52(:6,7;) + 38—5(%@/) = f.

9. On aurait pu prendre tout autre vecteur non colinéaire a .
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4-Déterminer I'ensemble S’ des éléments f de C* (R?, R) tels que, pour tout élément (z, v, 2)

de R?,
0 0 0
Lwwa+Lwva+ Lawa-o

4-UN EXEMPLE D’ORDRE 2 : L’EQUATION D’ONDE

Soit a un réel strictement positif. On se propose de déterminer ’ensemble S5 des éléments
f de C? (R? R) tels que, pour tout élément (z,y) de R?,
o0 f

e

1 o2f

a) Montrer qu'il existe des réels a, b, ¢, et d tels que pour tout application f élément de
C*(R%,R),
0?f  1%20%f
Das) (D =——— —==0.
wy Deaf) =55 =1 55

b) Déterminer 'ensemble Sy des éléments f de C' (R? R) tels que, D(qp) f = 0.
¢) Déterminer I'ensemble S.

III . EQUATONS AUX DERIVEES PARTIELLES LINEAIRES A COEFFI-
CIENTS NON CONSTANTS

On se propose de déterminer I'ensemble S des éléments f de C' (R? — {(0,0)}, R) tels que,
pour tout élément (z,y) de R* — {(0,0)},

0 0
ya_i(‘rvy> - xa_z(x>y) = 0.

Autrement dit on cherches les applications f telles qu’en tout point (x,y) de R*—{(0,0)}, la dér-
vée de f selon le vecteur (y, —x), D(y,—s) f(2,y) soit nulle. On intuite donc, que, pour que f soit
solution, il faut et ilsuffit qu’elle soit constante sur les orbites du champ U : (x,y) — (y,—x)
(lignes de champ); en effet la nulité de la dérivée selon le champ U, c’est-a-dire tangentiellement
aux lignes de champ traduit naturellement la constance le long de cette ligne. Or Les orbites du
champ sont les solutions du systéme
=y,
{ y =z,

ce sont donc des cercles de centre (0,0) (le champ U est orthoradial!). Ceci nous invite donc
a < passer en polaire >. On s’attend, d’aprés ce que nous avons dit, a ce que les éléments de
S soient des fonctions constantes sur ces cercles, c’est-a-dire, dont l'expression en polaires ne
dépend pas de 0. On va donc s’employer a étudier la dérivation < en 6 >

1- Désignons par U, 'ensemble R? privé de {(x,0),r € R_}, partie négative de Paxe des
z. On note Sy ensemble des éléments f de C' (U, R) tels que, pour tout élément (x,y) de U,

0 0
ya_£($7y> - wa_g(x7y) = 0.

a) Déterminer un ouvert 2 de R, x R, produit de deux intervalles I et J (Q =1 x J),
tel que Q — R?; (r,0) + (rcos®, rsin @) induise une bijection p de Q sur U.
Montrer que p et sa bijection réciproque sont C!.
b) Soit f un élement de C'(U, R). Posons f = f o p. Montrer que f € C'(€, R).
Soit
7 :CUR)—=CHQR); frs fop.

95



Montrer que Z est un isomorphisme.

c) Soit f un élément de C'(R? R), on note f Tapplication, f o p. Calculer, pour tout
0

élément (r,0) de €, —f(r, 0), en fonction des dérivées partielles de f au point (rcos@,rsind) .

ol .
En déduire que Z induit une bijection de Sy sur 'ensemble Sy des éléments g de C! (2, R),

tels que, pour tout élément (r,0) de Q,

%(7’, 9) =0.
d)Déterminer Syr. En déduire Sy

3— Déterminer ’ensemble S.

4~ Déterminer I'ensemble S’ des éléments f de C' (R? —{(0,0)},R) tels que, pour tout
élément (z,y) de R* —{(0,0)},

of _9f _ 29
yax(ﬂf,y) xay(x,y)—ﬂf + v~

5- Déterminer I'ensemble, noté Sj; des éléments f de C! (U, R) tels que, pour tout élément
(z,y) de U,

0 0
wa—i(ﬂf,y) + ya—‘;(x,y) =0.

6- Déterminer Uensemble, noté S}, des éléments f de C' (U, R) tels que, pour tout élément
(z,y) de U,

s + v ) =

7- Déterminer I'ensemble S’ des éléments f de C* (R?, R) tels que, pour tout élément (z,y)
de R?,

350 (,9) — 25 (2,) =0
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IV . FONCTIONS HARMONIQUES

Soit f une application d’un ouvert U de R™ & valeur réelles, de classe C2. On dit que f est
harmonique, si, par définition, Af = 0.

1- Soit n un élément de N*. Déterminer toute les applications de R™ — {(0,0,...,0} dans
R de classe C? harmoniques et radiales. Un application est dite radiale, si sa valeur en un point
m ne dépend que de la distance de m a (0,0, ...,0).

2- (5/2) Soit f une application de R? & valeur réelles, de classe C%, harmonique. Soit (a, b)
un point de R?. Pour tout élément R de R*. On note M(R), la < valeur moyenne >de f sur
le disque fermé de centre (a,b) et de rayon R, noté Dg, c’est-a-dire :

1 R 2w
M(R) = — (/ f(a—i—rcos@,b—l—rsin&)d@) rdr.
TR? J, 0
et 'on note m(R), la < valeur moyenne > de f sur le cercle de centre (a,b) et de rayon R,
noté Cg, c’est-a-dire :

1 2w

m(R) = R ), fla+ Rcosf,b+ Rsinf)Rd6.

a) Montrer que I'application m : R% — R; R~ m(R) est dérivable. Préciser sa dérivée.
b) Montrer que l'application ¢ : R% — R; R — Rm/(R) est dérivable. Montrer que sa
dérivée est nulle.
indication : On utilisera ’expression en polaire du laplacien.
c) Déduire de ce qui précéde, que pour tout élément R de R?,

m(R) = f(a,b).

d) Montrer que pour tout élément R de R*, M(R) = f(a,b).

37

Soit B la boule ouverte de R™ de centre (0,0,...0) et de rayon strictement positif R. Soit
f une fonction continue sur B nulle sur la sphére S((0,...,0), R) & valeurs réelles et dont la
restriction & B est de classe C2.

a) Montrer que si f admet en un point a de B un maximum local alors Af(a) < 0.

b) Montrer que si f s’annule en un point ¢ de B alors Af s’annule en un point b de B.

¢) Montrer que si Af < 0 sur B, alors f > 0 sur B.

1. Montrer que si Af <0 sur B, alors f > 0 sur B.

Indication : utiliser fo : B — R; o+ R? — |||
2. Montrer qu'il existe au plus une application g continue sur B nulle sur la sphére S((0, ...,0), R)
a valeurs réelles et dont la restriction & B est de classe C2, qui soit harmonique et qui
coincide sur S((0,...,0), R) avec une application continue donnée.

4— Soit D une partie de R? fermée, bornée et convexe. Soit f une application qui est la
restrictions & D d’une application de classe C? sur un ouvert U contenant D, & valeurs réelles,
on dira, pour faire court, que f est de classe C? sur D.

Soit E le sous-espace vectoriel des applications de classe C2 sur D nulles sur la frontiére de
D, a valeurs réelles (on ne demande pas de vérifier, fait trivial, qu’il s’agit d’un espace vectoriel).
Soit f un élément de E tel que Af = Af. On suppose que A > 0.

a) On suppose que f atteint sa borne supérieure en un point (o, yo) intérieur a D. Montrer

que f est I'application nulle sur D.

b) Que dire si f atteint sa borne inférieure en un point (g, yo) intérieur a D.

¢) En déduire que f est nulle.

L’existence de vecteurs propres pour [ associés a des valeurs propres strictement négatives est
un probléme délicat mais crucial dans les sciences.
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EXERCICE A.

1. Soit y une application de R dans C qui ne s’annule pas et qui est de classe C!. Montrer
qu’il existe une application de classe C°, © de R dans C telle que y = exp o ©.

2. Soit ® une application de R? dans C qui ne s’annule pas et de classe C!. Montrer qu’il
existe une application ¥ de classe C° de R? dans C telle que :

® =expo V.

3. Soit f une application de R? dans R de classe C2. On note D le disque fermé unité de
R? et I'on suppose que :

f(xay) = y2 - -127
pour tout (z,y) € R*\ D. Montrer que f admet un point critique.

EXERCICE B.
Soit I un intervalle de R et f € C'(I?,I) telle que pour tout (z,y) € I?,

flz,z) =x; f(z,y) = fly, 2).

1. Calculer df(x,z), pour tout x € I.
2. Soit S un segment de I tel que pour tout (z,y) € S?,

Montrer que f(S?%) C S2.
3. On suppose que f vérifie la condition du 2. et que ¢ est une application qui vérifie les

mémes hypothéses que f. Soit (a,b) un élément de S?. On définit par les relations de
récurrences suivantes des suites (Z,)nen €t (Zn, Yn)neN -

To = @, Yo = buvn € N7 ('rnJrl’ yn+1) = (f(xnv yn)ag(xn7yn)>
Montrer que la suite (2, ¥, )nen converge.

EXERCICE C.
Soit f une application de R" dans R de classe C* telle que f(Orn) = 0 et df(Orn) = Ozmrn R)-
L’espace vectoriel R™ sera muni de sa structure euclidienne canonique.
Montrer qu’il existe une application h de R™ dans S, (R), de classe C! telle que pour tout
X e R",
J(X) = (h(X)(X)|X).
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LYCEE KERICHEN 2025-2026 MP*

Travaux dirigés n° 14

Moyennes pondérées d’applications, densité des polyndémes
ou le retour de Cesaro

I. Convolution par des noyaux, théoréme de Weierstrass
Pour tout entier n > 1 on définit :

P, : R—= R,z a,(l —xQ)”,

1

ouna, =-r——.
n f_ll(l—xz)"dm

1. Calculer a,, pour tout n € N*. Tracer I’allure du graphe de la restriction de P, a [0, 1],

pour quelques valeurs de n...

2. Pour tout « €0, 1[, on note K, = [—1, —a] U [«, 1]. Montrer que pour tout « €]0, 1],

sup [Py ()| — 0,

r€Kq n——+o0o

On justifiera au préalable 'existence de ces bornes supérieures.

3. Soit f une application de [0,1] dans R, continue et telle que f(0) = f(1) = 0. On
prolonge cette application en une application f a [—1,2] en posant f(x) = 0, pour tout
xr € [—1,2]\ [0,1]. et on défini pour tout entier n > 1, et tout z € [0, 1],

Qn(z) = /_1 f(x + )P, (t)dt.

(a) Montrer que (Qy)nen est une suite d’applications de [0, 1] dans R polynomiales.
(b) Montrer que ||@Q, — fllco — 0.
n—-+o0o
(c¢) Démontrer le théoréme de Weierstrass.
IT. Théoréme de Weierstrass par les polynémes de Bernstein
On se propose de donner une preuve constructive du théoréme de Weiserstrass, d’inspiration
probabiliste, due a Bernstein, qui date du tout début de XX°®. siécle.
1. Montrer que 'on ne restreint pas la généralité en prenant a = 0 et b = 1. Ce qui sera
fait dans la suite.

On considére f une application de [0, 1] dans R continue. Pour tout entier n > 1 on
considére le polynoéme :

B.(f) = ; ( Z ) f (%) XH(1— X)) F,

n® polynéme de Bernstein associé a f.

2. Soient z un élément de [0, 1], n un entier naturel et Y une variable aléatoire réelle définie
sur (€2, P) qui suit une loi binomiale de paramétre (n,z) : Y ~ B(n,p). Montrer que
P(Y = k) est maximum pour k = |(n + 1)z]

On considére dans la suite un élément = de [0, 1] et (X, ),en+ une suite de variables
aléatoires de Bernoulli mutuellement indépendantes, toutes de méme paramétre x. No-
tons pour tout entier n > 1, .5, = X; + Xo +--- + X,,.
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3. Donner pour tout entier n > 1, I'espérance de la variable aléatoire f (%), au moyen des
polynomes de Bernstein associés a f. Donner sa valeur dans le cas particulier ot f est
I'identité.

4. Donner la variance de Sn—”

5. Montrer que pour tout entier n > 1,

6. Pour tout réel h > 0, on pose :

w(h) = sup{|f(z1) = f(y2)l, (21, 22) € [0,1]% et |zy — x5 < A},

Ah:{S” gh}.

— —x
Montrer que pour tout entier n > 1 et tout réel h > 0,

(@) = Ba(f)(2)] < 2P(An)[| flloc + P(An)w(h)

7. Soit n un réel strictement positif. Montrer que pour tout entier n > 1,

- 1
P (ATI) < 47”72.

On peut utiliser 'inégalité de Bienaymé-Tchebychev.
8. Conclure.

III. Théoréme de Weierstrass trigonométrique

le théoreme de Weierstrass trigonométrique n’est pas au programme. Il donne facilement le
théoreme de Weierstrass, hélas ce dernier est imuissant a nous livrer le théoreme trigonomé-
trique.

Soit E 'espace vectoriel des applications continues sur [0, 1] & valeurs réelles ou complexes.
On le munit de la norme ||.||__, définie par , pour tout élément f de E, ||f||. = sup [f(t)].
te[0,1]

On note P le sous-espace vectoriel de E constitué des fonctions polynomiales.

Soit F' I'espace des fonctions continues sur R, 2m-périodiques, & valeurs complexes. On le
munit de la norme encore notée |||, définie par, pour tout élément g de F, ||g|| ., = sup|g(t)|.
teR

Pour tout entier naturel n, on note T, le sous-espace vectoriel de F engendré par les fonctions
er : t— e ol les nombres entiers k vérifient —n < k < n.

2n
t
Soit ¢, la fonction définie sur R par : ¢,(t) = a, (cos §> , le réel a, étant tel que

/W on(t) dt = 1.

—T

1. (a) Montrer que ¢, est un élément de T,.
T
(b) Prouver que, pour tout élément u de [O, 5} , cos?u > 1 —sinu. En déduire que, pour

/2 1 n+1
tout entier n, / (cosu)®" ™ du > —— puis que a, < ;
0 n+1

(c) Soit ¢ un réel tel que 0 < 0 < 7; montrer : lim sup p,(t) =0.
n—-+o0o 5§tf7"
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2. Soit g un élément de F. Pour tout entier n > 0, on note @), la fonction définie sur R
par la relation :

Qulu) = / " ou(t)glu— 1) dt.

—T

(a) Etablir la relation :

™

Qulu) = / onlu — t)g(t) dt.

En déduire que @),, appartient a T,,.
(b) Soit toujours § un réel tel que 0 < § < 7; montrer I'inégalité :

l9(u) — Qu(u)| < sup |g(u) — g(u —t)| + 47 (|9l Sup ©n(t).

[t|<é

(c) En déduire que lim |g— @,/ =0.
n—-+0o0o

(d) On suppose que g est une fonction paire; montrer que @, est une fonction paire
et en déduire qu’il existe un élément P, de P, de degré au plus égal a n, tel que

Qn(u) = Py(cosu).

3. (a) Soit f un élément de E. Prouver qu’il existe une suite (P,) d’éléments de P telle
que lim |[f = P,|,, = 0. On prolongera f en une fonction paire, notée f, et on
n—-+oo

introduira g(u) = f(cosu).
En déduire que P est dense dans E relativement a la norme uniforme ||.|| .

(b) Montrer que, pour tout élément f de E, on a linégalité || f||, < || fll... En déduire
que P est également dense dans E relativement a la norme ||.||,.
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LYCEE KERICHEN 2025-2026 MP*

Travaux dirigés n°® 15
I. Groupe cyclique

Soit GG un groupe cyclique a n éléments.
1. Montrer que tout sous-groupe de G est cyclique et que son cardinal divise n.

2. Soit d un diviseur positif de n, n s’écrit donc n = ¢q.d avec ¢ élément N*. Montrer qu’il
existe un unique sous-groupe de G a d éléments.

IT. Groupe et ordre des éléments Soit (G, ) un groupe fini et non trivial tel que pour
tout € G, 2% = eg.

1. Montrer que (G, *) est abelien.

2. Montrer que (G,*) est isomorphe a ((Z/2Z)", +).

On proposera deux méthodes.

3. Soient g et ¢’ des éléments d’un groupe (G, +) commutaitif, d’ordres respectifs m et m/'.
On suppose que m et m’ sont premiers entre eux. Montrer que

w(g+g')=mm'
Si l’on ne suppose plus m et m’ premiers entre eux, a-t-on w(g+g¢’') = ppem(m,m’) 7
4. Soient p et ¢ deux nombre premiers distincts et G un groupe abélien de cardinal pq.
Montrer que G est cyclique.
5. Soit G un groupe de cardinal 2p avec p premier. Montrer que G contient un élément
d’ordre p.
ITT Indicatrice d’Euler
On appelle indicatrice d’Euler d’un entier naturel non nul n, le nombre d’éléments de
{1,...,n} premiers avec n.
On se propose de retrouver, par une méthode probabiliste le résultat qui sera dans lecours

sur I'indicatrice d’Euler suivant :
Soit n un entier supérieur ou égal a 2, dont la décomposition en nombres premiers s’écrit :

—_ aq o2 Qf
n=p Py . --Pr>

ol p1,po, ..., pr sont k nombres premiers deux a deux distincts et aq, ao, ..., ap , des éléments
de N*. Alors
i 1
¢ (n) :nH (1 — —).
- bi
=1
On munit {1,...,n} de la probabilité uniforme notée P.
1. Soit d un diviseur de n et Ay I'événement {k € {1,...,n},d|k}. Déterminer P(A,)
2. Soit dy,ds, ..., d, des diviseurs de n premiers entre eux deux & deux. Montrer que les
événements Ay, Ag,, ..., Ag, sont mutuellement indépendants.

3. Conclure.

4. Soit a un entier supérieur ou égal & 1. Etudier la suite (z,),en définie par récurrence
par :

To = a,
Tni1 = @(x,), pour tout n € N
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IV Valuation —

Soit p un nombre premier.

1. Montrer que, pour tout (k,n) élément de N* x N*,

€ bl =k = || - | 2]

2. Justifier la formule suivante due & LEGENDRE : pour tout entier naturel n,

o) =Y FJ .

k
keN* p

V. Exposant d’un groupe
Dans ce paragraphe (G,+) désignera un groupe abélien fini, dont le neutre sera noté 0.
L’ordre d’un élément g de G sera noté w(g).

1. Soient g et ¢’ des éléments de G d’ordres respectifs m et m’/. On suppose que m et m’
sont premiers entre eux. Montrer que

w(g+g)=mm'
Si I’on ne suppose plus m et m’ premiers entre eux, a-t-on w(g+g') = ppem(m,m’) ?

2. Soit a et b des entiers strictements positifs. Montrer 'existence de a’ et b’ entiers égale-
ment strictement positifs tels que on ait :
— Les relations de divisibilté o'|a, b'|b ;
— pged(a't) =1
— ppem(a, b) = a'b'.
Indication : On examinera les décompositions en facteurs premiers de a et b.

3. On appelle exposant du groupe G le plus petit commun multiple e des ordres des ses
éléments. Montrer que G admet un élément z ayant pour ordre 'exposant du groupe G.

4. Montrer que le groupe multiplicatif d’'un corps fini est cyclique.

VI Groupes a 6 éléments
Soit (G, *) un groupe a 6 éléments. On suppose que G n’admet pas d’élément d’ordre 6,
autrement dit que G n’est pas cyclique.

1. Montrer que tout élément de G est d’ordre 2 ou 3.
Montrer que G posséde un élément a d’ordre 3.

Montrer que (a) est un sous-groupe distingué.

Montrer que G est de la forme {e,a,a®} U {b,b* a,b* a*}.
Montrer que bx b & {b,b* a,bx a?}.

Montrer que bx b = e.

En déduire que G est isomorphe & S5 9.

en déduire a isomorphisme prés, tous les groupes d’ordre 6.

© 0 N e Ot e W

Déterminer & isomorphisme prés, tout les groupes d’ordre inférieur ou égal a 7.

10. donc d’apres ’exercice précédent & Ds
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VII Groupe des isométries du tétraédre 5/2

1. Montrer que dans &3, espace affine euclidien de dimension 3, il existe des quadruplets
(A, B,C, D) constitués de 4 points distincts équidistants, c¢’est-a-dire tels que : AB =
AC =AD =BC =BD =CD.

De tels quadruplets sont appelés tétraédres réguliers.

2. Soit (A, B, C, D) un tétraédre régulier noté 7. On désigne par Z 'ensemble des isométries
de l'espace laissant globalement invariant 7.
Montrer que Z est un sous-groupe du groupe des isométries de 1'espace.

3. Soit f un élément de Z. Nous lui associerons I'élément o de I’ensemble des applications
de {1,2,3,4} dans lui-méme, défini par, pour tout élément i de {1,2, 3,4}, f(A4;) = Ag, ).
Montrer que o est un élément du groupe symétrique (Sy, o).

4. Montrer que l'application 0 : T — &4; f — oy est un morphisme injectif du groupe
(Z,0) dans le groupe (&y,o0).

5. Soient ¢ et j des éléments de {1,2,3,4}, montrer que la transposition (i,j) est dans
I'image de o. En déduire que o est un isomorphisme du groupe (Z,o) sur le groupe
(S4,0)..

6. Montrer que ’ensemble Z1 des isométries positives (déplacements) laissant globalement
invariant 7', est un sous groupe de (Z,0). Montrer que (Z*,0) est isomorphe au groupe
alterné (Ag,o0) .

7. Enumérer les éléments de Z+.

8. Montrer que I'ensemble des éléments de ZT laissant A; invariant est un sous groupe
d’ordre 3 de (ZT,0).

9. Soit Dy la droite joignant les milieux de (A;, Ay) et de (A3, Ay), soit Dy la droite joignant
les milieux de (A, A3) et de (Ag, Ay), soit D3 la droite joignant les milieux de (Aj, Ay)
et de (As, A3), soit enfin pour i = 1,2,3, R; le retournement par rapport a la droite D;.
Montrer que {R;, R, R3} engendre un groupe a 4 éléments noté H.
Montrer que pour tout élément h de H et pour tout élément g de ZT, go ho g~ ! est
élément de H ; on dit que H est distingué. En déduire que A4 a un sous-groupe distingué
non trivial.

VIII. Simplicité de A;

Contrairement a Ay, qui, nous venons de le voir, posséde un sous-groupe distingué non
trivial, As n’en posséde pas. C’est un obstacle a la possibilité de résoudre ’équation du 5° degré
par radical.

Un sous groupe H d’un groupe (G, ) est dit distingué si, par définition, pour tout élément
gde G, g* H g~ ' C H. Nous nous proposons de montrer que (As,o) n’a pas de sous-groupe
distingué non trivial (i.e. distinct de {id} ou de Aj; ).

1. Combien contient-il de cycles de longueur 3, de produits de deux transpositions a sup-
ports disjoints, de 5 cycles ?

2. Calculer les produits '*

(1,2,3,4,5)7"(3,4,5) (1,2,3,4,5) (3,4,5) ",
(1,2)(3,4) (3,4,5) (1,2) (3,4) (3,4,5)".

11. Pour alléger I’écriture, on ne note pas la loi de composition, comme cela se fait souvent.
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3. Montrer que tout sous-groupes distingué de (Ajs, o), non réduit a {id} contient un cycle
de longueur 3.

4. Calculer les produits, pour k élément de {4,5},
(1,2) (3,k) (2,1,3) (1,2) (3,k) .

5. Conclure...
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CORRECTION DE II.
1. Posons k =w(g+¢'). Alors k- (g + ¢') = 0 et donc

O=m-(k-(9+9)) =k (m-g)+(km)-g.

Soit

0=mk-(g+g)) =(km) g
Donc m’ divise km et comme m et m’ sont premiers entre eux, le théoréme de Gauss
affirme que m’ divise k. Par symétrie des roles de m et m/, on a aussi que m divise k.

Finalement, par interprimalité de m et m' : mm/|k.
Mais le groupe G étant abelien, mm' - (g +¢') = mm’ - g+ mm’ - ¢’ et donc :

mm' - (g+¢g)=m'-(m-g)+m-(m'-¢)=m-0+m-0=0.
Donc k divise mm’. Au total mm’ = k, soit :

w(gw(g') = wlg+4¢).

Supposons ¢ distinct de 0 de sorte que son ordre soit strictement supérieur a 1. On a
immeédiatement que —g est aussi d’orde m. Mais g — g = 0, donc g — ¢’ est d’ordre 1,
tandis que ppem(w(g),w(—g)) = m # 1.
2. Soit a et b des entiers strictements positifs.
Pour tout nombre premier p posons :

vp(a)  sivp(a) > vy(d), _J up(b) sivp(b) > vp(a),
a:{O sinon, ’51”_{0

P sinon,

et a' = [] po; b = J] pP. Ainsi définis, o’ et b’ satisfont les conditions exigées.
peEP peEP
3. On désignera par e I'exposant de G.

Soit z un élément de G d’ordre maximum (il en existe car G est fini). Notons a = w(z)
et prenons un élément x de G dont nous noterons b ’ordre. Définisons a’ et ' comme a
la question précédente ainsi que 2’ = (%) vz ol = (5) ..

D’abord notons que w(z’) = . En effet d’une part o’ - ((£) - z) = a- 2 = 0. D’autre
part si k est un entier tel que 0 < k < d, alors k - ((%) -z) = (k:%) -z # 0, puisque
0 < (k%) < a=w(z). De méme w(z') = V.

Les deux précédentes questions nous disent alors que w(z’z2’) = a'b’ = ppem(a, b),
mais par définition de a, w(2’'z") < a et donc :

ppcm(a, b) = a.

Donc a est un multiple commun des ordres de tous les éléments du groupe, étant lui-
méme 'ordre d’un élément, c’est le ppcm des ordres des éléments du groupe.
Concluons : e = w(z).
4. Soit (K, +, x) un corps fini. Posons G = K \ {0k} et e 'exposant du groupe (G, x)
Pour tout élément x de G on a ¢ = 1. Donc G est inclus dans 'ensemble des racines
du polynéme de K[X],
X — 1.
Tout repose alors sur le point suivant. La division euclidienne dont la construction est

la méme dans K que dans tout sous-corps de C. L’intégrité de K fait alors que tout
polynéme non nul de degré n a au plus n racines. Voyons cela.
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e Le résultat est instantanné pour n = 0.

e Supposons le résultat vrai pour un entier n et considérons P un élément de K[X]
de degré n + 1. Soit P n’a pas de racines et il en donc moins que n + 1, soit il en a et
considérons a I'une d’elles. Par division euclidienne de P par (X —a), on a immédiatement

P=(X-aQ,

avec @ un élément de K[X]| de degré n, le reste est en effet nul comme le montre la
substitution de a a X. L’hypothése faite assure que ) a au plus n racines, mais I'intégrité
de K assure que toute racine de P est a ou une racine de ), donc P a au plus n + 1
racines.

Voici le résultat prouvé par récurrence.
Donc le cardinal de G est majoré par le degré de X° — 1.

|G| <e.
Mais la question précédente fournit un élément z d’ordre e, donc
e=|<z>|<|G).

Des deux inégalités vient I'égalité |G| = e puis G =< z >. Le groupe G est donc
cyclique.
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