
Lycée Kerichen 2025-2026 MP∗

Travaux dirigés no 1

I. Matrices et endomorphismes nilpotents
Soit n un entier strictement positif et M une matrice d'ordre n à coe�cients dans un sous-

corpsK de C. Nous dirons queM est nilpotente si, par dé�nition, il existe un entier strictement
positif, k, tel que : Mk = 0n. Quand M est nilpotente, on appelle ordre de nilpotence de M le
plus petit élément de l'ensemble des entiers strictement positif k , tels que Mk = 0n.

Soit E un espace vectoriel sur K de dimension n, et u un endomorphisme de E. Nous
dirons que u est nilpotente si, par dé�nition, il existe un entier strictement positif, k, tel que :
uk = 0L(E). Quand u est nilpotente on appelle ordre de nilpotence de u le plus petit élément de
l'ensemble des entiers strictement positifs k, tels que uk = 0L(E).

1. Montrer que siM est la matrice de u dans une base de E, alorsM est nilpotente d'ordre
p si et seulement si u est nipotent d'ordre p.

2. Nous supposons dans cette question que u est de rang 1, montrer que u est diagonalisable
ou bien est nilpotent.

3. Pour tout entier naturel i on pose Ni = Ker(ui) et Ii = Im(ui).

(a) Montrer que les suites (Ni)i∈N et (Ii)i∈N sont monotones, pour l'inclusion, on préci-
sera leur monotonie.

(b) Montrer qu'il existe un entier naturel j tel que Nj = Nj+1. Montre alors que pour
tout entier i ≥ j, Ni = Ni+1 et Ii = Ii+1.

(c) Soit j un entier naturel non nul. Montrer queNj = Nj+1 si et seulement siNj⊕Ij = E.

(d) On suppose u nilpotent d'ordre p. On note j0 le plus petit entier j tel que Nj = Nj+1,
que vaut j0 et Nj0 .

4. Montrer que siM est triangulaire supérieure stricte alors elle est nilpotente. Donner une
matrice nilpotente qui n'est ni triangulaire supérieure stricte ni triangulaire inférieure
stricte.

5. Nous supposons que M est nilpotent d'ordre n (n désigne toujours la dimension de E).

Montrer que M est semblable à la matrice


0 0 · · · · · · 0

1 0
. . . 0

0 1 0
. . .

...
...

. . . . . . . . . 0
0 · · · 0 1 0

 .

6. Montrer que l'élément de M4(R), 
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0


est nilpotent d'ordre 2. Déterminer une autre élément de M4(R), nilpotent d'ordre 2,
non semblable au précédent.

La �n du I est réservée à un public averti
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Notons pour tout entier k ≥ 1, Jk l'élément 1 de Mk(K)
0 0 · · · · · · 0

1 0
. . . 0

0 1 0
. . .

...
...

. . . . . . . . . 0
0 · · · 0 1 0


et convenons que J1 = O1.

Figure 1 � Camille Jordan 1838�1922.
Professeur à l'École polytechnique puis au Collège de France ; on lui doit en autre la forme réduite

des matrices qui porte son nom ainsi que la notion d'arc récti�able.

Nous supposons que M est nilpotente d'ordre p ≥ 2. On prend E = Mn,1(K) et l'on
note u l'endomorphisme de E canoniquement associé à M . Par r nous désignerons le
rang de M .

7. Montrer que p ≤ n.

8. Cas p = 2
On suppose dans cette question que p = 2.

(a) Montrer que 2r ≤ n.
(b) Montrer que M est semblable à la matrice dig(J2, J2, .....J2︸ ︷︷ ︸

r termes

, 0n−2r)

9. Forme de Jordan des matrices nilpotentes
On revient au cas général.

(a) Montrer que Im(u) est stable par u et que l'endomorphisme induit par u sur Im(u)
est nilpotent d'ordre p′ à déterminer.

(b) Montrer qu'il existe un entier naturel k ≥ 1, un élément (α1, α2, ..., αk) de (N∗)k

véri�ant :
α1 ≤ α2 ≤ ... ≤ αk, et α1 + α2 + ...+ αk = n,

1. Le J est en l'honneur de Camille Jordan (1838�1922), et cette notation ne doit pas être confondue avec
celle du cours Jr pour l'élément de Mn(R), diag(Ir, On−r)
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tel que M soit semblable à la matrice

diag(Jα1 , Jα2 , ..., Jαk
).

Indication : raisonner par récurence sur l'ordre de nilpotence de u.

10. Unicité de la forme de Jordan

(a) Déterminer pout tout entier j ≥ 2 et tout entier α ≥ 1 déterminer de Jα
j. En déduire

la valeur de α1.
(b) On suppose qu'il existe un entier naturel h ≥ 1, un élément (β1, β2, ..., βh) de (N∗)h

véri�ant :
β1 ≤ β2 ≤ ... ≤ βh, et β1 + β2 + ...+ βh = n,

tel que M soit semblable à la matrice

diag(Jβ1 , Jβ2 , ..., Jβh).

Montrer que h = k puis que (β1, β2, ..., βh) = (α1, α2, ..., αk).

Indication : étudier successivement le rang de M0,M1, . . . ,Mp−1

11. Montrer que M , 2M et tM sont semblables.

Nous reprendrons cette étude dans un prochain T.D. en vue d'établir la réduction de Jordan
d'une matrice quelconque

II. Matrices semblables

1. Les matrices suivantes, éléments de M3(R) sont-elles semblables ?

A :=

 1 1 2
−2 0 2
−3 4 −1

 , B :=

 0 1 1
−2 0 1
1 −3 2

 .

2. Même question pour

C :=

 1 1 −1
0 0 0
1 4 −1

 , D :=

 0 1 1
−2 0 1
1 −3 0

 .

3. Même question pour les éléments de M4(R) :

E :=


1 2 3 4
0 1 2 3
0 0 1 2
0 0 0 1

 , F :=


1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

 .

4. Même question pour les éléments de M3(R) :

G :=

 1 1 1
0 0 0
−1 −1 −1

 , H :=

 0 1 0
0 0 0
0 0 0

 .

G et H sont-elles semblables ?

5. Montrer que E est semblable à sa transposée.
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III. Equivalence à Jr

1. Montrer que tout hyperplan de Mn(R) rencontre GLn(R).

2. Pour tout couple (A,B) d'éléments de Mn(R) on note

PA,B : R → R ; λ 7→ det(B + λA).

(a) Montrer que pour tout couple (A,B) d'éléments de Mn(R), PA,B est une application
polynomiale.

(b) Soit A ∈ Mn(R). Montrer que rg(A) = max{degPA,B|B ∈ Mn(R)}.
(c) Montrer qu'un endomorphisme de Mn(R) qui conserve le déterminant conserve le

rang.

IV. Espace vectoriel de matrices nilpotentes, pour 5/2
Soit n ∈ N∗.

1. Déterminer les éléments nilpotents de Sn(R).

2. Déterminer la plus grande dimension d'un sous-espace vectoriel de Mn(R) ne contenant
que des matrices nilpotentes.

3. Déterminer la plus grande dimension d'un sous-espace vectoriel de Mn(R) ne contenant
que des matrices diagonalisables.

V. Sous-espace vectoriel de matrices
Par n on désigne un entier naturel non nul. Les éléments de Rn seront notés en colonne.
On s'intéresse aux sous-espaces vectoriels F de Mn(R) tels que F \ {On} soit inclus dans

GLn(R).

1. On suppose dans cette question et seulement dans cette question que n = 2. Exhiber
un sous-espace vectoriel F de M2(R) de dimension 2 tels que F \ {O2} soit inclus dans
GL2(R).

Dans toute la suite F désigne un sous-espaces vectoriels de Mn(R) tels que F\{On}
soit inclus dans GLn(R).

2. (a) En considérant
ϕ : F → Rn ; M 7→MX0,

où X0 est un élément non nul de Rn, montrer que dim(F) ≤ n.
(b) Retrouver ce résultat en considérant l'ensemble H des éléments de Mn(R) dont la

première colonne est nulle.

3. (5/2 très provisoirement...) On suppose que n est impaire. Montrer que dimF ≤ 1.

⋆ ⋆
⋆

VI. Conjugaisons isométriques pour la norme de Frobenius
Par n sera désigné un entier naturel supérieur ou égal à 2.

1. Montrer que l'application

Φ : Mn(R) → R ; M 7→
√
Tr(tMM)

est une norme.

2. Soient i et j des éléments de {1, ..., n} et A ∈ Mn(R). Calculer Ei,jA et AEi,j.

3. Déterminer les éléments P de GLn(R) tels que pour tout M ∈ Mn(R),

Φ(PMP−1) = Φ(M).
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Lycée Kerichen 2025-2026 MP∗

Travaux dirigés no 2

I. PRÉLUDE

Soient A un élément de R[X] et B un élément de R[X] de degré n + 1, scindé à racines
simples. Soit l'application φ de R[X]n dans lui-même qui à un polynôme P , élément de R[X]n,
associe le reste dans la division euclidienne de AP par B.

1. Montrer que φ est un endomorphisme.

2. Déterminer les valeurs propres et les espaces propres de φ.

II. MATRICES COMPAGNONS
Nous allons étudier des matrices d'une forme particulière qui jouent, comme nous le verrons,

un rôle important en mathématiques. Nous verrons leur utilisation dans une preuve du théorème
de Cayley-Hamilton. Elles se rencontrent également dans l'étude des équations di�érentielles
linéaire d'ordre n à coe�cients constants.

ParK on désigne indi�éremment le corps des nombres complexes ou celui des nombres réels.
Soient n un réel supérieur ou égal à 2 et a0, a1, . . . an−1 des éléments du corps K. On désigne
par A l'élément de Mn(K) suivant

A =



0 1 0 . . . . . . 0
0 0 1 0 . . . 0
...

. . . . . . . . .
...

...
. . . 1 0

0 . . . . . . . . . 0 1
a0 a1 . . . . . . an−2 an−1


.

1. Calculer le polynôme caractéristique de la matrice A.

2. Soit λ une valeur propre de A. Déterminer Eλ l'espace propre associé.

3. On suppose ue K = C. Montrer que la matrice A est diagonalisable si et seulement si
toutes ses valeurs propres sont d'ordre de multiplicité 1.

4. Application aux suites à récurrence linéaire. Soit l'ensemble

S =
{
u ∈ CN|∀k ∈ N;uk+n + an−1uk+n−1 + ...+ a1uk+1 + a0uk = 0

}
.

Soit u ∈ CN . On pose U la suite à valeurs dans Mn,1(C) dont le terme d'indice k est
(uk, uk+1, ..., uk+n−1)

⊤.

(a) Donner une condition nécessaire et su�sante portant sur U pour que u soit élément
de S.

(b) On suppose A diagonalisable. Déterminer S. Montrer que S est un sous-espace vec-
toriel de CN dont on précisera la dimension et dont on fournira un base.

III. Théorème de Kronecker (5/2)
Les 3/2 admettront le résultat suivant qui sera vu très prochainement. Si le spectre d'un

élément M de Mn(C) est {λ1, λ2, ...λp}, alors celui de Mk est, pour tout entier k ≥ 0,
{λk1, λ2, ..., λkp}. Il le véri�erons pour une matrice diagonalisable cependant.
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1. Soient z1, z2,...,zn des nombres complexes, et P le polynôme

P = (X − z1)(X − z2) . . . (X − zn)

On suppose que P est à coe�cients entier. Soit un entier q ≥ 2. Montrer que

Q = (X − zq1)(X − zq2) . . . (X − zqn).

est à coe�cients entiers.

On se propose de montrer le théorème de Kronecker : Soit P un polynôme unitaire de
Z[X] dont les racines complexes sont toutes de module inférieur ou égal à 1. on supppose
de plus que P (0) ̸= 0. Montrer que toutes les racines de P sont des racines de l'unité.

2. Exprimer les coe�cients de P au moyen de ses racines.

3. Montrer que l'ensemble de tels polynômes est �ni.

4. On note z1, z2,...zn les racines de P . Montrer que

(X − zk1 )(X − zk2 )...(X − zkn)

véri�e pour tout k ∈ N∗, les propriétés de P .

5. Montrer que toutes les racines de P sont des racines de l'unité.

IV. ENDOMORPHISME DE Mn(R)
Soit A un élément de Mn(R).
Soit l'application

ΦA : Mn(C) → Mn(C) ; M 7→ AM.

1. Montrer que ΦA est un endomorphisme.

2. Donner le rang de ΦA en fonction de celui de A.

3. En déduire que ΦA est diagonalisable si et seulement si A l'est.

4. (5/2) Retrouver ce résultat grâce au cours sur les polynômes d'endomorphisme.

5. Donner la trace de ΦA.

6. Donner χΦA
.

Soient A et B des éléments de Mn(C). On se propose de montrer que l'équation
d'inconnue X,

AX −XB = Y (1)

admet une solution dans Mn(C), quel que soit l'élément Y de Mn(C), dans Mn(C) si
et seulement si A et B n'ont pas de valeurs propre commune.

7. On suppose A et B sans valeur propre commune. On considère l'endomorphisme de
Mn(C),

Φ : X 7→ AX −XB.

(a) Montrer que χA(B) et χB(A) sont inverisbles.
(b) Soit Z un élément du noyau de Φ. Montrer que χB(A)Z = ZχB(B). En déduire que

Φ est injectif.
(c) Montrer que pour tout Y ∈ Mn(C)l'équation (1) admet une solution.

8. On suppose que A et B ont une valeur propre λ en commun. Et soit X1 (resp. X2) un
vecteur propre de A (resp. B) associé à λ.
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(a) En considérant M = X1X
⊤
2 montrer que le noyau de Φ est non nul.

(b) Montrer qu'il existe des éléments Y ∈ Mn(C) tels que l'équation (1) n'admette pas
de solution.

9. Conclure.

Par A on désigne toujours un élément de Mn(C). On considère l'endomorphisme de
Mn(C),

ΨA : X 7→ AXA.

10. Montrer que ΨA est diagonalisable si et seulement si A est diagonalisable.

11. En supposant A réelle, montrer que l'endomorphisme de Mn(R) induit par ΨA est une
isométie pour la norme euclidienne canonique, si et seulement si A est orthogonale.

VI. MÉTHODE DES PUISSANCES POUR LE CALCUL DE VALEURS PROPRES
Par n on désigne un entier supérieur ou égal à 2. Les éléments de Rn sont notés en colonne.

et Rn est muni de la norme euclidienne canonique, notée ∥ · ∥.
Soit M un élément de Mn(R) ayant n valeurs propres réelles distinctes λ1, λ2,...,λn non

nulles dont les modules sont classés dans l'ordre inverse :

0 < |λn| < |λn−1| < ... < |λ2| < |λ1|

Pour i = 1, . . . , n Vi désigne un vecteur propre unitaire associé à λi.
On se propose de calculer numériquement λ1 et V1
Soit A un élément de Rn qui n'est pas élément de vect(V2, V3, ..., Vn)

2

1. Montrer que (V1, V2, ..., Vn) est une base de Rn. On note ai la ie coordonnée de A dans
la base (V1, V2, ..., Vn), pour i = 1, 2, ..., n.

2. On dé�nit les suites (Xk)k∈N (Yk)k∈N et (rk)k∈N par :
X(0) = A, Y0 = X0

∥X0∥ , r0 =
t Y0MY0 et pour tout entier k ≥ 1,

Xk =M(Yk−1),
Yk =

Xk

∥Xk∥
,

r(k) =t YkMYk.

Exprimer Yk, pour tout entier naturel k au moyen des ai et de ∥X1∥X2∥...∥Xk∥.
3. Etudier le comportement de Yk lorsque k tend vers +∞.

4. Montrer que rk tend vers λ1 lorsque k tend vers +∞.

2. Il y a très peu de risque que A, choisi au hasard ne véri�e pas cette condition et les erreurs d'arrondie de
tout manière sont ici une chance

7



VII. LEMME DE SCHUR (pour un public averti)
Notons A = Mn(C) et E = Cn. Soit G un sous-groupe �ni de GLn(C). Pour tout B ∈ G,

on note i(B)l'application :

i(B) :

{
Mn(C) −→ Mn(C)
M 7−→ BMB−1

Soit F un sous-espace vectoriel de E. On dit que F est stable par G si quels que soientM ∈ G,
X ∈ F , on aMX ∈ F et on dit que E est irréductible pour G si ses seuls sous-espaces stables
par G sont E et {0E}.

1. Montrer que i : B 7−→ i(B) est un morphisme de groupes de G dans GL(Mn(C)), et
que i est injectif si et seulement si G ne contient pas d'homothéties autres que l'identité.

On note G̃ l'image par i de G et Mn(C)G̃ l'ensemble des matrices M ∈ A telles que
i(B)(M) =M pour tout B dans G.

2. Soit M ∈ Mn(C)G̃. Démontrer que ker(M) et im(M) sont des sous-espaces stables par
G.

3. On suppose que E est irréductible pour G. SoitM ∈ Mn(C)G̃ ; démontrer queM est soit
nulle, soit inversible. En déduire que Mn(C)G̃ est un sous-espace vectoriel de Mn(C)
de dimension 1.

4. Soient M,N ∈ Mn(C). On considère l'endomorphisme de Mn(C) suivant,

Φ : X 7−→MXN

Démontrer que Tr(Φ) = Tr(M)Tr(N).

5. Soit P =
1

|G|
∑
B∈G

B.

(a) Démontrer que P 2 = P . En déduire que P est diagonalisable.
(b) On note EG l'ensemble des éléments de E invariant par tout élément de G :

EG = {X ∈ E|∀M ∈ G,MX = X}.

Démontrer que Im(P) = EG et en déduire que dim
(
EG
)
= 1

|G|

∑
B∈G

trB.

6. Démontrer que dim
(
Mn(C)G̃

)
=

1

|G|
∑
B∈G

tr
(
B−1

)
tr(B). On pourra considérer d'abord

le cas où i est injectif.

⋆ ⋆
⋆
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LYCÉE KERICHEN 2025-2026 MP∗

Travaux dirigés no 4

Par K on désigne le corps des réels ou celui des complexes.

I. NORMES np SUR Kn

Soient (a1, . . . , an) et (b1, . . . , bn) des n-uplet de réels positifs.
Soient p et q des réels conjugués, c'est-à-dire tels que

1

p
+

1

q
= 1.

1. Montrer que pour tout a et tout b réels positifs,

ab ≤ ap

p
+
bq

q
(inégalité de Young).

Cette inégalité trouvera place dans le cours sur les fonctions convexes.

Pour k ∈ R∗
+, on considère

ϕk : R+ → R ; t 7→
{

exp(k ln(t) si t > 0,
0 sinon,

cette application est continue et pour tout réel t ≥ 0, la quantité ϕk(t) sera noté simple-
ment tk.

2. Montrer que :

n∑
i=1

aibi ≤

(
n∑
i=1

api

) 1
p
(

n∑
i=1

bqi

) 1
q

(inégalité de Hölder).

Que dire du cas p = q = 2 ?

3. En déduire que pour tout réel p strictement supérieurs à 1,(
n∑
i=1

(ai + bi)
p

) 1
p

≤

(
n∑
i=1

api

) 1
p

+

(
n∑
i=1

bpi

) 1
p

(inégalité de Minkowski).

4. Montrer qu'avec les notations du cours, np est une norme sur Kn.

5. Montrer que pour tout élément x⃗ = (x1, x2, . . . , xn) de Kn,

lim
p+∞

np(x⃗) = n∞(x⃗).

II. NORMES Np SUR C0([a, b],C) �
Soient p un réel strictement supérieur à 1, a et b des réels tels que a < b ;

1. Montrer, qu'avec les notations du cours, Np est une norme sur C0 ([a, b],K), en utilisant
la partie I.3, pour prouver l'inégalité triangulaire.

2. Montrer l'inégalité triangulaire en reproduisant pour l'intégrale le raisonnement fait en
I.1, I.2 et I.3.
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3. Montrer que pour tout élément f de C0 ([a, b],K),

lim
p+∞

Np(f) = N∞(f).

4. Soient f et g des éléments de C0 ([a, b],K) et p et q des réels conjugués. Montrer que :∣∣∣∣∫ b

a

f(t)g(t)dt

∣∣∣∣ ≤ Np(f)Nq(g).

5. ( 5/2)) Soient ϕ et f des applications de [a, b] dans R continues. On supose ϕ à valeurs
dans R∗

+ et f à valeurs dans R+. On pose pour tout entier n ≥ 0, In =
∫
[a,b]

ϕfn.

(a) Montrer que le suite ( n
√
In)n∈N converge de limite à déterminer.

(b) Montrer que le suite
(
In+1

In

)
n∈N

converge de limite à déterminer.

II. FONCTIONS HÖLDERIENNES �

Pour tout réel α > 0, on notz Eα l'ensemble des fonctions f de [0, 1] dans C telles qu'il
existe K, réel positif, tel que pour tout (x, y) ∈ [0, 1]2,

|f(x)− f(y)| ≤ K|x− y|α.

Soit α ∈ R∗
+.

1. Montrer que Eα est un espace vectoriel.

2. Soit g un élément de Eα. Montrer que l'ensemble

{k ∈ R+|∀(x, y) ∈ [0, 1]2, |f(x)− f(y)| ≤ k|x− y|α.}

admet un plus petit élément noté kα(f).

3. On supose que α > 1 . Déterminer Eα.

Dans la suite α ∈]0, 1[.
4. Véri�er que C1([0, 1],C) ⊂ Eα ⊂ C0([0, 1],C).

5. Donner une fonction élément de Eα qui n'est pas de classe C1.

6. Soit β un réel tel que 0 < α < β < 1. Comparer Eα et Eβ.

7. Montrer que l'application :

Hα : Eα → R+ ; f 7→ ∥f∥∞ + kα(f)

est une norme. On la notera ∥ · ∥α
8. Soit (fn)n∈N une suite d'éléments de Eα telle que pour tout ε ∈ R∗

+ il existe n0 ∈ N tel
que :

∀(p, q) ∈ [[n0,+∞[[, ∥fp − fq∥α ≤ ε. (suite de Cauchy).

Montrer que (fn)n∈N converge vers un élément f de Eα dans (Eα, ∥ · ∥α).
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Complément pour 5
2
averti.

III Autour du Théorème de Baire

1. théorème de Baire �
Soit E un espace vectoriel de dimension �nie ; on désignera par ∥ · ∥ une norme sur E.
Soit (Un)n∈N une suite d'ouverts denses de E. Montrer que

⋂
n∈N

Un est dense.

Commentaires :

(a) Une intersection dénombrable d'ouverts, (qui en général n'est pas ouverte) s'appelle
un Gδ. Le théorème dit qu'une intersection dénombrable d'ouverts denses d'un espace
vectoriel de dimension �nie est un Gδ dense.

(b) Le théorème de Baire bien que d'énoncé simple admet des conséquences très impor-
tantes en analyse. Nous donnerons quelques applications dans la suite

2. Montre qu'un Gδ dense de E n'est pas dénombrable.

3. Soit (Fn)n∈N une suite de fermés de E telle que
⋃
n∈N

Fn = E. Montrer que
⋃
n∈N

o

Fn est un

ouvert dense.
Indication : On poura montrer que le complémentaire de

⋃
n∈N

o

Fn est d'intérieur vide.

4. � Continuité d'une dérivée �

(a) Soit (fn) une suite d'applications de R dans R continues, qui converge simplement
vers une application f , c'est-à-dire que pour tout réel x la suite (fn(x))n∈N converge
vers f(x). Montrons que f est continue sur un Gδ dense.

i. Soit ε un élément de R∗
+. Pour tout entier nnaturel n, on pose

Fn,ε := { x ∈ R|∀p ∈ N, (p ≥ n) ⇒ (|fn(x)− fp(x)| ≤ ε)}

et
Ωε :=

⋃
n∈N

o

F n,ε.

Montrer que Ωε est un ouvert dense.
ii. Montrer que tout élément a de Ωε, admet un voisinage V tel que pour tout élément

x de V , ∥f(x)− f(a)∥ ≤ 3ε.
iii. Conclure.

(b) Soit g une application de R dans R dérivable. Montrer que l'ensemble des points de
continuité de g′ contient un Gδ dense.

Commentaires : Une dérivée est donc ≪ assez ≫continue. On rapprochera ce résul-
tat du théorème qui dit qu'une dérivée, véri�e le théorème de la valeur intermédiaire,
ce qui constitue un premier pas vers la continuité.

5. � Continuité et continuité partielle � On se propose de montrer le résultat :
Théorème � Soit f une application de [0, 1]2 dans R. Si en tout point de [0, 1]2,

f est continue en la première et en la seconde variable, alors il existe un résiduel G de
R tel que f soit continue en tout point de [0, 1]×G.

Soit un réel ε strictement positif. Pour tout entier naturel n non nul, on note Fε,n
l'ensemble des éléments y de [0, 1] tels que, pour tout x et tout x′, éléments de [0, 1]2 si
|x− x′| ≤ 1

n
alors |f(x, y)− f(x′, y)| ≤ ε :

Fε,n :=

{
y ∈ [0, 1]| ∀x ∈ [0, 1], ∀x′ ∈ [0, 1]2, |x− x′| ≤ 1

n
⇒ |f(x, y)− f(x′, y)| ≤ ε

}
.
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(a) Montrer que pour tout n ∈ N∗, Fε,n est un fermé de [0, 1].
(b) Montrer que

⋃
n∈N∗

Fε,n = [0, 1].

(c) Montrer que
⋃

n∈N∗
F
◦

ε,n
est un ouvert inclus dans [0, 1] dense dans [0, 1].

On le notera Ωε.
(d) Soient y0 un élément de Ωε et x0 ∈ [0, 1]. Montrer qu'il existe un voisinage W de

(x0, y0) tel que pour tout (x, y) ∈ W ∩ [0, 1]2, |f(x, y)− f(x0, y0)| ≤ 2ε.
(e) Posons G :=

⋂
n∈N∗

Ω 1
n
. Montrer que l'ensemble G est un résiduel inclus dans [0, 1].

Soit (x1, y1) un point de [0, 1]×G. Montrer la continuité de f en (x1, y1). Conclure.

6. Théorème de Banach Steinhauss �
Il s'agit sans doutes d'une des applications les plus spectaculaires de Baire, qui

conduit à bon nombre de résultats d'analyse tout à fait remarquables.
Soit (F, ∥ · ∥F) un e.v.n., Lc(E,F) sera muni de ||| · ||| norme subordonnée à ∥ · ∥ et

∥ · ∥F. Soit A une partie de Lc(E,F), non vide. Montrer que :

(a) ou bien il existe un réel M tel que pour tout ℓ⃗ ∈ A, |||ℓ||≤M ;
(b) ou bien il existe un Gδ dense de E, tel que pour tout élément x⃗ de ce Gδ,

sup
ℓ⃗∈A

∥ℓ⃗(x⃗)∥F = +∞.

En anglais ce théorème porte le nom plus évocateur de théorème de la ≪ bornaison ≫uniforme.

(a) Posons, pour tout élément k de N, Ωk = {x⃗ ∈ E, sup
ℓ⃗∈A

∥ℓ⃗(x⃗)∥F > k}. Montrer que

pour tout élément k de N, Ωk est un ouvert.
(b) Montrer que si, pour tout élément k de N, Ωk est dense, alors, pour tout élément x⃗

de
⋂
k∈N

Ωk, sup
ℓ⃗∈A

∥ℓ⃗(x⃗)∥F = +∞.

(c) Montrer que s'il existe k0 ∈ N, tel que Ωk0 ne soit pas dense, alors il existe un réel
M . tel que pour tout ℓ⃗ ∈ A, |||ℓ||| ≤M .

(d) Conclure.
(e) Soit a une suite réelle telle que pour toute suite réelle b, élément de ℓ2 la série

∑
anbn

converge. Montrer que a ∈ ℓ2.
Indication. Considérer l'ensemble {Ln, n ∈ N} des formes linéaires sur ℓ2 dé�ni

par :

∀n ∈ N, Ln : ℓ2 → R ; b 7→
n∑
k=0

akbk

12



Indications pour la question II.8
Soit ε ∈ R∗

+. L'hypothése sur (fn)n∈N nous fournit n0 ∈ N∗ tel que :

∀(p, q) ∈ [[n0,+∞[[, ∥fp − fq∥α ≤ ε. (suite de Cauchy). (2)

Étape 1. La suite (fn)n∈N converge simplement.
• Soit x ∈ [0, 1]. Par (2) , pour tout p ∈ N,

|fp(x)| ≤ max{|fn0(x)|+ ε, |f0(x)|, ..., |fn0−1(x)|}

la suite (fp(x))p∈N est donc bornée.
• Soient ℓ et ℓ′ des valeurs d'adhérence de (fp(x))p∈N. On considère des extrac-

trices ϕ et ψ telles que

fϕ(p)(x) →
p→+∞

ℓ, et fψ(p)(x) →
p→+∞

ℓ′ ;

quitte à remplacer ϕ par ϕ◦ψ, autre extractrice, il est loisible de supposer de surcroît
ϕ ≥ ψ. L'inégalité (2) veut que pour tout entier p ≥ n0,

|fϕ(p)(x)− fψ(p)(x)| ≤ ∥fϕ(p) − fψ(p)∥∞ ≤ ∥fϕ(p) − fψ(p)∥α ≤ ε,

puisque ϕ(p) ≥ ψ(p) ≥ p ≥ n0. Laissons tendre p vers +∞, nous obtenons :

|ℓ− ℓ′| ≤ ε.

Le caractère arbitraire de ε exige que ℓ = ℓ′.

De ces deux points, et parce que R est de dimension �nie, vient que (fp(x))p∈N
converge.

D'où la convergence simple de (fp)p∈N ; nous noterons f la limite simple de cette
suite.

Étape 2. L'application f est élément de Eα.
Soient x1 et x2 des éléments de [0, 1]. Pour tout entier p ≥ n0

|fp(x1)− fp(x2)| ≤|fn0(x1)− fn0(x2)|+ |(fp − fn0)(x1)− (fp − fn0)(x2)| ≤
(kα(fn0) + kα(fp − fn0))|x1 − x2|α ≤
(kα(fn0) + ε)|x1 − x2|α.

(3)

Donc en laissant tendre p vers +∞, on a :

|f(x1)− f(x2)| ≤ (kα(fn0) + ε)|x1 − x2|α.

Donc f est élément de Eα.

Étape 2. La suite (fp)p∈N converge vers f dans (Eα, ∥ · ∥α).
•, pour tout p et tout q entiers tels que p ≥ q ≥ n0, on a :

∀z ∈ [0, 1], |fp(z)− fq(z)| ≤ ∥fp − fq∥∞ ≤ ∥fp − fq∥α ≤ ε,

et en laissant p tendre vers +∞, pour tout entier q ≥ n0 et tout z ∈ [0, 1]

|f(z)− fq(z)| ≤ ε,

13



Donc, la borne supérieure étant le plus petit des majorants, pour tout entier q ≥ n0.

∥f − fq∥∞ ≤ ε.

• Par ailleurs pour tout p et tout q entiers tels que p ≥ q ≥ n0, on a

kα(fp − fq) ≤ ∥fp − fq∥α ≤ ε,

et donc
|(fp − fq)(u)− (fp − fq)(v)| ≤ ε|u− v|α.

pour tout u et v éléments de [0, 1]. En laissant une nouvelle fois tendre p vers +∞,
vient que pour tout entier q ≥ n0,

∀(u, v) ∈ [0, 1]2, |(f − fq)(u)− (f − fq)(v)| ≤ ε|u− v|α.

Donc pour tout entier q ≥ n0 on a kα(f − fq) ≤ ε.

De ces deux points, il vient que pour tout entier q ≥ n0,

∥f − fq∥α ≤ 2ε.

Donc la suite (fq)q∈N converge vers f dans l'e.v.n. (Eα, ∥ · ∥α).

14



LYCÉE KERICHEN 2025-2026 MP∗

Travaux dirigés no 5

Exemples de suites des itérés d'une fonction croissante,

rapidité convergence .

I. THÉORÈMES D'ERNESTO CESÀRO

Soit (x⃗)n∈N une suite à valeurs dans un e.v.n. (E, ∥ · ∥), admettant une limite ℓ⃗. Soit alors
la suite (y⃗n)n∈N dé�nie par,

y⃗n =
1

n+ 1

n∑
k=0

x⃗k,

pour tout entier naturel n.
Cette quantité s'interprète comme la moyenne des n+1 premiers termes de la suite initiale, du
moins lorsque cette dernière est à valeurs dans R, dans le cas général y⃗n en est plus exactement
parlant le barycentre, E étant muni de sa structure canonique d'espace a�ne. Le théorème de
Cesàro a�rme que la suite (y⃗n)n∈N tend vers ℓ⃗ ; on a coutume de dire que la suite (xn)n∈N
converge ≪ en moyenne ≫ou ≪ au sens de Cesàro ≫vers ℓ⃗. Ce résultat est conforme à notre
intuition. En e�et, la suite (x⃗n)n∈N prend des valeurs qui tendent à se confondre avec ℓ⃗, lorsque
n croît, face aux nombre toujours plus grand de termes entrant dans le calcul de y⃗, les premiers
termes y jouent un rôle de plus en plus négligeable, conférant ainsi à la moyenne une valeur
proche de ℓ⃗.

La preuve se calque sur cette démarche heuristique.

1. Prouver ce résultat. Que dire de la réciproque ?

2. Généralisation. Sous les hypothèses du 1. on considère une suite (αn)n∈N de réels stric-
tement positifs, telle que la série

∑
αn diverge, c'est-à-dire telle que :

n∑
k=0

αk →
n→+∞

+∞.

Soit alors la suite (z⃗n)n∈N dé�nie par,

z⃗n =
1

n∑
k=0

αk

n∑
k=0

αk · x⃗k,

pour tout entier naturel n (moyenne pondérée de la suite (xn)n∈N).
Déterminer la limite de cette dernière suite.

Le théorèle de Cesàro est rentré au programme dans le cas de suites réelles.

II. PREMIER EXEMPLE

Soient a un élément de ]0, π
2
[, K un élément de ]0, 1].

1. Montrer que la relation de récurrence suivante dé�nie bien une suite réelle (un)n∈N :

u0 := a, un+1 := K sinun, pour tout n ≥ 0 (4)
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2. Montrer que cette suite converge vers 0.
On se propose maintenant d'étudier la rapidité de convergence de cette suite.

3. Représenter sur un graphique les premiers termes de la suite pour K = 0.25, K = 0.5 et
K = 1. Que constater ?

4. Montrer que la quantitée un+1

un
est dé�nie pour tout entier naturel n et que :

un+1

un
→

n→+∞
K.

5. Cas de convergence rapide
On supose dans cette question que K < 1.
Pour n grand, d'après la question précédente, la suite se comporte donc à peu près comme
une suite géométrique de raison K, d'où pour préciser son comportement l'idée d'étudier
la limite de n

√
un .

(a) On note pour tout entier naturel n, wn := ln
(
un+1

un

)
. Montrer que la suite (wn)n∈N

a une limite que l'on déterminera.

(b) En étudiant la suite suite (zn)n∈N , dé�nie par : zn = 1
n+1

n∑
k=0

wk, pour tout entier

naturel n, déterminer la limite de la suite
(

n
√
un
)
n∈N .

(c) Réservé aux 5/2. Donner la forme d'un équivalent du terme général de la suite
(un)n∈N.

6. Cas de convergence lente
On supose dans cette question que K = 1.

(a) Déterminer un réel β tel que la suite (wn)n∈N dé�nie par wn := uβn+1 − uβn, pour tout
entier naturel n, admette une limite �nie non nulle 3.

(b) En étudiant la suite suite (zn)n∈N , dé�nie par : zn = 1
n+1

n∑
k=0

wk, pour tout entier

naturel n, donner un équivalent de un, lorsque n tend vers +∞, de la forme cnp où
c et p sont des réels.

(c) Réservé aux 5/2. Donner un équivalent simple de un − cnp lorsque n tend vers
+∞, (pour les valeurs de c et de p précédemment trouvées).

III. DEUXIEME EXEMPLE.

Soient a un réel strictement positif.

1. Montrer que la relation de récurrence suivante dé�nie bien une suite réelle (un)n∈N :

u0 := a, un+1 := un +
1

un
, pour tout n ≥ 0 (5)

2. Déterminer la convergence de cette suite.

3. Donner un équivalent du terme général de cette suite.

IV. DERNIER EXEMPLE

Soit a un élément de ]0, 1[.

3. L'introduction d'une telle suite, traditionnelle dans les problèmes, semble très arti�cielle et relever d'une
intuision fertile, nous verons dans un prochain chapitre, la source, bien naturelle, d'une telle idée ; pour le
moment retenons la recette !

16



1. Montrer que la formule de récurrence{
u0 := a

un+1 := 1/2
(
1−

√
1− un

)
, pour tout entier n ≥ 0,

(6)

dé�nie bien une suite réelle (un)n∈N.

2. Déterminer la limite de cette suite.

3. Montrer que la suite (un)n∈N a une limite ℓ, indépendante de a, à déterminer.

4. Réservé aux 5/2. Donner la forme d'un équivalent du terme général de la suite la suite
(un)n∈N.

Figure 2 � Ernesto Cesàro 1859-1906
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Complément pour 5
2

V. THÉORÈME DE TAUBER

Soit
∑
anx

n une série entière de la variable réelle x, de rayon de convergence égal à 1. On
note S sa somme :

S : ]−1, 1] → R; x 7→
+∞∑
n=0

anx
n.

On suppose de plus qu'il existe un réel L tel que

S (x) →
x→1
x<1

L.

On s'intéresse à la convergence de la série
∑
an.

1. Donner un exemple de suite (an)n∈N telle que
∑
an diverge.

2. On suppose jusqu'à la �n que an = o
(
1
n

)
(n→ +∞).

(a) Prouver que pour tout élément x de ]− 1, 1[, et tout entier N supérieur ou égal à 1,∣∣∣∣∣S(x)−
N∑
n=0

an

∣∣∣∣∣ ≤ N(1− x)
1

N

N∑
n=0

|nan|+
1

N(1− x)
sup
n>N

|nan|.

(b) Conclure !
Le résultat demeure en supposant simplement que an = O(n) (n → +∞), mais c'est bien plus
di�cile.

VI. CESÀRERIES

1. (X.) On dit qu'une partie A de N est de densité nulle si

card(A ∩ {0, 1, . . . , n})
n

→
n→+∞

0

Soit (an)n∈N
une suite de réels positifs, majorée. On note pour tout entier n ≥ 1,

Sn =
1

n

n∑
k=1

ak.

On se propose de montrer l'équivalence des deux propositions suivantes :
i. Sn →

n→+∞
0 ;

ii. Il existe une partie A de N de densité nulle telle que an −→
n→+∞
n/∈A

0

(a) On suppose ii. ; Montrer i.
(b) On suppose i. Pour tout n ∈ _N on note αn := sup{Sp, p ≥ n}. Montrer que la suite

(αn)n∈∗
N
tend vers 0. On considére A := {p ∈ N∗|ap ≥

√
αp}. Montrer que A est de

densité nulle, en déduire que ii. est vraie.

2. Soit f une application de R dans R continue. Pour tout réel a, on dé�nit la suite
(vn(a))n∈N par : v0(a) = a ; pour tout n ∈ N, vn+1(a) = f(vn(a)). En�n pour tout entier

naturel n on pose : un(a) = 1
n+1

n∑
k=0

vk(a).

(a) On suppose qu'il existe un réel a tel que la suite (un(a))n∈N soit bornée. Montrer que
f admet un point �xe.

(b) Trouver un exemple de fonction f de R dans R continue, ayant un unique point �xe
xf et telle que pour tout réel a distinct de xf , (un(a))n∈N converge vers une limite
distincte de xf .
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Lycée Kerichen 2025-2026 MP∗

Travaux dirigés no 6

Interpolation

I. Polynômes d'interpolation de Lagrange

1. Soit n un entier naturel, et soit f une application d'un segment [a, b] (a < b) à valeurs
réelles, soient en�n (x0, x1, . . . , xn) , n+1 points deux à deux distincts de [a, b]. Montrer
qu'il existe un unique polynôme à coe�cients réels de degré inférieur ou égal à n, que
nous noterons P , qui coïncide avec f en chacun des points xi :

P (xi) = f(xi), pour i = 0, 1, . . . , n.

Pour i = 0, 1, 2.., n., on pose :

Li :=

∏
j=0,..,n; j ̸=i

(X − xj)∏
j=0,..,n; j ̸=i

(xi − xj)

Exprimera P au moyen des polynômes L0, L1, . . . Ln.
P s'appelle le polynôme d'interpolation de Lagrange de f aux points (x0, x1, . . . , xn).

2. On suppose dans cette question que f est de classe Cn+1 Soit x un élément de [a, b] et g
l'application :

[a, b] → R; t 7→ (f − P ) (t)− A.

n∏
i=0

(t− xi)

(n+ 1)!
,

où A est un paramètre réel.

(a) Montrer que si x n'est pas élément de l'ensemble {x0, x1, x2, . . . , xn}, il existe une
valeur de A pour laquelle g(x) = 0. Montrer que pour ce choix de A, il existe un
élément y de [a, b] tel que g(n+1)(y) = 0.

(b) En déduire qu'il existe un élément y de [a, b] tel que :

(f − P ) (x) = f (n+1) (y)

n∏
i=0

(x− xi)

(n+ 1)!
,

(que x soit ou non élément de {x0, x1, x2, . . . , xn}).
3. Méthode des trapèzes � Dans cette question f est seulement supposée de classe

C2. Pour tout naturel non nul n, en notant ai := a + i b−a
n

, pour i = 0, 1, 2, ..., n, on
considère l'application Tn de [a, b] dans R, a�ne par morceaux, continue, qui prend en ai
la valeur f(ai), pour i = 0, 1, 2, ..., n et qui est a�ne sur chacun des intervalles [ai, ai+1],
pour i = 0, 1, 2, ..., n− 1 ; on note en�n In l'intégrale de Tn sur [a, b] :

In :=

∫ b

a

Tn (t) dt.

(a) Donner l'expression de In, pour tout entier naturel non nul n.
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(b) En utilisant la question 2., donner une majoration de |In−
∫ b
a
f(t)dt|, pour tout entier

naturel non nul n, en fonction de n et de ∥f ′′∥∞.
4. Méthode de Simson � Dans cette question f est supposée de classe C3. Pour tout

entier naturel non nul n, en notant : et ai := a+ i b−a
2n

, pour i = 0, 1, 2, ..., 2n, on dé�nit
l'application Sn de [a, b] dans R, par

(a) Pour k = 0, 1, 2, . . . , n − 1, Tn coïncide sur [a2k, a2k+2[ avec le polynôme Pk d'inter-
polation de f en a2k, a2k+1, a2k+2, (d◦(P ) ≤ 2) ;

(b) Sn(a2n) = f(a2n) ;

on note en�n Jn l'intégrale de Sn sur [a, b].

(a) Donner l'expression de Jn, pour tout entier naturel non nul n.

(b) Donner une majoration de |Jn −
∫ b
a
f(t)dt|, pour tout entier naturel non nul n.

II. Polynômes d'interpolation d'Hermite

Nous avons vu qu'il existe un unique polynôme de degré inférieur ou égal à n, qui coïncide
en n + 1 points avec une application donnée. Nous allons généraliser en faisant coïncider en
certains points non seulement les valeurs du polynôme et de l'application, mais aussi celles de
leurs dérivées successives (interpolation d'Hermite).

Soit k un entier naturel. Soient x0, x1, . . . , xk, k+ 1 points distincts d'un segment [a, b], , et
k + 1 entiers naturels n0, n1,. . .,nk. Nous noterons n la quantité

k∑
i=0

(ni + 1) − 1.

Soit f une application de [a, b] dans R, admettant pour i = 0, 1, 2, ...k, une dérivée d'ordre ni
au point xi.

1. Montrer qu'il existe un unique polynôme Q à coe�cients réels tel que pour tout élément
i de {0, 1, . . . , k} et tout élément ℓ de {0, 1, . . . , ni},

Q(l) (xi) = f (l) (xi) .

On prend dans cette question, k = 1 et x0 = 0, x1 = 1, n1 = n2 = 1 , donc n=3.
Déterminer dans ce cas particulier le polynôme Q.

2. Revenons au cas général, et supposons de surcroît que f est de classe Cn+1. Soit x élément
de [a, b], montrer qu'il existe un élément y du plus petit intervalle contenant x0, x1, ...., xk
et x, tel que :

f (x)−Q (x) =
1

(n+ 1)!

k∏
i=0

(x− xi)
ni+1f (n+1)(y).

3. On suppose maintenant que k = 0. Déterminer alors Q. Quel résultat connu devient
alors le résultat de la question 4. ?

III. Construction des polynômes d'interpolation de Lagrange

On se replace dans le cadre de la première partie, dont on reprend les notations. On cherche
à construire numériquement et de sorte assez ≪ économique ≫ le polynôme P qui interpole f
aux points x0, x1, . . . , xn.

On note pk, pour k = 0, 1, 2, . . . , n, le polynôme qui interpole f aux points x0, x1, . . . , xk,
ainsi P = pn ; on désigne par f [x0, x1, . . . , xk] le coe�cient de degré k de pk.
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1. (a) Montrer pour k = 1, . . . , n, que

pk − pk−1 = f [x0, x1, . . . , xk](X − x0)(X − x1) . . . (X − xk−1).

(b) Déduire du (a) que :

pn = f(x0) +
n∑
k=1

f [x0, x1, . . . , xk](X − x0)(X − x1) . . . (X − xk−1).

2. On se propose de donner une méthode algorhitmique de calcul des f [x0, x1, . . . , xk]. Soit
k ∈ {1, 2, . . . , n}.
(a) Montrer :

f [x0, x1, . . . , xk] =
f [x1, x2, . . . , xk]− f [x0, x1, . . . , xk−1]

xk − x0
.

(b) Déterminer pour i = 0, 1, . . . , k, f [xi].
(c) Donner un algorithme de calcul de pn, utilisant les résultats (a) et (b), qui fournit

f [x0], f [x0, x1], . . . , f [x0, x1, . . . , xk], . . . , f [x0, x1, . . . , xn].

IV. Intégration approchée d'une fonction convexe
Soit f une application de R+ dans R de classe C1 et convexe.
Soit un entier n ≥ 2. Montrer que :

0 ≤ 1

2
f(0) + f(1) + f(2) + ...+ f(n− 1) +

1

2
f(n)−

∫ n

0

f(t)dt ≤ 1

8
(f ′(n)− f ′(0)).

V. Pseudo dérivée d'ordre 2
Soit f une application continue de R dans R. On dit que f admet une pseudo dérivée

d'ordre 2 en un point x0 de R, si

f(x0 + h) + f(x0 − h) + 2f(x0)

h2
−→

h→0,h ̸=0
ℓ,

si c'est le cas ℓ est appelé pseudo dérivée d'ordre 2 en x0 et est noté f [2](x0).
Si f admet en tout point une pseudo dérivée d'ordre 2 f [2] : R → R ; x 7→ f [2](x) est

appelée (fonction) pseudo dérivée d'ordre 2.

1. Montrer que si f est de classe C2 alors f admet en tout point une pseudo dérivée d'ordre
2 à déterminer. Donner un exemple d'application admettant en 0 une pseudo dérivée
d'ordre 2, mais pas de dérivée d'ordre 2.

2. On suppose dans cette question que f admet en un point x0 de R un minimum local. Si
f admet une pseudo dérivée d'ordre 2 en x0 que dire de son signe ?

3. On suppose que f [2] existe et est nulle, on veut montrer que f est a�ne.

(a) On suppose encore f réelle. Soient [a, b] un (vrai) segment et ε ∈ R∗
+ et les applica-

tions

g± : R → R ; x 7→ f(x)− f(a)− f(b)− f(a)

b− a
(x− a)± ε(x− a)(x− b).

Etudier les signes de g+ et g− sur [a, b]
(b) Conclure.

4. On suppose que f [2] existe et est positive strictement, montrer que f est convexe
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VI. Régularité des fonctions convexes (réservé à un public averti)
Soit f une application d'un intervalle I d'intérieur non vide à valeurs réelles, convexe.

1. Montrer que f admet une dérivée à gauche et une dérivée à droite en tout point intérieur
de I. Comparer la dérivée à droite et celle à gauche en un point intérieur à I.

2. Montrer que f est continue en tout point intérieur à I. Donner un exemple d'application
convexes non continue.

3. L'intervalle I est supposé dans cette question ouvert. Montrer que si f est convexe alors
elle est continue et admet une dérivée à droite sur I croissante.

4. On suppose que f est continue et admet une dérivée à droite sur I croissante. On se
propose de montrer que f est convexe.

(a) Soit g une application d'un intervalle I non réduit à un point, dérivable à droite et
continue. On suppose que g′d est positif montrer que g croît.

(b) Soient x0 un point de l'intérieur de I et T l'application � a�ne tangente à droite en
x0 � :

T : I → R ; y 7→ f(y)− f(x0)− (y − x0)f
′
d(x0).

Montrer que T est dérivable à droite et continue.
(c) Montrer, en étudiant le signe de T , que :

∀y ∈ I∩]x0,+∞[, f ′
d(x0) ≤

f(y)− f(x0)

y − x0
.

Montrer que :

∀y ∈ I∩]−∞, x0[, f
′
d(x0) ≥

f(y)− f(x0)

y − x0
.

(d) soient x, y, z trois points de I tels que x < y < z, montrer que :

f(y)− f(x)

y − x
≤ f(z)− f(y)

z − y
.

Conclure.

5. Montrer qu'une fonction localement convexe est convexe.

6. Soient a un point intérieur à I et m un réel. Montrer que la droite Dm de R2 d'équation :

Dm : y = f(a) +m(x− a)

est au dessous du graphe de f si et seulement si f ′
g(a) ≤ m ≤ f ′

d(a).
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Correction de V. 4.
On admet le lemme suivant :

Lemme Soit g une application d'un intervalle I non réduit à un point, dérivable à droite
et continue. Si g′d est positif alors g croît.

Soit x0 un point de l'intérieur de Iet T l'application � a�ne tangente à droite en x0 �.

T : I → R ; y 7→ f(y)− f(x0)− (y − x0)f
′
d(x0).

L'application hérite de la dérivabilité à droite de f et de sa continuité et T ′
d = f ′

d − f ′
d(x0).

Donc par le lemme et la croissance de f ′
d, on a que T croît sur I∩]x0,+∞[. Comme T est nulle

en x0, T est positif sur I∩]x0,+∞[ et donc :

∀y ∈ I∩]x0,+∞[, f ′
d(x0) ≤

f(y)− f(x0)

y − x0
.

De même

∀y ∈ I∩]−∞, x0[, f
′
d(x0) ≥

f(y)− f(x0)

y − x0
.

Donc si x, y, z sont trois points de I tels que x < y < z, on a alors :

f(y)− f(x)

y − x
≤ f(z)− f(y)

z − y
.

La convexité en résulte. Redonons la preuve semblable à celle du cours qui dit que si la
fonction pente croît, alors la fonction est convexe. Soit y et z des points de I tels que x < z.
Soit t ∈]0, 1[ On pose

yt = tx+ (1− t)z.

Par le cours de 4e sur les barycentres du siècle passé : t = z−yt
z−x et (1 − t) = yt−x

z−x . Par ailleurs,
la propriété des pentes que l'on vient de prouver donne :

f(yt)− f(x)

yt − x
≤ f(z)− f(yt)

z − yt
.

ce qui s'écrit : (
z − x

(yt − x)(z − yt)

)
f(yt) ≤

f(x)

yt − x
+

f(z)

z − yt

Donc, par positivité de (yt − x)(z − yt) et z − x, on a :

f(tx+ (1− t)z) = f(yt) ≤
z − yt
z − x

f(x) + (1− t) +
yt − x

z − x
f(z) = tf(x) + (1− t)f(z).

Voilà prouvée la convexité de f .

Preuve du lemme Soient a et b des points de I tels que a < b. Soit ε ∈ R∗
+. Posons

Eε := {t ∈ [a, b]|g(t) ≥ g(a)− ε(t− a)} 4

Comme a ∈ Eε et que b majore cet ensemble, Eε admet une borne supérieure inférieure ou
égale à b, que nous baptiserons c. La continuité de g veut que Eε soit fermé et donc que c ∈ Eε.

En fait c = b. supposons le contraire Comme g′d(c) ≥ 0 Il existe un h > 0 tel que pour tout
t ∈]c, c+ h] ∩ I,

g(t)− g(c)

t− c
≥ −ε,

4. L'objectif est de montrer que b ∈ Eε, la dé�nition de la dérivée à droite comme limite d'un taux d'accrois-
sement montre que Eε contient un voisinage à droite de a.
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quitte à diminuer h supposons c+ h ≤ b. On a alors,

g(c)− g(a) ≥ −ε(c− a),

g(c+ h)− g(c) ≥ −ε(h),

par sommes de ces inégalités :

g(c+ h)− g(a) ≥ ε(c+ h− a)

ce qui fait de c+ h un point de Eε, contredisant la dé�nition de c.
Donc c = b et on a g(b) ≥ g(a)− ε(b− a). Comme ε est quelconque :

g(b) ≥ g(a).

Voilà prouvée la croissance de g.
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LYCÉE KERICHEN 2025-2026 MP∗

Travaux dirigés no 7

Compacité

On utilisera le résultat suivant que nous allons voir en cours :
Dans un espace vectoriel de dimension �nie, toute partie fermée bornée est compacte.

I UN THEOREME DU POINT FIXE COMPACT

Soit K un compact d'un e.v.n. (E, ∥.∥) et f⃗ une aplication de K dans K véri�ant pour tout
x⃗ et tout y⃗ , éléments distincts de K :∥∥∥f⃗ (x⃗)− f⃗ (y⃗)

∥∥∥ < ∥x⃗− y⃗∥ . (7)

1. Montrer que f⃗ admet un unique point �xe.
Indication : Pour l'existence, étudier l'application g : K → R, x⃗ 7→

∥∥∥f⃗ (x⃗)− x⃗
∥∥∥ .

2. Soit c⃗ un point quelconque de K. On dé�nit la suite (x⃗n)n∈N par{
x⃗0 = c

x⃗n+1 = f⃗ (x⃗n) n ≥ 0
.

Pour tout entier naturel n on pose dn =
∥∥∥f⃗ (x⃗n)− x⃗n

∥∥∥. Montrer que la suite (dn)n∈N
converge, nous noterons ℓ sa limite.

3. Montrer qu'il existe une sous suite
(
x⃗φ(n)

)
n∈N de la suite (x⃗n)n∈N qui converge vers un

élément a⃗ de K, et montrer que
∥∥∥f⃗ (⃗a)− a⃗

∥∥∥ = ℓ⃗

4. En considérant la suite
(
dφ(n)+1

)
n∈N, montrer que ℓ⃗ = 0.

5. Montrer que la suite (x⃗n)n∈N converge vers l'unique point �xe de f⃗ .

6. Déduire de ce qui précède une méthode numérique pour résoudre l'équation :

tanx− x = k.

7. Donner un exemple d'application f⃗ véri�ant (7), mais pour laquelle il n'existe pas de
réel k , élément de ]0, 1[, tel que f⃗ soit k-contractante.

8. Montrer que siK est seulement fermé, (mais pas compact) alors f⃗ n'a pas nécessairement
de point �xe.

9. Nous supposons maintenant que K est un compact étoilé de Rp où p est un entier
strictement positif, et que g⃗ est une aplication de K dans K véri�ant pour tout x⃗ et tout
y⃗, éléments de K :

∥g (x)− g (y)∥ ≤ ∥x− y∥ . (8)

Montrer que g⃗ admet au moins un point �xe. L'application g⃗ peut-elle admettre plusieurs
points �xes ?

10. Prenons une feuille de papier non perforée, posons la sur une table et dessinons sur la
table le rectangle correspondant au pourtour de la feuille. Puis froissons sauvagement
la feuille et reposons la dans le rectangle de sorte que chacun des points de la feuille
ainsi froissée se projette orthogonalement dans le rectange. Montrer qu'un des points
de la feuille au moins se projette orthogonalement sur sa position initiale. Le résultat
demeure-t-il pour une feuille perforée ?
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II THÉORÈME DU POINT FIXE DE PICARD
Soit F une partie fermée d'un espace vectoriel normé (E, ∥ · ∥) de dimension �nie. Soient k

un élément de [0, 1[, et f⃗ une application de F dans F , k-contractante.
On se propose de montrer que f⃗ admet un et un seul point �xe.

1. Montrer que f⃗ admet au plus un point �xe.

2. Soit a⃗ un élément de F . On considère la suite (x⃗n)n∈N des itérés de a⃗ par f , c'est-à-dire
(f⃗n(⃗a))n∈N.

(a) Montrer que pour tout p et tout q entierss tels que p > q,

∥x⃗p − x⃗q∥ ≤ kq

1− k
∥x⃗1 − x⃗0∥.

(b) Montrer que (x⃗n)n∈N est bornée.

(c) Montrer que (x⃗n)n∈N converge vers un élément ℓ⃗ de F .
(d) Conclure.

3. (5/2) On se propose de passer par un autre biais. Montrer que,la série
∑
x⃗n+1 − x⃗n est

absolument convergente. Conclure.

4. Montrer que pour tout entier n ≥ 0, ∥f⃗n(⃗a)− ℓ⃗∥ ≤ kn

1−k∥f⃗ (⃗a)− a⃗∥.

III DISTANCE À UN COMPACT

On admet le résultat que nous allons prochainement voir en cours : Toute partie fermée
bornée d'un espace vectoriel normé de dimension �nie est compacte.

1. Le cas général : Soient A une partie non vide, compacte d'un e.v.n. (E, ∥.∥) et c⃗ un
élément de E. Montrer qu'il existe au moins un élément a⃗ de A tel que :

d (c⃗, A) = ∥a⃗− c⃗∥.

2. Montrer que le résultat demeure si A est seulement un fermé non vide et E de dimension
�nie.

3. Application : On munit Mn(R) de la norme euclidienne canonique (norme de Frobe-
nius). Montre que SLn(R), ensemble des éléments de Mn(R) de déterminant 1, est un
sous-groupe de GLn(R)), qui est fermé. Est-il compact ? Montrer qu'il existe un élément
de SLn(R) de norme minimale. À suivre...

4. Montrer que le résultat demeure si l'on remplace A, par un sous-espace vectoriel F de
E, de dimension �nie, (E étant de dimension quelconque).

5. Un cas particulier : Soit [a, b] un segment de R et E un sous-espace vectoriel de
F ([a, b],R) qui contient les applications polynomiales, muni d'une norme notée ∥.∥. Pour
tout entier naturel n, Pn désigne l'ensemble des applications polynomiales de [a, b] dans
R de degré inférieur ou égal à n.

a. Montrer que pour toute application f élément de E, il existe au moins un élément
pn de Pn tel que :

d (f,Pn) = ∥f − pn∥.

Nous appellerons pn, ≪ polynôme de meilleure approximation de f de degré n ≫ .
b. Prenons pour E, l'ensemble des applications f de [−1, 1] dans R, continues par

morceaux, qui véri�ent :

i. pour tout élément x de ]−1, 1[, f (x) = 1
2
(f (x+) + f (x−)),
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ii. f (1) = f (1−) , f (−1) = f (−1+).

Véri�er que E est bien un espace vectoriel. Montrer que l'application

N1 : E → R, f 7→
∫ 1

−1

|f (t)| dt,

est bien une norme sur E.
c. - Soit f l'élément de E, dé�ni par :

f (x) = −1, pour x < 1,

f (x) = +1, pour x > 1.

Déterminer tous les polynômes de meilleure approximation de degré 0 de f .
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IV CONTINUITÉ UNIFORME

1. Soit f une application uniformément continue de R dans R. Montrer l'existence de deux
réels a et b tels que pour tout réel x, |f (x)| ≤ a |x|+ b

2. Notons E = C0([a, b],R), on munit cet espace vectoriel de la norme ∥ · ∥∞. Soient φ une
application de R dans R, continue et

K : E → E f 7→ φ ◦ f.

Montrer que K est continue.

3. Soit f une application de R+ dans R uniformément continue 5. On suppose que pour
tout x ∈ R∗

+ la suite (f(nx))n∈N converge vers 0.
montrer que f(x) →

x→+∞
+∞.

Compléments pour public averti...
V UNE CARACTÉRISATION DES COMPACTS
Soit (E; ∥ · ∥) un espace vectoriel normé tel que toute série à valeur dans E absolument

convergente soit convergente 6.
Nous allons donné une caractérisation � géométrique � des compacts
Adoptons la dé�nition suivante :
Définition. Une partie A de E est dite plate si pour tout ε ∈ R∗

+, il existe un sous-espace
vectoriel F de E, de dimension �nie, tel que A ⊂ Fε, où Fε = F + Bf(0E, ε), (ε-grossissement
de F ) .

Nous allons prouver :
Proposition. Soit une partie A de E. Alors les propriétés suivantes sont équivalentes :

(i) L'ensemble K est un compact.

(ii) L'ensemble K est fermé, borné et plat.

On désigne dans la suite par A une partie de (E, ∥ · ∥).

1. Précompacité.

(a) On suppose dans cette question la partie A compacte. Montrer que pour tout réel
ε > 0, il existe des boules fermées de rayon ε, en nombre �ni, B′

1, B
′
2, . . . B

′
p telles que

A ⊂
p⋃
i=1

B′
i. On dit que A peut être recouverte par un nombre �ni de boules fermées

de rayon ε.
(b) Application Montrer que tout compact K de (E, ∥ · ∥). possède une partie dense

dénombrable.

(c) On suppose que pour tout réel ε > 0 la partie A peut être recouverte par un nombre
�ni de boules fermées de rayon ε 7.

Soit (xn)n∈N une suite d'éléments de A.
Montrer qu'il existe une suite (φm)m∈N∗ d'applications φm de N dans N stricte-

ment croissantes telle que pour tout entier m ≥ 1, la suite (xφ1◦φ2◦···◦φm(n))n∈N soit à
valeurs dans une boule fermée de rayon 1

2m
.

En déduire que la suite (xn)n∈N admet une suite extraite (xψ(p))p∈N convergente.
(d) Montrer que Ā adhérence de A est compacte si et seulement si pour tout réel ε > 0,

la partie A peut être recouverte par un nombre �ni de boules fermées de rayon ε.

5. Le résultat demeure lorsque f n'est que continue, mais sa démonstration est di�cile.
6. De tels espaces vectoriels normés sont dits de Banach ou complets.
7. On traduit cette propriété en disant que A est précompacte.
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2. On suppose la partie A compacte. Montrer que A est fermée bornée plate.

3. On suppose A fermée, bornée et plate.
Soit ε ∈ R∗

+.

(a) Montrer que sans perte de généralité, on peut supposer que K ⊂ Bf(0E, 1)

Soit ε ∈ R∗
+.

(b) Par hypothèse de platitude on dispose de F sous-espace vectoriel de dimension �nie
tel que Fε contienne K. On note Bf,F la boule unité fermée de F.

Montrer qu'il existe d'un entier Nε ∈ N∗ et de (y1, . . . , yNε) ∈ FNε tels que :

Bf,F ⊂
Nε⋃
i=1

Bf,F (yi, ε).

(c) On suppose que ε est inférieur à 1. Déduire de la précédente sous-question, que A
est recouvert par Nε boules fermées de rayon 3ε.

(d) En déduire que A est compact.

VI COMPACTS ET RECOUVREMENT PAR DES OUVERTS (X, ENS)
Soit (E, ∥ · ∥) un e.v.n. Nous nous proposons de montrer qu'une partie K de (E, ∥ · ∥) est

compact, si et seulement si pour toute famille (Oi)i∈I d'ouverts telle que K ⊂ ∪
i∈I
Oi, il existe

une partie �nie J de I telle que A ⊂ ∪
i∈J

Oi. On traduit cette dernière propriété en disant que

de tout recouvrement de K par des ouverts on peut extraire un sous-recouvrement �ni.

1. On suppose que K est un compact de (E, ∥ · ∥).
(a) Montrer que pour tout ε ∈ R∗

+ ; il existe un recouvrement �ni de K par des boules
ouvertes de rayon ε.
Indication : Raisonner par l'absurde.

(b) Soit (Oi)i∈I une famille d'ouverts telle que K ⊂ ∪
i∈I
Oi. Montrer qu'il existe un réel

ε > 0, tel que pour tout x ∈ K, il existe i ∈ I tel que B0(x, ε) ∩K ⊂ Oi.
Indication : Raisonner par l'absurde.

(c) Montrer que de tout recouvrement de K par des ouverts on peut extraire un sous-
recouvrement �ni.

2. Montrer que si de de tout recouvrement de K par des ouverts, on peut extraire un
sous-recouvrement �ni, alors K est compact 8.

3. Montrer que K est compact si et seulement si pour toute famille de fermés de (E, ∥ · ∥),

(Fi)i∈I telle que K ∩
(
∩
i∈I
Fi

)
= ∅, il existe une sous-famille �nie (Fi)i∈J telle que :

K ∩
(
∩
i∈J

Fi

)
= ∅.

8. C'est cette propriété, qui dans le cas de topologies ne dérivant pas d'une distance, sert à dé�nir un compact.
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Lycée Kerichen 2025-2026 MP∗

Travaux dirigés no 8

Connexité par arcs, convexité

I. CONVEXES
Soit C un convexe non vide fermé de Rn, muni de sa structure euclidienne canonique. le

produit scalaire canonique est noté ⟨·|·⟩, ∥ · ∥ la norme associée.
On appelle hyperplan d'appui de C en un point a de C tout hyperplan H de Rn passant

par a tel que C soit inclus dans un des demi-espaces fermés dé�nis par H. Un point a de C
est dit extrémal si C − {a} est convexe, autrement dit si a n'est pas le milieu de deux points
distincts de C.

1. Enveloppe convexe. Soit A une partie de Rn non vide.
L'enveloppe convexe d'une partie, comme les sous-espace vectoriels ou sous-groupes

engendrés par une partie, peut se dé�nir de deux manières :
� par intersection ;
� au moyen d'opérations sur les éléments de la partie.

(a) Montrer que l'intersection d'une famille non vide de convexes est convexe. En déduire
qu'il existe un plus petit convexe contenant A. On l'appelle enveloppe convexe de A,
on notera conv(A).

(b) Montrer que conv(A) est l'ensemble B+(A) des barycentres d'un nombre quelconque
d'éléments de A a�ectés de coe�cients positifs quelconques.

Soit p un point de conv(A) barycentre à coe�cients positif de d points a1, ..., ad,
a�ectés des coe�cients respectifs (α1, ..., αd). On suppose que d ≥ n+ 2.

(c) Montrer que le noyau de l'application linéaire suivante est non trivial

Φ : Rd → Rn ×R ; (x1, ..., xd) 7→

(
d∑
i=1

xiai,
d∑
i=1

xi

)

En considérant un élément (z1, ...zd) du noyau de L non nul et les applications

R → R ; t 7→ αi + tzi,

pour i = 1, 2, ...d, montrer que p est barycentre à coe�cients positifs de d− 1 points
de A.

(d) Théorème de Carathéodory �
Montrer que conv(A) est l'ensemble des barycentres de n+1 éléments de A a�ectés

de coe�cients positifs quelconques.
(e) On suppose que la partie A est compacte. Montrer que son enveloppe convexe,

conv(A), est aussi compacte.
(f) L'enveloppe convexe d'un fermé est-elle fermée.

2. Projection sur un convexe

(a) Soit z un élément de Rn. Montrer qu'il existe un et un seul point c de C tel que :
∥z − c∥ = d(c, C). Le point c s'appelle projection de z sur C et sera noté p(z). On
dispose ainsi d'une application p de Rn dans Rn à valeurs dans C.
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(b) Soit y un élément de C, montrer que ⟨y − p(z)|z − p(z)⟩ ≤ 0.

Indication : Considérer un point du segment [p(⃗a), y⃗].
Quelle interprétation géométrique donner de ce résultat ?

(c) Soient a et b des éléments de Rn. Montrer que ∥p(a)− p(b)∥ ≤ ∥a− b∥. Que dire de
l'application p ?

3. On suppose que z n'apartient pas à C. Montrer que C admet en p(z) un hyperplan
d'appui

4. Montrer que p(Rn − C) ⊂ Fr(C)

5. Soit f un point de la frontière de C. Montrer que C admet en f un hyperplan d'appui.
Indication : Considérer une suite d'éléments de Rn \ C qui converge vers f .

6. Théorème de Krein-Milman

On suppose dans cette question que C est compact.

(a) SoitH un hyperplan d'appui de C en un point a. Montrer que a est un point extrémal
de C si et seulement si il est un point extrémal de C ∩H (on justi�era que C ∩H
est un convexe fermé.

(b) Montrer que tout point y de C est barycentre à coe�cients positifs de points de la
frontière de C.
Indication : On pourra considérer l'intersection de C et d'une droite passant par y.

(c) Montrer que C est l'enveloppe convexe de ses points extrémaux (Théorème de Krein-
Milman).

7. On ne suppose plus C compact mais au contraire, non borné. Montrer que C contient
une demi droite.

8. Soient X un convexe de Rn non vide, a un point intérieur à X et b un point adhérent à
X. Montrer que [a, b[ est inclus dans l'intérieur de X.
Indication : Etudier pour un point x de [a, b[ l'image d'une boule de centre a par une
homothétie de centre x.

9. Égalité des accroissements finis vectorielle

(a) Rappeler l'égalité des accroissements �nis pour une application d'un intervalle I de
R à valeurs dans R. Montrer que si l'on remplace dans l'énoncé l'ensemble d'arrivé
R par R2, alors le résultat est faux.

Donnons un généralisation à Rn de l'égalité des accroissements �nie.
Soit F une application d'une application d'un intervalle ouvert I non vide à

valeurs dans Rn.
Soit A une partie de Rn. Le sous-espace a�ne engendré par A est le plus petit

sous-espace a�ne de Rn contenant A, c'est aussi l'ensemble des barycentres de points
de A.

Théorème 1. Supposons F dérivable et soient a et b des élément de I tels que
a < b. Notons d la dimension de l'espace a�ne engendré par F ([a, b]). Alors il existe
c1, c2,...,cd+1 des éléments de ]a, b[, λ1, λ2,...,λd+1 des réels positifs ou nuls de somme
1, tels que

F (b)− F (a)

b− a
=

d+1∑
i=1

λiF (ci).

Ce théorème est assez délicat, nous allons en donner une forme faible : nous
supposerons F de classe C1 et nous contenterons pour les ci de l'apppartenance à
[a, b].

31



(b) Montrer que l'on ne restreint pas la généralité en supposoant que 0Rn est élément
de F ([a, b]) et que dans ce cas le sous-espace a�ne engendré par F ([a, b]) est le
sous-espace vectoriel engendré par F ([a, b]).

(c) Montrer que F (b)−F (a)
b−a est limite d'une suite de barycentres à coe�cients positifs

d'éléments de F ′([a, b]).
(d) Conclure.

II. CONNEXITÉ PAR ARCS
Soient un entier n ≥ 2 et une application f de Rn dans R continue.

1. On suppose qu'il existe un réel a tel que f−1({a}) soit un singleton. Montrer que f
atteint en f−1({a}) son maximum ou son minimum.

2. On supose qu'il existe un réel b tel que f−1({b}) soit compact. Montrer que f atteint
son maximum ou son minimum.

III . RECOUVREMENT D'UN COMPACT (pour un public averti)
L'espace vectoriel R2 est muni d'une norme ∥ · ∥. Soit K un compact de R2.

1. Soit ε ∈ R∗
+. Montrer qu'il existe un ensemble �nie P de K tel que K soit recouvert par

les boules ouvertes de rayon ε centrées sur les points de P : K ⊂
⋃
p∈P

B0(p, ε).

2. Montrer que K possède une partie dense dénombrable.

3. Pour tout réel ε > 0, on dit qu'une partie A de K est ε-séparée si la distance entre deux
points distincts de A est supérieure ou égale à ε.

(a) Soit ε ∈ R∗
+. Montrer qu'il existe un entier M(ε) tel que toute partie ε-séparée soit

de cardinal inférieur ou égal àM(ε) et tel qu'il existe une partie ε-séparée de cardinal
M(ε).

(b) Dans le cas paticulier où la norme choisie est la norme euclidienne canonique et où
K est inclus dans la boule fermée de centre l'origine et de rayon R > 0 donner un
majorant de M(ε)

(c) Soit f une application de K dans K qui conserve la distance. Montrer que f est
surjective.

4. Soit ε ∈ R∗
+. Soit F une partie de K, �nie. On dit que F recouvre K à ε près si :

K ⊂
⋃
a∈F

Bf(a, ε).

(a) Montrer qu'il existe un entier m(ε) tel que toute partie qui recouvre K à ε près soit
de cardinal supérieur ou égal à m(ε) et tel qu'il existe une partie qui recouvrent K
à ε près de cardinal m(ε).

(b) Notons P , l'ensemble des parties qui recouvrent K à ε près de cardinal m(ε).
Montrer que l'application

P → R ; P 7→
∑

(x,y)∈P2

∥x− y∥

atteint sa borne inférieure.
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Travaux dirigés no 9

I. Préambule
Montrer l'existence et donner la valeur de l'intégrale suivante :∫ π

2

0

ln(sin(x)dx

Indication : on pourra introduire la quantité J =
∫ π

2

0
ln(cos(x)dx que l'on comparera à I.

II. Développements asymptotiques d'intégrales

1. Montrer qu'il existe une suite de réels (ak)k∈N∗ à déterminer, telle que pour tout élément
k de N∗, ∫ x

e

dt

ln t
=
a1x

lnx
+

a2x

(lnx)2
+ · · ·+ akx

(lnx)k
+ o

(
x

(lnx)k

)
, x→ +∞.

2. Montrer qu'il existe une suite de réels (bk)k∈N∗ à déterminer, telle que pour tout élément
k de N∗,∫ +∞

x

exp(−t2)dt = exp(−x2)
(
b0
x

+
b1
x3

+ ....+
bk

x2k+1
+ o

(
1

x2k+1

))
, x→ +∞.

III. Moyenne pondérée le retour de Cesàro

1. Soit f un élément de C0([0, 1],R). On se propose d'étudier la limite éventuelle de la suite
(In)n∈N, où pour tout entier naturel n,

In = n

∫ 1

0

tnf (t)dt

(a) Représenter pour diverse valeurs de n les applications [0, 1] → R ; t→ tn∫ 1
0 t

n d t
.

(b) Montrer que :
1∫ 1

0
tn d t

∫ 1

0

tnf (t) d t →
n→+∞

f (1) .

En déduire que la suite (In)n∈N a une limite à déterminer.

2. Soit f une application de R+ dans R, continue et bornée.

(a) Pour tout entier naturel n, justi�er l'existence de :

Jn = n

∫ +∞

0

e−ntf (t)dt.

On se propose d'étudier la limite éventuelle de la suite (Jn)n∈N.
(b) Représenter pour diverses valeurs de n les applications R+ → R ; t→ e−nt∫+∞

0 e−nt d t
.
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(c) Montrer, en raisonnant comme précédemment que la suite (Jn)n∈N a une limite à
déterminer.

(d) (Réservé 5
2
.) Reprendre la sous question précédente par changement de variable et

en utilisant le théorème de convergnce dominée.

IV. Lemme de Lebesgue

1. Soit g une application d'un segment non trivial [a, b] à valeur réelles de classe C1 Déter-
miner la limite en +∞ de de l'application

R → R ; λ 7→
∫
[a,b]

g sin(n ·).

2. On ademet le lemme de Lebesgue (question 1) en ne supposant g seulement continue
(voir cours.)

Soit f une application de R dans R intégrable de classe C1. Pour tout réel λ, montrer
l'existence de

L(λ) =

∫ ∞

−∞
f(t) sin(λt)dt.

Déterminer la limite de L(λ) lorsque λ tend vers +∞.

3. Soit f un élément de C1([0, 1],R). Montrer pour tout entier naturel n, l'existence de

In =

∫ 1

0

f(t) sin(nt)dt

t
.

Etudier la limite éventuelle lorsque n tend vers +∞ de la suite (In)n∈N.

4. (a) Montrer que l'intégrale
∫ +∞
0

sin t
t

dt est convergente. On admet (jusqu'à un prochain
TD) que

∫ +∞
0

sin t
t

dt = π
2
.

(b) Soit f un élément de C1([0, 1],R). Montrer pour tout entier naturel n, l'existence de

In =

∫ 1

0

f(t) sin(nt)

t
dt.

Étudier la limite éventuelle lorsque n tend vers +∞ de la suite (In)n∈N.

(c) Pour tout entier n ≥ 1, on pose

Jn :=
1

n

∫ π
2

0

sin2(nt)

sin2(t)
dt.

Justi�er l'existence de cette intégrale.

(d) Étudier la limite éventuelle de la suite (Jn)n∈N.
Indication : On pourra utiliser une intégration par parties.

VI Compléments de programme.
Lebesgue encore
Soit T ∈ R∗

+.
Soit h une application continue de R dans R, T -périodique. On pose :

< h >=
1

T

∫ T

0

h(t)dt.
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1. Montrer que pour tout réel x et tout entier n,

1

nT

∫ x+nT

x

h(t)dt =< h > .

2. Soit f une application de classe C1 sur un segment [a, b] non réduit à un point. Montrer∫ b

a

f(t)h(nt)dt −→
n→+∞

< h >

∫ b

a

f(t)dt.

3. Reprendre l'exercice avec f seulement continue par morceaux.

Cesàro toujours
Soient f une application de [0,1] dans R continue et telle que f(0) ̸= 0, et

g : R+ → R ;

∫ 1

0

f(x)

1 + tx
= dx.

1. Donner un équivalent de g(t) lorsque t tend vers +∞.

2. On suppose de plus f de classse C1 ; Majorer la di�érence entre cet équivalent et f au
voisinage de +∞.

Une intégrale célébre �
On se propose de calculer l'intégrale suivante, qui intervient notamment dans le calcul d'un

champ éléctrostatique créé par une densité invariante rotation autour d'un arc et par translation
dans la direction de cette axe : ∫ π

0

ln(1 + 2x cos θ + x2)dθ.

1. Montrer que pour tout réel x, la quantité
∫ π
0
ln(1 + 2x cos θ + x2)dθ est bien dé�nie.

Nous allons donner la valeur de cette intégrale.
Dans la suite on désigne par f l'application

f : R → R ; x 7→ ln(1 + 2x cos θ + x2)dθ.

2. Première méthode

(a) (5/2) Montrer que l'application f est continue. Les 3/2 admettront ce résultat.
(b) pour tout réel x distinct de 1 et de −1, calculer f(x) en utilisant les sommes de

Riemann.
(c) Conclure.

3. Seconde méthode

(a) Pour tout réel x étudier f(−x), f(x2) et pour x de plus non nul f
(
1
x

)
.

(b) En déduire f .
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Normes d'application linéaire

Travaux dirigés no 10

I. PREMIER EXEMPLE
Soit L l'application linéaire de R2, noté en colonne, dans lui-même dé�nie par,

L (X) =

(
1 2
3 −1

)
X,

pour tout élément X de R2.

1. Montrer que L est continue de (R2, n2) dans lui-même et donner sa norme.

2. Généraliser en substituant à

(
1 2
3 −1

)
un élément quelconque de Mn(R)quelconque.

II. ÉTUDE DE NORME SUR Mn(K)

Pour tout A ∈ Mn(K), on note A = (ai,j)1≤i≤n,1≤j≤n, et pour tout X ∈ Mn,1(K), on note
xi le terme de la ie ligne de X, pour 1 ≤ i ≤ n.

Pour A ∈Mn(K), on pose ρ(A) = max {|λ|;λ ∈ sp(A)}, quantité appelée rayon spectral.

1. Soit les application

N ′ : Mn(K) → R+ ;A 7→ max
j=1,...,n

(
n∑
i=1

|ai,j|

)

N : Mn(K) → R+, ;A 7→ max
i=1,...,n

(
n∑
j=1

|ai,j|

)
Montrer directement que N et N ′ sont des normes.

2. Montrer que N et N ′ sont des normes subordonnées à des normes sur M,,n(1)K à
préciser, lorsque l'on identi�e les éléments deMn(K) et les endomorphismes deMn,1(K)
canoniquement associés. On traitera le cas plus délicat K = C.

Donc en particulier N et N ′ sont des norme d'algèbre (dans le cas de Mn(K) on
parle de � normes matricielles �.

3. (a) Montrer que pour tout matrice A élément de Mn(K), ρ(A) ≤ N(A).
dans la suite K = C.

(b) Soit Q ∈ Mn(C) une matrice inversible.

NQ : Mn(C) → R+, ;A 7→ N(Q−1AQ).

Véri�er que NQ est une norme matricielle sur Mn(C).
(c) Soient A ∈ Mn(C) et ε ∈ R∗

+, montrer qu'il existe une norme matricielle Nε telle
que

Nε(A) < ρ(A) + ε.
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4. Derechef K = R. Montrer que

NF : Mn(R) → R+, ;A 7→ (tr(M⊤M))
1
2

est une norme.
On l'appelle norme de Frobenius.

5. Montrer que NF est une norme d'algèbre (on dit aussi matricielle).

6. La norme NF est-elle une norme subordonnée.

III. ÉTUDE D'UNE APPLICATION LINÉAIRE

Par E sera désigner l'espace vectoriel des applications de [0, 1] dans R, continue.
Soient g un élément de E et L la forme linéaire

E → R ; f 7→
∫
[0,1]

gf.

1. On munit E de la norme N2 et R de | · |. Montrer que L est continue et déterminer sa
norme d'opérateur.

2. On munit E de la norme N1 et R de | · |.

(a) Montrer que L est continue.
(b) Montrer que |g| atteint sa borne supérieure en un point a de [0, 1].
(c) Dans le cas où a ∈]0, 1[, déterminer la norme d'opérateur de L.
(d) Conclure dans le cas général.
(e) On considère la restriction L1 de L à l'espace vectoriel E1 des applications de [0, 1]

dans R de classe C1. On prend pour g l'application sin
(
π
2
·
)
. Montrer que L1 est

continue et déterminer sa norme d'opérateur lorsque E1 est muni de la restriction de
N∞ et R de | · |.

3. On munit E de la norme N∞ et R de | · |. Montrer que L est continue et déterminer sa
norme d'opérateur.

IV. ÉTUDE D'UNE APPLICATION LINÉAIRE

1. Soit f une application linéaire sur (R3, n1) dans un espace vectoriel normé (F, ∥ · ∥). On
note B la boule unité fermé de (R3, n1).

(a) Montrer que B est l'intersection de 8 demi-espaces fermés de chacun desquels ont on
donnera une équation. Représenter B.

(b) Soient P1, P2, . . . , P8 les 8 plans a�nes délimitant ses demi-espaces. Les points de B.
qui appartiennent à 3 de ces plans, distincts, sont appelés sommets de B. Déterminer
les sommets de B.

(c) On appelle face de B, les ensembles Pi ∩ B, i = 1, 2 . . . , 8. Combien il y a t-il de
sommets par faces ?

2. Montrer qu'il existe un sommet s de B tel que |||f⃗ ||| = ∥f⃗(s⃗)∥F.
3. Application : déterminer |||f⃗ |||, pour (F, ∥ · ∥F)= (R2, n2) et f⃗ dé�nie par :

f (x, y, z) = (8x+ 5y + 4z, 2x− 3y),

pour tout triplet de réels (x, y, z).

4. Soit ℓ une application linéaire de Rn dans (F, ∥ · ∥). On munit Rn d'une norme N . Avec
les notrations du TD 8 montrer qu'il existe un point x extrémal de la boule unité fermée
de (Rn, N) tel que : |||ℓ⃗||| = N(ℓ(x)).
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Pour public averti et téméraire

V. ÉQUIVALENCE DE NORMES.
Notons E = C0([0, 1],R). Soient un réel C > 0 et F un sous espace vectoriel de E tel que :

∥f∥∞ ≤ C∥f∥2, (9)

pour tout élément f de F.

1. Montrer que les restrictions de ∥ · ∥2 et ∥ · ∥∞ à F sont équivalentes.

2. Montrer que F est de dimension �nie inférieure ou égale à C2.

3. Donner un exemple de sous-espace vectoriel F de E de dimension n et véri�ant (9) avec
C = n

1
2 .

>VI. APPLICATION INVERSIBLE DANS UN HILBERT.
Soit (H, ⟨·|·⟩) un espace préhilbertien dans lequel toute séries absolument convergent converge

(on dit que c'est un espace de Hilbert). On munira H de la norme euclidienne ∥ · ∥ associée au
produit scalaire.

Soit f un endomorphisme continue de H tel qu'il existe un réel α tel que :

∀x ∈ H, α∥x∥2 ≤ ⟨f(x)|x⟩.

1. Montrer que im(f) est fermée Et que (im(f))⊤ = {0H}
2. En déduire que f est un automorphisme.

3. Montrer que f−1 est continu et que ∥f−1∥op ≤ 1
α
.
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Travaux dirigés no 10

I. ÉQUIVALENTS DE RESTES ET DE SOMMES PARTIELLES DE SÉRIES

Nous avons vu comment déterminer au moyen des théorèmes de sommation d'équivalents,
des restes et des sommes partielles de séries à termes positifs. Nous allons aller plus loin !

1. Étude de restes

(a) Soit un réel a > 1. Donner un équivalent lorque n tend vers +∞, de

+∞∑
k=n

1

na
.

(b) Donner un développement limité à l'ordre 3 en ≪
1

n
≫ , de

+∞∑
k=n

1

k2
.

2. Étude d'une somme partielle, constante d'Euler

(a) Montrer que
n∑
k=1

1

k
∼

n→+∞
lnn.

Posons pour tout élément n de N∗, xn :=
n∑
k=1

1

k
− lnn. Montrer que la suite (xn)n∈N

converge vers un réel γ, appelé constante d'Euler.

(b) Montrer que

xn = γ +
1

2n
+ o

(
1

n

)
, (n→ +∞).

II. SUITES ITÉRÉES : TOUJOURS PLUS LOIN !

Nous allons reprendre un exercice déjà étudié, avec des outils plus puissants, le généraliser,
et mieux comprendre le sens de la méthode précédemment empoyée.

Soit a un élément de ]0, π
2
[. Nous avons montré que la relation de récurrence{

u0 = a,
un+1 = sin(un),

dé�nit bien une suite (un)n∈N et montré que cette suite converge vers 0.

1. Nous avons montré que la suite :
(
u−2
n+1 − u−2

n

)
n∈N admet une limite non nulle .

D'ou vient l'idée de considérer cette quantité ?

2. En utilisant les théorèmes de sommation des relations de comparaisons pour des séries
à termes positifs, donner lorsque n tend vers +∞, un équivalent de un, de la forme cnγ,
avec c et γ réels.

3. pour tout élément n de N, on pose an := un − cnγ. Donner un équivalent de an, lorsque
n tend vers +∞.

III. POUR ÊTRE SÛR D'AVOIR COMPRIS
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1. (a) Montrer que la relation de récurrence{
u0 = 5,
un+1 = un +

1
un
,

dé�nit bien une suite (un)n∈N
(b) Montrer que (un)n∈N admet +∞ comme limite
(c) Montrer que un ∼

n→+∞

√
n.

(d) Montrer que u1000 ∈ [45, 45, 1].

2. (a) Montrer que la relation de récurrence{
v0 = a,
vn+1 = un + exp(−vn),

dé�nit bien une suite (vn)n∈N. Montrer que (vn)n∈N admet +∞ comme limite
(b) Donner un développement asymptotique de vn à deux termes, lorsque n tend vers

+∞.

3. (a) Soit b un élément de ]1,+∞[. Montrer que la relation de récurrence{
x0 = b,
xn+1 = xn + ln(xn),

dé�nit bien une suite (xn)n∈N. Montrer que cette suite converge vers +∞.
(b) Donner un équivalent simple de ln(xn), lorsque n tend vers +∞, puis de xn.

4. Soit (cn)n∈N une suite de nombres réels telles que lim
n→+∞

cn
n∑
k=0

c2k = 1. Déterminer un

équivalent de cn lorsque n tend vers +∞.
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IV. TRANSFORMATION DE NIELS HENRIK ABEL
La méthode suivante de sommation, qui est l'analogue discret de l'intégration par parties,

est hors programme mais doit se retrouver rapidement.
Soient (an)n∈N et (bn)n∈N des suites réelles. Posons pour tout entier naturel n, un = anbn

et Sn =
n∑
k=0

uk.

1. On pose Bn :=
n∑
k=0

bk, pour tout entier naturel n. Montrer pour tout n et tout p entiers

naturels que :

p∑
k=1

un+k =

p∑
k=1

(an+k − an+k+1)Bn+k + [an+p+1Bn+p − an+1Bn]

2. On suppose que la suite (Bn)n∈N est bornée et que la suite (an)n∈N tend vers zéro en
décroissant. Montrer que pour tout réel ε > 0 il existe un entier n0 tel que pour tout
n ∈ N, tout k ∈ N si n ≥ n0, alors :

|Sn+k − Sn| < ε,

(suite de Cauchy).

3. Montrer que la suite (Sn)n∈N est bornée.

4. Montrer que la série converge.

5. Déduire de ce qui précède le théorème spécial des séries alternées.

6. Soient t un réel et α un réel strictement positif. Etudiers les séries∑
n≥1

eint

nα
;
∑
n≥1

cos(nt)

nα
;
∑
n≥1

sin (nt)

nα

7. Soit
∑
vn une série de réels convergente. Montrer que lorsque n tend vers +∞,

n∑
k=0

kvk = o(n).

8. Soit (wn)n∈N une suite croissante de réels strictements positifs qui tend vers +∞. Soit

(xn)n∈N une suite de nombres complexes telle que la série
∑ xn

wn
converge de somme L.

Montrer que 1
wn

n∑
k=0

xn tend vers 0, lorsque n tend vers +∞.

Indication : Considérer la quantité Rn =
+∞∑
k=n

xn
wn
.

V. RECHERCHE D'ÉQUIVALENT
Soient a un réel > 0 et (xn)n∈N∗ une suite de réels dé�nie par rcurrence par : x1 = a et pour

tout n ∈ N, en désignant par Sn =
n∑
k=1

xk,

xn+1 = xn +
1

S n
.

1. Montrer que la suite (xn)n∈N∗ diverge vers +∞.

2. Déterminer un équivalent de xn, lorsque n tend vers +∞.
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VI. SUITE DÉFINIE IMPLICITEMENT
Montrer qu'il existe une et une seule suite réelle (un)n∈N telle que pour tout n ∈ N

u5n + nun − 1 = 0. (10)

Donner un développement asymptotique à deux terme de (un)n∈N.

VII. CALCUL DE SOMMES

1. Montrer la convergence et calculer la somme de la série de terme général un = (−1)n

2n+1
. On

pourra évaluer pour commencer
∫ 1

0
tαdt.

2. (a) Montrer que la suite (un)n∈N, où pour tout n ∈ N, un =
n∑
p=1

ln p
p
− 1

2
(ln(n))2 converge.

(b) En déduire la valeur de
+∞∑
n=1

(−1)n
lnn

n
.
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Travaux dirigés no 12

I. CAS DOUTEUX DANS LA RÈGLE DE D'ALEMBERT
Soit une série à termes strictement positifs,

∑
un , à laquelle on peut associer deux réels a

et b, avec b > 1 tels que :

un+1

un
= 1− a

n
+O

(
1

nb

)
(n→ ∞)

1. Montrer que si a < 0, alors la série diverge grossièrement.

2. Montrer en utilisant la comparaison indirecte (cf. exercice du cours) à la série harmonique
que si a < 1, alors la série diverge.

Exemple : étudier la série de terme général

un =
√
n!

n∏
p=1

sin

(
1
√
p

)
.

3. Dans le cas général montrer le résultat hors programme suivant :
Il existe un réel k strictement positif tel que

un ∼ k

na
(n→ ∞) .

Indication : On poura étudier la série téléscopique
∑

ln(un+1)− ln(un).

4. Application donner la nature de la série de terme général :

un =
2.4.6............... (2n− 2) .2n

1.3.5........ (2n− 1) . (2n+ 1)
.

5. Nous souhaitons établir la formule de Stirling : n! ∼
√
2πn nn

en
(n→ ∞)

(a) Posons pour tout entier naturel n, un := n!n−n.en, montrer qu'il existe un réel k tel
que un ∼ k

√
n.

(b) Posons, pour tout entier naturel n, In :=
∫ π/2
0

sinn t dt.

Calculer pour tout entier naturel p, I2p et I2p+1.

(c) Prouver que pour tout n ∈ N,

In+2

In
≤ In+1

In
≤ 1.

(d) En déduire que In+1

In
tend vers une limite que l'on déterminera, lorsque n tend vers

+∞.

(e) Déduire de la question précédente la valeur de k et conclure.

II PRODUITS INFINIS
Soit (an)n∈N une suite réelle. On pose pour tout entier naturel n, Pn :=

n∏
k=0

ak.

Nous dirons que le produit in�ni associé, noté
∏
an converge si la suite (Pn)n∈N converge

vers une limite non nulle.
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1. Montrer que si
∏
an converge alors la suite (Pn)n∈N converge vers 1.

On suppose dans la suite cette condition réalisée.
Pour tout entier naturel n, on pose un = an − 1 et l'on suppose que un ̸= −1.

2. Montrer qu il existe un entier naturel n0, tel que pour tout entier n ≥ n0, la quantité
ln(1 + un) soit dé�nie. Montrer que le produit

∏
an converge si et seulement si la série∑

n≥n0

ln(1 + un) converge.

3. On suppose en outre, dans cette question, que la suite (un)n∈N est positive à partir d'un
certain rang. Montrer que le produit

∏
an et la série

∑
un sont de même nature.

4. On ne suppose plus la suite (un)n∈N positive à partir d'un certain rang, mais que la série∑
un converge. Montrer que

∏
an converge si et seulemement si la série

∑
u2n converge.

III. ÉCRITURE DÉCIMALE D'UN RÉEL

Quitte à retrancher à x sa partie entière, pour allèger l'écriture nous supposeros que x ∈
[0, 1[.

Rappelons qu'un nombre décimal d, c'est-à-dire un réel de la forme a
10N

où a est un élément
de Z et N de N peut se mettre sous la forme :

x = ±a0 + a110
1 + a210

2 + ...aN10
N .,

où a0, a1a..., aN sont des entiers naturels. On note alors x = ±a0, a1a2...aN cette dernière forme
est appelée écriture décimale de x, l'entiers naturel ai la ie décimale de x, pour i = 1, ..., N .

Nous nous proposons de fournir à tout réel x une écriture similaire. Quitte à retrancher à
x sa partie entière, pour allèger l'écriture, nous supposeros que x ∈ [0, 1[.

Soit x un élément de [0, 1[. On dé�nit les suites réelles (xn)n∈N∗ (yn)n∈N∗ et (an)n∈N∗ par,
pour tout entier n supérieur ou égal à 1,

xn := 10−n ⌊10nx⌋ , , yn := xn + 10−n et an := ⌊10nx⌋ − 10
⌊
10n−1x

⌋
).

1. Un exemple
On prend pour x le réel 0, 123456, c'est-à-dire, on le rappelera dans la suite, le réel
6∑
i=1

i10−i. Déterminer pour ce choix de x les suites (xn)n∈N∗ (yn)n∈N∗ et (an)n∈N∗ .

2. Écriture décimale

(a) Montrer que pour tout entier n ≥ 1, xn ≤ x < yn.
On appelle xn (resp. yn) valeur approchée de x par défaut (resp. par excès) à 10−n

près.
(b) Montrer que les suites (xn)n∈N∗ et (yn)n∈N∗ sont adjacentes. Quelle est leur limite ?
(c) Montrer que pour tout entier n ≥ 1,

xn =
n∑
i=1

ai10
−i.

Le réel x est donc la somme de la série
∑
n≥1

an10
−n. La suite (an)n∈N∗ s'appelle la

suite des décimales de x.

3. Étude de la suite des décimales de x
On note S l'ensemble des suites (an)n∈N∗ d'éléments de {0, 1, . . . , 9}, qui ne sont pas
constamment égales à 9 à partir d'un certain rang, c'est-à-dire, que pour tout élément
N de N∗, il existe un entier n tel que n ≥ N et an ̸= 9.
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(a) Montrer que pour tout élément x de [0, 1[, la suite (an)n∈N∗ de ses décimales est
élément de S.

(b) Montrer que l'application δ qui à un élément x de [0, 1[ associe la suite de ses décimales
est une bijection de [0, 1[ sur S.

Le caractère bijectif de δ autorise à noter un élément de [0, 1[, x = 0, a1a2a3a4 . . . an . . . ,
où (an)n∈N∗ désigne la suite de ses décimales. On dit qu'un élément x de [0, 1] est décimal,
si par dé�nition, la suite de ses décimales est nulle à partir d'un certain rang. Si δ(x) est
nulle à partir du rang n0, on notera simplement x = 0, a1a2 . . . an0−1.

4. Caractérisation des rationnels

(a) Montrer que le nombre 0, 777777777 . . . (la suite des décimales est constante égale à
7) est rationnel.

Même question pour les nombres 0, 17891789 . . . 1789 . . . et 0, 12345292629 . . . 29 . . . .

(b) Soit x un élément de [0, 1[, on suppose que la suite de ses décimales (an)n∈N∗ est
périodique à partir d'un certain rang, c'est-à-dire qu'il existe des entiers n0 et p
strictement positifs tels que pour tout entier n supérieur ou égal à n0, an+p = an.
L'entier p est appelée période de la suite. Montrer que x est rationnel.

(c) Montrer, réciproquement que pour tout élément x de [0, 1[ rationnel, δ(x) est pério-
dique à partir d'un certain rang.

5. Montrer que l'ensemble R n'est pas dénombrable.

IV. Nombres de Liouville

Compléments pour public averti
On dit qu'un nombre réel est algébrique si, par dé�nition, il est la racine d'un polynôme à

coe�cients entiers. Par exemple 29 ou
√
2 sont algébriques. Nous étudierons un peu en exercice

les nombres algébriques dans un chapitre suivant. Un nombre qui n'est pas algébrique est dit
transcendant, c'est par exemple le cas de π ou e. Nous allons montrer qu'il existe beaucoup de
nombres transcendants.

Soit x un réel.

1. On suppose que x est racine du polynôme à coe�cients entiers de degré m ≥ 1,

P = a0X
m + a1X

m−1 + · · ·+ am

.

SoitM le plus grand des nombre réels
∣∣∣aja0 ∣∣∣ , j = 1, 2, . . . ,m. Montrer que toute racine

de P à un module strictement inférieur à 1 +M .

2. On suppose toujours x racine de P . Soit p
q
, avec p ∈ Z et q ∈ N∗ une valeur rationnelle

approchée de x à 1
q
près, qui n'est pas une racine rationnelle de P .

(a) Montrer qu'il existe un réel α véri�ant |α| ≤M + 2 tel que :

P

(
p

q

)
=

(
p

q
− x

)
P ′(α).

(b) En déduire l'existencence d'un entier K ≥ 0 qui ne dépend que des coe�cients de P
tel que :

1

qm
≤
∣∣∣∣P (pq

)∣∣∣∣ < ∣∣∣∣x− p

q

∣∣∣∣K.
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3. Soit un entier naturel m′ ≥ 1. On suppose que l'ensemble des entiers q′ ≥ 1 tels qu'il
existe p′ ∈ Z tel que : ∣∣∣∣x− p′

q′

∣∣∣∣ ≤ 1

q′m
′+1
,

est in�ni. Montrer que x n'est pas racine d'un polynôme à coe�cient entiers de degré
m′.

4. Nombres de Liouville
Soit le réel donné par son écriture décimale

α =
∞∑
n=1

an10
−n!,

où (an)n∈N∗ est une suite à valeurs dans {0, 1, . . . , 9} qui n'est pas à partir d'un certain
rang constante à 0. Un tel nombre réel est dit nombre de Liouville.

(a) En étudiant la valeur approchée par défaut de α à 1
10m! près, pour m entier naturel,

montrer que α est transcendant.
(b) Montrer que l'ensemble des nombres de Liouville est en bijection avec ]0, 1[.

Il y a ≪ beaucoup ≫ de nombres de Liouville et plus encore de nombres transcendants !
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IV. Fractions continues

Soit α un réel. On dé�nit la procédure suivante.

Procédure P

• �Etape 0�
i = 0; x := α; a := E(x);

• �Etape i�
tant que x− a ̸= 0 faire :

i = i+ 1; x = 1
x−a; a = E(x);

fin (de boucle �tant que�).

Fin de procédure

En notant xi et ai les valeurs respectives de x et a fournies par la ie étape de la procédure, on
dispose donc, soit de suites (xi)i∈N et (ai)i∈N, soit de suites �nies (x0, . . . , xn) et (a0, . . . , an),
selon que la procédure ne se termine pas ou se termine à l'étape n.

1. Soit n un élément de N∗. On suppose que la procédure s'est déroulée jusqu'à l'étape n.
Véri�er que :

α = a0 +
1

x1
, α = a0 +

1

a1 +
1
x2

, . . . , α = a0 +
1

a1 +
1

a2 +
1

. . . 1
xn

,

2. Exemples
Déterminer les suites (�nies ou non) (ai)i≥0, pour α = 225

141
et α =

√
2.

3. Cas rationnel

(a) Montrer que si la procédure se termine, alors α est rationnel.
(b) On suppose que α est rationnel. Il existe donc (p, q) éléments de Z × N∗) tels que

α = p
q
et p et q premiers entre eux. Donner une procédure calculant les termes de

la suites (ai)i≥0, à partir de p et q. montrer que cette procédure se termine. De quel
algorithme s'agit-il en fait ?

(c) Conclure que la suite (ai)i≥0 est �nie si et seulement si α est rationnel.

4. Cas irrationnel
On Suppose dans la suite que α n'est pas rationnel. Pour tout élément n de N on note
Rn le rationnel :

Rn := a0 +
1

a1 +
1

a2 +
1

. . . 1
an

,

On dit que Rn est la (fraction continue) réduite d'ordre n de α. On se propose de montrer
que la suite (Rn)n∈N tend vers α.

On dé�nit les suites d'entiers (Pn)n∈N et (Qn)n∈N par

P0 = a0, Q0 = 1,
P1 = a0a1 + 1, Q1 = u1,
Pn = Pn−1an + Pn−2 Qn = Qn−1an +Qn−2, pour tout n ≥ 2.

(a) Montrer que pour tout entier naturel n, Rn =
Pn
Qn

.
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(b) Montrer que pour tout entier n ≥ 1,

PnQn−1 − Pn−1Qn = (−1)n (11)

(c) Montrer que pour tout entier naturel n,
Pn
Qn

est une fraction irréductible.

(d) Montrer que pour tout entier n ≥ 1,

α =
Pnxn+1 + Pn−1

Qnxn+1 +Qn−1

. (12)

En déduire que ∣∣∣∣α− Pn
Qn

∣∣∣∣ < ∣∣∣∣Pn+1

Qn+1

− Pn
Qn

∣∣∣∣ .
(e) Conclure.
(f) Montrer que

α =
P0

Q0

+
+∞∑
n=0

(−1)n

QnQn+1

.

Discuter suivant les valeurs de n si la réduite d'ordre n est une approximation par
excés ou par défaut de α.

5. Montrer que si la suite (ai)i≥0 est périodique à partir d'un certain rang, alors α est racine
d'un polynôme du second degré à coe�cients entiers.

Indication : On pourra commencer par le cas où (ai)i≥0 est périodique.

V. Irrationnalité de π

On suppose que π est rationnel. Il existe donc (a, b) ∈ N × N∗ tel que π = a
b
. Pour tout

élément n de N, on considère le polynôme : pn = 1
n!
Xn(bX − a)n.

1. Montrer que pour tout n ∈ N, les dérivées successives de pn prennent des valeurs entières
en 0 et en π.

2. Pour tout élément n de N, on pose In :=
∫ π
0
pn(t) sin tdt. Montrer que la suite (In)n∈N

converge vers 0.

3. Montrer que pour tout élément n de N, In est un entier.

4. Conclure à l'irrationnalité de π.

A4pasdicijetelefaissavoir !
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I . RÉGULARITÉ D'APPLICATIONS

1� Soit F l'application de R2 dans R2

F : R2 → R ; (x, y) 7→


x sin y − y sinx

x2 + y2
, pour (x, y) ̸= (0, 0),

0, pour (x, y) = (0, 0).

a) Montrer que F est de classe C0.
b) Montrer que F est de classe C1.
c) Est-ce que F est de classe C2 ?

2� Soit g une application de R dans R de classe C1. Soit F l'application :

F : R2 → R ; (x, y) 7→


g (x)− g (y)

x− y
, pour x ̸= y,

g′ (x) , pour x = y.

a) Montrer que F est continue.
b) Montrer que si g est deux fois dérivable en un point a de R, alors F est di�érentiable en

(a, a).

II. RÉGULARITÉ DE QUELQUES NORMES

Soient n un entier naturel non nul. On considère les applications suivantes de Rn dans R :

N∞ : (x1, x2, ..., xn) 7→ sup
i∈[[1,n]]

|xi| ,

N2 : (x1, x2, ..., xn) 7→

(
n∑
i=1

|xi|2
) 1

2

,

N1 : (x1, x2, ..., xn) 7→
n∑
i=1

|xi|.

1� Montrer que les applications N∞, N2 et N1 sont continues.
2� Pour n = 2 représenter les graphes de ces trois applications.
À partir de là on pourra se limiter à n = 2.
3� En quel point de Rn chacune de ces applications admet-elle des dérivées partielles d'ordre

1, par rapport aux n variables. On pourra commencer par le cas n = 2.
4� Déterminer le plus grand ouvert U , tel que la restriction de N2 à U soit de classe C1.

Déterminer la di�érentielle de N2 en un élément a⃗ de U . Exprimer pour h⃗ élément de Rn,
dN2(⃗a) · h⃗ grâce au produit scalaire canonique de a⃗ par H.

5� Déterminer le plus grand ouvert U tel que la restriction de N1 à U soit de classe C1.
Même question pour N∞.

6� Soit N une norme sur un espace vectoriel E de dimension �nie non nulle. Montrer que
N n'est pas di�érentiable en 0⃗E.

III. DIFFERENTIABILITÉ D'UNE DISTANCE

Soit d une distance sur un espace vectoriel de dimension �nie E et Ω un ouvert de E.
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On se propose d'étudier la di�érentiabilité de

δ ; Ω2 → R ; (m,n) 7→ d(m,n).

On suppose que δ est di�érentiable sur Ω2 et l'on considère (m0, n0) un point de Ω2

1. Que vaut dδ(m0,m0) ?

2. En déduire que pour tout vecteur h⃗ de E, D(⃗h,0E)δ(m0, n0) = 0.

3. En déduire que δ est non di�érentiable sur Ω2.

IV. DIFFERENTIABILITÉ DE LA DISTANCE À UN FERMÉ
(réservé à un publique averti)

Soient n un entier naturel non nul et F un fermé de Rn non vide. On notera Ω le com-
plémentaire de F. On munit Rn de sa structure euclidienne canonique, ⟨·|·⟩ désigne le produit
scalaire canonoique et ∥ · ∥ la norme euclidienne associée.

1. Montrer que l'application distance à F ,

δ : Rn → R ; m 7→ d(m,F )

est continue.
2. Montrer que pour tout point m de Ω, il existe au moins un élément f de F tel que

∥f −m∥ = d(m,F ).
Dans la suite, pour tout élément m de Ω on note A(m) := {f ∈ F |∥f − m∥ =

d(m,F )}. Et on se propose d'étudier la di�érentiabilité de l'application

ϕ : Ω ; m 7→ d(m,F )2

3. Montrer que ϕ est di�érentiable en un point m de Ω si et seulement si δ|Ω l'est.
4. Supposons que ϕ soit di�érentiable en un point m0 de Ω. Soit f un point de A(m0).

Montrer que
−→
∇ϕ(m0) = 2(m0 − f).

5. En déduire une condition nécessaire sur A(m) pour que ϕ soit di�érentiable en un point
m de Ω.

6. Soit m0 un point de Ω. On suppose que A(m0) est un singleton : A(m0) = {f0}.
(a) On se propose de montrer que d(f0, A(m0 + h⃗)) →

h⃗→0⃗E

0.

Supposons que d(f0, A(m0 + h⃗)) ne tende pas vers 0.

i. Montrer qu'il existe un réel δ > 0 et une suite (pn)n∈N d'éléments de E qui tend
vers m0 tel que d(f0, A(pn)) ≥ δ pour tout n ∈ N.

ii. On note G = {y ∈ F |∥f0 − y∥ ≥ δ}. Montrer que ϕ(pn) = d(pn, G)
2.

iii. En déduire que ϕ(pn) ne tend pas vers ϕ(m0), lorsque n tend vers +∞.
iv. conclure.

(b) On se propose d'en déduire que ϕ est di�érentiable en m0.

i. Montrer que pour tout vecteur h⃗ de E tel que m0+ h⃗ soit dans Ω, et tout élément
fh de A(m0 + h⃗)

ϕ(m0 + h⃗) ≥ ϕ(m0) + 2⟨m0 − fh|⃗h⟩+ ∥h⃗∥2.

ii. Montrer que pour tout vecteur h⃗ de E tel que m0 + h⃗ soit dans Ω,

ϕ(m0 + h⃗) ≤ ϕ(m0) + 2⟨m0 − f |⃗h⟩+ ∥h⃗∥2.

iii. Conclure

(c) Donner une condition nécessaire et su�sante pour que ϕ soit di�érentiable en un
point m de Ω.
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Compléments pour l'X et les ENS

IV. INJECTIVITÉ LOCALE (5/2)

Soient U un ouvert de Rn et , f une application de U dans Rn de classe C1 et a un point
de U tel que la di�érentielle en a soit un isomorphisme. Démontrer qu'il existe un voisinage V
de a tel que la restriction de fà V soit injective.

VI. THÉORÈME D'INVERSION LOCALE

Théorème d'inversion locale : Soit Ω un ouvert d'un espace vectoriel E de dimension
�nie et f une application de Ω dans un espace de dimension �nie F de classe C1. Si il existe
a élément de Ω tel que df(a) soit un isomorphisme, alors il existe un voisinage U de a un
voisinage V de f(a) tels que f induise un C1 di�éomorphisme de U sur V .

1. Montrer qu'il su�t pour prouver le théorème, de montrer, avec ses notations le résultat
pour F = E, a = 0, f(a) = 0 et df(a) = idE, chose qui sera faite dans la suite. On
considérera également une norme ∥ · ∥ sur E.

2. Résultat technique et classique �
Montrer que GL(E) est ouvert et que

I : GL(E) → GL(E) ; ℓ 7→ ℓ−1

est continue.

3. On pose g : Ω → E ; x 7→ x − f(x). Montrer qu'il existe un réel r > 0 tel que pour
tout tout élément x de Bf(0, 2r), ∥g(x)∥ ≤ r.

4. Soit y élément de Bf(0, r). On considère l'application h : Bf(0, 2r) → E ; x 7→ y+ g(x).
Montrer que h est à valeurs dans Bf(0, 2r) et 1

2
-contractante. En déduire que f induit

une bijection d'un voisinage ouvert de 0 inclus dans Bf(0, 2r) sur une partie de Bf(0, r),
noté f̃ .

5. Montrer que f̃−1 est 2-lipschitzienne.

6. Montrer que f̃−1 est di�érentiable sur Bo(0, r), donner sa di�érentielle au moyen df et
de I.

7. Conclure.

8. On se propose de montrer la forme du théorème des fonctions implicites suivante :

Théorème des fonctions implicites : Soient n et p des élément de N∗. Soit F
une application d'un ouvert Ω de Rn+p identi�é à Rn×Rp, à valeurs dans Rp de classe
C1 :

F : (x1, . . . , xn, y1, . . . , yp) 7→ (f1(x1, . . . , xn, y1, . . . , yp), . . . , fp(x1, . . . , xn, y1, . . . , yp), )

Soit (a, b) un point de Rn ×Rp tel que F (a, b) = 0 et det
(
∂fi
∂yj

(a, b)
)
i=1,...,p
j=1,...,p

̸= 0. Alors,

il existe un voisinage U dans Rn de a, un voisinage V dans Rp de b et une application
φ de U dans Rp, de classe C1 et à valeurs dans V tels que
• U × V ⊂ Ω ;
• Pour tout élément (x, y) de U × V , F (x, y) = 0 si et seulement si y = φ(x).

(a) On considère l'application f1 : Ω → Rn ×Rp ; (x, y) 7→ (x, F (x, y)). Montrer que
df1(a, b) est inversible.

(b) Déduire de la sous-question précédente le théorème des fonctions implicites.
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VII. ÉQUATION AU D'ÉRIVÉES PARTILLES

Soit en entier n ≥ 2. On considère une application F⃗ de Rn dans Rn, de classe C1,
f1, f2, . . . , fn désigne la première la deuxième,..., la ne composante de F . On s'intéresse à l'équa-
tion aux dérivées partielles

f1(x1, . . . , xn)
∂y

∂x1
+ · · ·+ fn(x1, . . . , xn)

∂y

∂xn
(13)

Une solution de (13) est par dé�nition, toute application g d'un ouvert U de Rn dans R de
classe C1, telle que : f1

∂g
∂x1

+ · · ·+ fn
∂g
∂xn

= 0U→R. On considérera aussi le système di�érentiel :
x′1 = f1(x1, x2, . . . , xn),
x′2 = f2(x1, x2, . . . , xn),
...
x′n = fn(x1, x2, . . . , xn),

(14)

que nous écrirons encore de manière condensée : X ′ = F (X). On admet que pour tout élément
X0 de Rn il existe une et une seule solution maximale de (14) qui prenne en 0 la valeur X0

(théorème de Cauchy). On admet de plus que F est telle que tout solution maximale soit dé�nie
sur R.

1. Soit g une solution de (13) sur un ouvert U , montrer que g est une intégrale première de
(14), c'est-à-dire que pour toute solution Φ de (14) à valeurs dans U , g ◦Φ est constante.

2. Soient U un ouvert deRn et h un élément C1(U,R) dansR qui est une intégrale première
de (14). Montrer que h est solution sur U de (13).

3. Soient U un ouvert de Rn et h1, h2, . . . , hn−1 des éléments C1(U,R), intégrales premières
de (14). Montrer que pour toute application G élément de C1(Rn−1,R),

U → R ; X 7→ G(h1(X), h2(X), . . . , hn−1(X))

est solution sur U de (13).
Si l'on suppose de plus que que pour tout X ∈ U , rg(dh1(X), . . . , dhn(X)) = n − 1,

alors nous allons montrer que toute solution sur U de (13) est de la forme précédente au
voisinage d'un point A en lequel le champ F ne s'annule pas. On aurait pu aussi établir
l'existence de telles intégrales premières au voisinage de tout point de Rn. Nous allons
examiner dans la suite le cas n = 2.

4. On suppose dans cette question que n = 2 et que h est une intégrale première de (14)
et qu'il existe A point de U tel que F (A) soit non nul et rg(dh(A)) = 1, c'est-à dire
telle que dh ne s'annule pas en A. On considère ℓ2 une forme linéaire sur R2 telle que
(dh(A), ℓ2) soit une base de (R2)∗, dual de R2.

5. Montrer qu'il existe un voisinage V de A inclus dans U tel que pour tout X ∈ V
rg(dh(X), ℓ2) = 2.

6. Montrer q'il existe un voisinage W de A inclus dans V tel que Ψ = (h, ℓ2) induise un
C1-di�éomorphisme de W sur Ψ(W ).

On note Φ le di�éomorphisme réciproque de Ψ(W ) sur W .

7. Soit g un élément de C1(W,R). Posons g̃ = g ◦ Φ, c'est-à-dire :

g̃ : Ψ(W ) → R ; (u1, u2) 7→ g(Φ(u1, u2)) g : W → R ; (x1, x2) 7→ g̃(h(x1, x2), ℓ2(x1, x2)).

Montrer que g est solution de (13) si et seulement si ∂g̃
∂u2

est nulle sur Φ(W ).

8. En déduire au voisinage de A la forme générale des solution de (13).

9. Généraliser ce résultat pour n quelconque.
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ÉQUATION DE RÉFÉRENCE.
L'équation aux dérivées partielles la plus simple est ∂1f = 0. Par ailleurs, on résoud le plus
souvent les équations plus complexes en se ramenant à cette équation. Toutefois en dépit de son
apparente simplicité, la résolution d'une telle équation est loin d'être triviale. En particulier, il
est faut se garder de croire, que les solutions sont toujours les applications ≪ qui ne dépendent
pas de x ≫ , comme on l'entend souvent. En fait tout dépend du domaine sur lequel on résout
l'équation, comme le montre le présent exercice.

1� Soit f une application de R2 dans R de classe C1. montrer que ∂1f = 0R2→R, si et
seulement si, il existe une application g de R dans R de classe C1, telle que pour tout (x, y),
élément de R2,

f(x, y) = h(y).

2- Posons U = R2 − {(0, y), y ∈ R+} ; et soit f l'application,

f : R2 → R ; (x, y) 7→


0, pour y < 0,
0, pour y ≥ 0 et x < 0,
y3 pour y ≥ 0 et x > 0.

Montrez que f est de classe C1 et que ∂1f est nulle.

Ainsi f est-elle une application de classe C1, qui dépend de x, en e�et f(−1, 1) ̸= f(1, 1),
et telle que ∂f

∂x
= 0.

2� Soit f une application d'un ouvert U de R2 dans R, de classe C1, telle que ∂1f soit nulle.
f peut-elle dépendre ou non de x dans les cas suivants :

a) U est le disque ouvert unité : U = {(x, y) ∈ R2, x2 + y2 < 1}.
b) U = {(x, y) ∈ R2, x2 − y2 < 1}.
c) U = {(x, y) ∈ R2, y2 − x2 < 1}.

II . ÉQUATONS AUX DÉRIVÉES PARTIELLES LINÉAIRES À COEFFI-
CIENTS CONSTANTS

On s'intéresse aux équations aux dérivées partielles de la forme,

p∑
i=1

ai
∂f

∂xi
= 0, ai ∈ R, pour i = 1, . . . p.

dire que f est solution revient à dire que Dv⃗ = 0, où v⃗ désigne le vecteur (a1, a2, . . . , ap).
Considérons alors une base B′ de Rp, dont le premier vecteur est v⃗. Si f̃ est ≪ l'expression de
f ≫dans les coordonnées (u1, u2, . . . , up) dans la nouvelle base B′, la condition Dv⃗f = 0, devient

naturellement, comme le montrera un calcul élémentaire ∂f̃
∂u1

= 0. On est rammené à résoudre
une équation du type étudier dans le paragraphe précédent. Exemple :

1� On se propose de déterminer l'ensemble S des éléments f de C1 (R2,R) tels que, pour
tout élément (x, y) de R2,

2
∂f

∂x
(x, y) + 3

∂f

∂y
(x, y) = 0.
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a) Posons v⃗ = (2, 3) et w⃗ = (0, 1) 9, de sorte que (v⃗, w⃗) soit une base de de R2, notée B′.
Soit L l'application de R2 dans R2 qui à tout élément (x, y) de R2 associe le couple (u1, u2) de
ses coordonnées dans B′. L est un isomorphisme de R2 sur R2. Expliciter L et L−1.

b) Soit f un élément de C1(R2,R), on note f̃ l'application,

f̃ : R2 → R2 ; (u1, u2) 7→ f(L−1(u1, u2)),

autrement dit, f̃ = f ◦ L−1. Montrer que f̃ ∈ C1(R2,R).
Soit

I : C1(R2,R) → C1(R2,R) ; f 7→ f ◦ L−1.

Montrer que I est un isomorphisme dont on précisera l'isomorphisme réciproque J .

c) Soit f un élément de C1(R2,R), on note f̃ l'application, f ◦ L−1. Calculer, pour tout

élément (u1, u2) de R2,
∂f̃

∂u1
(u1, u2) en fonction des dérivées partielles de f au point L−1(u1, u2).

En déduire que I induit une bijection de S sur l'ensemble S̃ des éléments g de C1 (R2,R), tels
que, pour tout élément (u1, u2) de R2,

∂g

∂u1
(u1, u2) = 0.

d) En déduire S.

2�Déterminer l'ensemble S ′ des éléments f de C1 (R2,R) tels que, pour tout élément (x, y)
de R2,

2
∂f

∂x
(x, y) + 3

∂f

∂y
(x, y) = x+ y.

3�Déterminer l'ensemble S ′′ des éléments f de C1 (R2,R) tels que, pour tout élément (x, y)
de R2,

2
∂f

∂x
(x, y) + 3

∂f

∂y
(x, y) = f.

9. On aurait pu prendre tout autre vecteur non colinéaire à v⃗.
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4�Déterminer l'ensemble S ′ des éléments f de C1 (R3,R) tels que, pour tout élément (x, y, z)
de R2,

∂f

∂x
(x, y, z) +

∂f

∂y
(x, y, z) +

∂f

∂z
(x, y, z) = 0.

4�un exemple d'ordre 2 : l'équation d'onde

Soit α un réel strictement positif. On se propose de déterminer l'ensemble S2 des éléments
f de C2 (R2,R) tels que, pour tout élément (x, y) de R2,

∂2f

∂x2
(x, y)− 1

α2

∂2f

∂y2
(x, y) = 0.

a) Montrer qu'il existe des réels a, b, c, et d tels que pour tout application f élément de
C2(R2,R),

D(a,b)

(
D(c,d)f

)
=
∂2f

∂x2
− 1

α

2∂2f

∂y2
= 0.

b) Déterminer l'ensemble S1 des éléments f de C1 (R2,R) tels que, D(a,b)f = 0.
c) Déterminer l'ensemble S2.

III . ÉQUATONS AUX DÉRIVÉES PARTIELLES LINÉAIRES À COEFFI-
CIENTS NON CONSTANTS

On se propose de déterminer l'ensemble S des éléments f de C1 (R2 − {(0, 0)},R) tels que,
pour tout élément (x, y) de R2 − {(0, 0)},

y
∂f

∂x
(x, y)− x

∂f

∂y
(x, y) = 0.

Autrement dit on cherches les applications f telles qu'en tout point (x, y) de R2−{(0, 0)}, la dér-
vée de f selon le vecteur (y,−x), D(y,−x)f(x, y) soit nulle. On intuite donc, que, pour que f soit
solution, il faut et ilsu�t qu'elle soit constante sur les orbites du champ v⃗ : (x, y) 7→ (y,−x)
(lignes de champ) ; en e�et la nulité de la dérivée selon le champ v⃗, c'est-à-dire tangentiellement
aux lignes de champ traduit naturellement la constance le long de cette ligne. Or Les orbites du
champ sont les solutions du système {

x′ = y,
y′ = −x,

ce sont donc des cercles de centre (0, 0) (le champ v⃗ est orthoradial !). Ceci nous invite donc
à ≪ passer en polaire ≫ . On s'attend, d'après ce que nous avons dit, à ce que les éléments de
S soient des fonctions constantes sur ces cercles, c'est-à-dire, dont l'expression en polaires ne
dépend pas de θ. On va donc s'employer à étudier la dérivation ≪ en θ ≫ .

1� Désignons par U , l'ensemble R2 privé de {(x, 0), x ∈ R−}, partie négative de l'axe des
x. On note SU l'ensemble des éléments f de C1 (U,R) tels que, pour tout élément (x, y) de U ,

y
∂f

∂x
(x, y)− x

∂f

∂y
(x, y) = 0.

a) Déterminer un ouvert Ω de R+ ×R, produit de deux intervalles I et J (Ω = I × J),
tel que Ω → R2 ; (r, θ) 7→ (r cos θ, r sin θ) induise une bijection p de Ω sur U .
Montrer que p et sa bijection réciproque sont C1.

b) Soit f un élément de C1(U,R). Posons f̃ = f ◦ p. Montrer que f̃ ∈ C1(Ω,R).
Soit

I : C1(U,R) → C1(Ω,R) ; f 7→ f ◦ p.
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Montrer que I est un isomorphisme.

c) Soit f un élément de C1(R2,R), on note f̃ l'application, f ◦ p. Calculer, pour tout

élément (r, θ) de Ω,
∂f̃

∂θ
(r, θ), en fonction des dérivées partielles de f au point (r cos θ, r sin θ) .

En déduire que I induit une bijection de SU sur l'ensemble S̃U des éléments g de C1 (Ω,R),
tels que, pour tout élément (r, θ) de Ω,

∂g

∂θ
(r, θ) = 0.

d)Déterminer S̃U . En déduire SU .

3� Déterminer l'ensemble S.

4� Déterminer l'ensemble S ′ des éléments f de C1 (R2 − {(0, 0)},R) tels que, pour tout
élément (x, y) de R2 − {(0, 0)},

y
∂f

∂x
(x, y)− x

∂f

∂y
(x, y) = x2 + y2.

5- Déterminer l'ensemble, noté S ′
U des éléments f de C1 (U,R) tels que, pour tout élément

(x, y) de U ,

x
∂f

∂x
(x, y) + y

∂f

∂y
(x, y) = 0.

6- Déterminer l'ensemble, noté S ′
U des éléments f de C1 (U,R) tels que, pour tout élément

(x, y) de U ,

x
∂f

∂x
(x, y) + y

∂f

∂y
(x, y) = f.

7- Déterminer l'ensemble S ′ des éléments f de C1 (R2,R) tels que, pour tout élément (x, y)
de R2,

3
∂f

∂x
(x, y)− x

∂f

∂y
(x, y) = 0.
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IV . FONCTIONS HARMONIQUES
Soit f une application d'un ouvert U de Rn à valeur réelles, de classe C2. On dit que f est

harmonique, si, par dé�nition, ∆f = 0.
1� Soit n un élément de N∗. Déterminer toute les applications de Rn − {(0, 0, . . . , 0} dans

R de classe C2 harmoniques et radiales. Un application est dite radiale, si sa valeur en un point
m ne dépend que de la distance de m à (0, 0, . . . , 0).

2� (5/2) Soit f une application de R2 à valeur réelles, de classe C2, harmonique. Soit (a, b)
un point de R2. Pour tout élément R de R∗

+. On note M(R), la ≪ valeur moyenne ≫de f sur
le disque fermé de centre (a, b) et de rayon R, noté DR, c'est-à-dire :

M(R) =
1

πR2

∫ R

0

(∫ 2π

0

f(a+ r cos θ, b+ r sin θ)dθ

)
rdr.

et l'on note m(R), la ≪ valeur moyenne ≫ de f sur le cercle de centre (a, b) et de rayon R,
noté CR, c'est-à-dire :

m(R) =
1

2πR

∫ 2π

0

f(a+R cos θ, b+R sin θ)Rdθ.

a) Montrer que l'application m : R∗
+ → R ; R 7→ m(R) est dérivable. Préciser sa dérivée.

b) Montrer que l'application g : R∗
+ → R ; R 7→ Rm′(R) est dérivable. Montrer que sa

dérivée est nulle.
indication : On utilisera l'expression en polaire du laplacien.

c) Déduire de ce qui précède, que pour tout élément R de R∗
+,

m(R) = f(a, b).

d) Montrer que pour tout élément R de R∗
+, M(R) = f(a, b).

3�
Soit B la boule ouverte de Rn de centre (0, 0, ...0) et de rayon strictement positif R. Soit

f une fonction continue sur B̄ nulle sur la sphère S((0, ..., 0), R) à valeurs réelles et dont la
restriction à B est de classe C2.

a) Montrer que si f admet en un point a de B un maximum local alors ∆f(a) ≤ 0.

b) Montrer que si f s'annule en un point c de B alors ∆f s'annule en un point b de B.

c) Montrer que si ∆f < 0 sur B, alors f > 0 sur B.

1. Montrer que si ∆f ≤ 0 sur B, alors f ≥ 0 sur B.
Indication : utiliser f0 : B̄ → R ; x 7→ R2 − ∥x∥2.

2. Montrer qu'il existe au plus une application g continue sur B̄ nulle sur la sphère S((0, ..., 0), R)
à valeurs réelles et dont la restriction à B est de classe C2, qui soit harmonique et qui
coïncide sur S((0, ..., 0), R) avec une application continue donnée.

4� Soit D une partie de R2 fermée, bornée et convexe. Soit f une application qui est la
restrictions à D d'une application de classe C2 sur un ouvert U contenant D, à valeurs réelles,
on dira, pour faire court, que f est de classe C2 sur D.

Soit E le sous-espace vectoriel des applications de classe C2 sur D nulles sur la frontière de
D, à valeurs réelles (on ne demande pas de véri�er, fait trivial, qu'il s'agit d'un espace vectoriel).
Soit f un élément de E tel que ∆f = λf . On suppose que λ > 0.

a) On suppose que f atteint sa borne supérieure en un point (x0, y0) intérieur à D. Montrer
que f est l'application nulle sur D.

b) Que dire si f atteint sa borne inférieure en un point (x0, y0) intérieur à D.

c) En déduire que f est nulle.

L'existence de vecteurs propres pour f associés à des valeurs propres strictement négatives est
un problème délicat mais crucial dans les sciences.
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EXERCICE A.

1. Soit χ une application de R dans C qui ne s'annule pas et qui est de classe C1. Montrer
qu'il existe une application de classe C0, Θ de R dans C telle que χ = exp ◦Θ.

2. Soit Φ une application de R2 dans C qui ne s'annule pas et de classe C1. Montrer qu'il
existe une application Ψ de classe C0 de R2 dans C telle que :

Φ = exp ◦Ψ.

3. Soit f une application de R2 dans R de classe C2. On note D le disque fermé unité de
R2 et l'on suppose que :

f(x, y) = y2 − x2,

pour tout (x, y) ∈ R2 \D. Montrer que f admet un point critique.

EXERCICE B.
Soit I un intervalle de R et f ∈ C1(I2, I) telle que pour tout (x, y) ∈ I2,

f(x, x) = x ; f(x, y) = f(y, x).

1. Calculer df(x, x), pour tout x ∈ I.

2. Soit S un segment de I tel que pour tout (x, y) ∈ S2,

|∂1f(x, y)− ∂2f(x, y)| ≤ 1

Montrer que f(S2) ⊂ S2.

3. On suppose que f véri�e la condition du 2. et que g est une application qui véri�e les
mêmes hypothèses que f . Soit (a, b) un élément de S2. On dé�nit par les relations de
récurrences suivantes des suites (xn)n∈N et (xn, yn)n∈N :

x0 = a, y0 = b ;∀n ∈ N, (xn+1, yn+1) = (f(xn, yn), g(xn, yn)).

Montrer que la suite (xn, yn)n∈N converge.

EXERCICE C.
Soit f une application deRn dansR de classe C3 telle que f(0Rn) = 0 et df(0Rn) = 0L(Rn,R).

L'espace vectoriel Rn sera muni de sa structure euclidienne canonique.
Montrer qu'il existe une application h de Rn dans Sn(R), de classe C1 telle que pour tout

X ∈ Rn,
f(X) = ⟨h(X)(X)|X⟩.

58



Lycée Kerichen 2025-2026 MP∗

Travaux dirigés no 14

Moyennes pondérées d'applications, densité des polynômes

ou le retour de Cesàro

I. Convolution par des noyaux, théorème de Weierstrass
Pour tout entier n ≥ 1 on dé�nit :

Pn : R → R, x 7→ an(1− x2)n,

où an = 1∫ 1
−1(1−x2)ndx

.

1. Calculer an, pour tout n ∈ N∗. Tracer l'allure du graphe de la restriction de Pn à [0, 1],
pour quelques valeurs de n...

2. Pour tout α ∈]0, 1[, on note Kα = [−1,−α] ∪ [α, 1]. Montrer que pour tout α ∈]0, 1[,

sup
x∈Kα

|Pn(x)| →
n→+∞

0,

On justi�era au préalable l'existence de ces bornes supérieures.

3. Soit f une application de [0, 1] dans R, continue et telle que f(0) = f(1) = 0. On
prolonge cette application en une application f̃ à [−1, 2] en posant f̃(x) = 0, pour tout
x ∈ [−1, 2] \ [0, 1]. et on dé�ni pour tout entier n ≥ 1, et tout x ∈ [0, 1],

Qn(x) =

∫ 1

−1

f̃(x+ t)Pn(t)dt.

(a) Montrer que (Qn)n∈N est une suite d'applications de [0, 1] dans R polynomiales.
(b) Montrer que ∥Qn − f∥∞ →

n→+∞
0.

(c) Démontrer le théorème de Weierstrass.

II. Théorème de Weierstrass par les polynômes de Bernstein

On se propose de donner une preuve constructive du théorème de Weiserstrass, d'inspiration
probabiliste, due à Bernstein, qui date du tout début de xxe. siècle.

1. Montrer que l'on ne restreint pas la généralité en prenant a = 0 et b = 1. Ce qui sera
fait dans la suite.

On considère f une application de [0, 1] dans R continue. Pour tout entier n ≥ 1 on
considère le polynôme :

Bn(f) =
n∑
k=0

(
n
k

)
f

(
k

n

)
Xk(1−X)n−k,

ne polynôme de Bernstein associé à f .

2. Soient x un élément de [0, 1], n un entier naturel et Y une variable aléatoire réelle dé�nie
sur (Ω,P) qui suit une loi binomiale de paramètre (n, x) : Y ∼ B(n, p). Montrer que
P(Y = k) est maximum pour k = ⌊(n+ 1)x⌋

On considère dans la suite un élément x de [0, 1] et (Xn)n∈N∗ une suite de variables
aléatoires de Bernoulli mutuellement indépendantes, toutes de même paramètre x. No-
tons pour tout entier n ≥ 1, Sn = X1 +X2 + · · ·+Xn.
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3. Donner pour tout entier n ≥ 1, l'espérance de la variable aléatoire f
(
Sn

n

)
, au moyen des

polynômes de Bernstein associés à f . Donner sa valeur dans le cas particulier où f est
l'identité.

4. Donner la variance de Sn

n
.

5. Montrer que pour tout entier n ≥ 1,

|f(x)−Bn(f)(x)| ≤ E

(∣∣∣∣f(x)− f

(
Sn
n

)∣∣∣∣) .
6. Pour tout réel h > 0, on pose :

ω(h) = sup{|f(x1)− f(y2)|, (x1, x2) ∈ [0, 1]2 et |x1 − x2| ≤ h},

Ah =

{∣∣∣∣Snn − x

∣∣∣∣ ≤ h

}
.

Montrer que pour tout entier n ≥ 1 et tout réel h > 0,

|f(x)−Bn(f)(x)| ≤ 2P(Āh)∥f∥∞ +P(Ah)ω(h)

7. Soit η un réel strictement positif. Montrer que pour tout entier n ≥ 1,

P
(
Āη
)
≤ 1

4nη2
.

On peut utiliser l'inégalité de Bienaymé-Tchebychev.

8. Conclure.

III. Théorème de Weierstrass trigonométrique
le théorème de Weierstrass trigonométrique n'est pas au programme. Il donne facilement le

théorème de Weierstrass, hélas ce dernier est imuissant à nous livrer le théorème trigonomé-
trique.

Soit E l'espace vectoriel des applications continues sur [0, 1] à valeurs réelles ou complexes.
On le munit de la norme ∥.∥∞, dé�nie par , pour tout élément f de E, ∥f∥∞ = sup

t∈[0,1]
|f(t)|.

On note P le sous-espace vectoriel de E constitué des fonctions polynômiales.

Soit F l'espace des fonctions continues sur R, 2π-périodiques, à valeurs complexes. On le
munit de la norme encore notée ∥.∥∞, dé�nie par, pour tout élément g de F, ∥g∥∞ = sup

t∈R
|g(t)|.

Pour tout entier naturel n, on noteTn le sous-espace vectoriel de F engendré par les fonctions
ek : t 7→ eikt, où les nombres entiers k véri�ent −n ≤ k ≤ n.

Soit φn la fonction dé�nie sur R par : φn(t) = an

(
cos

t

2

)2n

, le réel an étant tel que∫ π

−π
φn(t) dt = 1.

1. (a) Montrer que φn est un élément de Tn.

(b) Prouver que, pour tout élément u de
[
0,
π

2

]
, cos2 u ≥ 1− sinu. En déduire que, pour

tout entier n,
∫ π/2

0

(cosu)2n+1 du ≥ 1

n+ 1
, puis que an ≤ n+ 1

4
.

(c) Soit δ un réel tel que 0 < δ < π ; montrer : lim
n→+∞

sup
δ≤t≤π

φn(t) = 0.
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2. Soit g un élément de F. Pour tout entier n ≥ 0, on note Qn la fonction dé�nie sur R
par la relation :

Qn(u) =

∫ π

−π
φn(t)g(u− t) dt.

(a) Établir la relation :

Qn(u) =

∫ π

−π
φn(u− t)g(t) dt.

En déduire que Qn appartient à Tn.
(b) Soit toujours δ un réel tel que 0 < δ < π ; montrer l'inégalité :

|g(u)−Qn(u)| ≤ sup
|t|≤δ

|g(u)− g(u− t)|+ 4π ∥g∥∞ sup
δ≤t≤π

φn(t).

(c) En déduire que lim
n→+∞

∥g −Qn∥∞ = 0.

(d) On suppose que g est une fonction paire ; montrer que Qn est une fonction paire
et en déduire qu'il existe un élément Pn de P , de degré au plus égal à n, tel que
Qn(u) = Pn(cosu).

3. (a) Soit f un élément de E. Prouver qu'il existe une suite (Pn) d'éléments de P telle
que lim

n→+∞
∥f − Pn∥∞ = 0. On prolongera f en une fonction paire, notée f̃ , et on

introduira g(u) = f̃(cosu).
En déduire que P est dense dans E relativement à la norme uniforme ∥.∥∞.

(b) Montrer que, pour tout élément f de E, on a l'inégalité ∥f∥2 ≤ ∥f∥∞. En déduire
que P est également dense dans E relativement à la norme ∥.∥2.
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Travaux dirigés no 15
I. Groupe cyclique

Soit G un groupe cyclique à n éléments.

1. Montrer que tout sous-groupe de G est cyclique et que son cardinal divise n.

2. Soit d un diviseur positif de n, n s'écrit donc n = q.d avec q élément N∗. Montrer qu'il
existe un unique sous-groupe de G à d éléments.

II. Groupe et ordre des éléments Soit (G, ⋆) un groupe �ni et non trivial tel que pour
tout x ∈ G, x2 = eG.

1. Montrer que (G, ⋆) est abelien.

2. Montrer que (G, ⋆) est isomorphe à ((Z/2Z)n,+).

On proposera deux méthodes.

3. Soient g et g′ des éléments d'un groupe (G,+) commutaitif, d'ordres respectifs m et m′.
On suppose que m et m′ sont premiers entre eux. Montrer que

ω(g + g′) = mm′.

Si l'on ne suppose plus m et m′ premiers entre eux, a-t-on ω(g+g′) = ppcm(m,m′) ?

4. Soient p et q deux nombre premiers distincts et G un groupe abélien de cardinal pq.
Montrer que G est cyclique.

5. Soit G un groupe de cardinal 2p avec p premier. Montrer que G contient un élément
d'ordre p.

III Indicatrice d'Euler
On appelle indicatrice d'Euler d'un entier naturel non nul n, le nombre d'éléments de

{1, ..., n} premiers avec n.
On se propose de retrouver, par une méthode probabiliste le résultat qui sera dans lecours

sur l'indicatrice d'Euler suivant :
Soit n un entier supérieur ou égal à 2, dont la décomposition en nombres premiers s'écrit :

n = pα1
1 p

α2
2 . . . pαk

k ,

où p1, p2, . . . , pk sont k nombres premiers deux à deux distincts et α1, α2, . . . , αk , des éléments
de N∗. Alors

φ (n) = n

k∏
i=1

(
1− 1

pi

)
.

On munit {1, . . . , n} de la probabilité uniforme notée P.

1. Soit d un diviseur de n et Ad l'événement {k ∈ {1, . . . , n}, d|k}. Déterminer P(Ad)

2. Soit d1, d2, . . . , dh des diviseurs de n premiers entre eux deux à deux. Montrer que les
événements Ad1 , Ad2 , . . . , Adh sont mutuellement indépendants.

3. Conclure.

4. Soit a un entier supérieur ou égal à 1. Etudier la suite (xn)n∈N dé�nie par récurrence
par : {

x0 = a,
xn+1 = φ(xn), pour tout n ∈ N
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IV Valuation �

Soit p un nombre premier.

1. Montrer que, pour tout (k, n) élément de N∗ ×N∗,

|{j ∈ [[1, n]], vp(j) = k}| =
⌊
n

pk

⌋
−
⌊

n

pk+1

⌋
.

2. Justi�er la formule suivante due à Legendre : pour tout entier naturel n,

vp(n!) =
∑
k∈N∗

⌊
n

pk

⌋
.

V. Exposant d'un groupe
Dans ce paragraphe (G,+) désignera un groupe abélien �ni, dont le neutre sera noté 0.

L'ordre d'un élément g de G sera noté ω(g).

1. Soient g et g′ des éléments de G d'ordres respectifs m et m′. On suppose que m et m′

sont premiers entre eux. Montrer que

ω(g + g′) = mm′.

Si l'on ne suppose plus m et m′ premiers entre eux, a-t-on ω(g+g′) = ppcm(m,m′) ?

2. Soit a et b des entiers strictements positifs. Montrer l'existence de a′ et b′ entiers égale-
ment strictement positifs tels que on ait :
� Les relations de divisibilté a′|a, b′|b ;
� pgcd(a′b′) = 1 ;
� ppcm(a, b) = a′b′.
Indication : On examinera les décompositions en facteurs premiers de a et b.

3. On appelle exposant du groupe G le plus petit commun multiple e des ordres des ses
éléments. Montrer que G admet un élément z ayant pour ordre l'exposant du groupe G.

4. Montrer que le groupe multiplicatif d'un corps �ni est cyclique.

VI Groupes à 6 éléments
Soit (G, ∗) un groupe à 6 éléments. On suppose que G n'admet pas d'élément d'ordre 6,

autrement dit que G n'est pas cyclique.

1. Montrer que tout élément de G est d'ordre 2 ou 3.

2. Montrer que G possède un élément a d'ordre 3.

3. Montrer que ⟨a⟩ est un sous-groupe distingué.

4. Montrer que G est de la forme {e, a, a2} ∪ {b, b ∗ a, b ∗ a2}.
5. Montrer que b ∗ b /∈ {b, b ∗ a, b ∗ a2}.
6. Montrer que b ∗ b = e.

7. En déduire que G est isomorphe à S3
10.

8. en déduire à isomorphisme près, tous les groupes d'ordre 6.

9. Déterminer à isomorphisme près, tout les groupes d'ordre inférieur ou égal à 7.

10. donc d'après l'exercice précédent à D3
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VII Groupe des isométries du tétraèdre 5/2

1. Montrer que dans E3, espace a�ne euclidien de dimension 3, il existe des quadruplets
(A,B,C,D) constitués de 4 points distincts équidistants, c'est-à-dire tels que : AB =
AC = AD = BC = BD = CD.
De tels quadruplets sont appelés tétraèdres réguliers.

2. Soit (A,B,C,D) un tétraèdre régulier noté T . On désigne par I l'ensemble des isométries
de l'espace laissant globalement invariant T .
Montrer que I est un sous-groupe du groupe des isométries de l'espace.

3. Soit f un élément de I. Nous lui associerons l'élément σf de l'ensemble des applications
de {1, 2, 3, 4} dans lui-même, dé�ni par, pour tout élément i de {1, 2, 3, 4}, f(Ai) = Aσf (i).
Montrer que σf est un élément du groupe symétrique (S4, ◦).

4. Montrer que l'application σ : I → S4 ; f 7→ σf est un morphisme injectif du groupe
(I, ◦) dans le groupe (S4, ◦).

5. Soient i et j des éléments de {1, 2, 3, 4}, montrer que la transposition (i, j) est dans
l'image de σ. En déduire que σ est un isomorphisme du groupe (I, ◦) sur le groupe
(S4, ◦)..

6. Montrer que l'ensemble I+ des isométries positives (déplacements) laissant globalement
invariant T , est un sous groupe de (I, ◦). Montrer que (I+, ◦) est isomorphe au groupe
alterné (A4, ◦) .

7. Enumérer les éléments de I+.

8. Montrer que l'ensemble des éléments de I+ laissant A1 invariant est un sous groupe
d'ordre 3 de (I+, ◦).

9. Soit D1 la droite joignant les milieux de (A1, A2) et de (A3, A4), soit D2 la droite joignant
les milieux de (A1, A3) et de (A2, A4), soit D3 la droite joignant les milieux de (A1, A4)
et de (A2, A3), soit en�n pour i = 1, 2, 3, Ri le retournement par rapport à la droite Di.
Montrer que {R1, R2, R3} engendre un groupe à 4 éléments noté H.
Montrer que pour tout élément h de H et pour tout élément g de I+, g ◦ h ◦ g−1 est
élément de H ; on dit que H est distingué. En déduire que A4 a un sous-groupe distingué
non trivial.

VIII. Simplicité de A5

Contrairement à A4, qui, nous venons de le voir, posséde un sous-groupe distingué non
trivial, A5 n'en possède pas. C'est un obstacle à la possibilité de résoudre l'équation du 5e degré
par radical.

Un sous groupe H d'un groupe (G, ∗) est dit distingué si, par dé�nition, pour tout élément
g de G, g ∗H ∗ g−1 ⊂ H. Nous nous proposons de montrer que (A5, ◦) n'a pas de sous-groupe
distingué non trivial (i.e. distinct de {id} ou de A5 ).

1. Combien contient-il de cycles de longueur 3, de produits de deux transpositions à sup-
ports disjoints, de 5 cycles ?

2. Calculer les produits 11

(1, 2, 3, 4, 5)−1 (3, 4, 5) (1, 2, 3, 4, 5) (3, 4, 5)−1 ,

(1, 2) (3, 4) (3, 4, 5) (1, 2) (3, 4) (3, 4, 5)−1 .

11. Pour alléger l'écriture, on ne note pas la loi de composition, comme cela se fait souvent.
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3. Montrer que tout sous-groupes distingué de (A5, ◦), non réduit à {id} contient un cycle
de longueur 3.

4. Calculer les produits, pour k élément de {4, 5},

(1, 2) (3, k) (2, 1, 3) (1, 2) (3, k) .

5. Conclure...
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CORRECTION DE II.

1. Posons k = ω(g + g′). Alors k · (g + g′) = 0 et donc

0 = m · (k · (g + g′)) = k · (m · g) + (km) · g′.

Soit
0 = mk · (g + g′)) = (km) · g′.

Donc m′ divise km et comme m et m′ sont premiers entre eux, le théorème de Gauss
a�rme que m′ divise k. Par symétrie des rôles de m et m′, on a aussi que m divise k.
Finalement, par interprimalité de m et m′ : mm′|k.
Mais le groupe G étant abelien, mm′ · (g + g′) = mm′ · g +mm′ · g′ et donc :

mm′ · (g + g′) = m′ · (m · g) +m · (m′ · g′) = m · 0 +m · 0 = 0.

Donc k divise mm′. Au total mm′ = k, soit :

ω(g)ω(g′) = ω(g + g′).

Supposons g distinct de 0 de sorte que son ordre soit strictement supérieur à 1. On a
immédiatement que −g est aussi d'orde m. Mais g − g = 0, donc g − g′ est d'ordre 1,
tandis que ppcm(ω(g), ω(−g)) = m ̸= 1.

2. Soit a et b des entiers strictements positifs.
Pour tout nombre premier p posons :

αp =

{
vp(a) si vp(a) > vp(b),
0 sinon,

; βp =

{
vp(b) si vp(b) ≥ vp(a),
0 sinon,

et a′ =
∏
p∈P

pαp ; b′ =
∏
p∈P

pβp . Ainsi dé�nis, a′ et b′ satisfont les conditions exigées.

3. On désignera par e l'exposant de G.
Soit z un élément de G d'ordre maximum (il en existe car G est �ni). Notons a = ω(z)

et prenons un élément x de G dont nous noterons b l'ordre. Dé�nisons a′ et b′ comme à
la question précédente ainsi que z′ =

(
a
a′

)
· z ; x′ =

(
b
b′

)
· x.

D'abord notons que ω(z′) = a′. En e�et d'une part a′ ·
((

a
a′

)
· z
)
= a · z = 0. D'autre

part si k est un entier tel que 0 < k < a′, alors k ·
((

a
a′

)
· z
)
=
(
k a
a′

)
· z ̸= 0, puisque

0 <
(
k a
a′

)
< a = ω(z). De même ω(x′) = b′.

Les deux précédentes questions nous disent alors que ω(x′z′) = a′b′ = ppcm(a, b),
mais par dé�nition de a, ω(x′z′) ≤ a et donc :

ppcm(a, b) = a.

Donc a est un multiple commun des ordres de tous les éléments du groupe, étant lui-
même l'ordre d'un élément, c'est le ppcm des ordres des éléments du groupe.

Concluons : e = ω(z).

4. Soit (K,+,×) un corps �ni. Posons G = K \ {0K} et e l'exposant du groupe (G,×)

Pour tout élément x de G on a xe = 1. Donc G est inclus dans l'ensemble des racines
du polynôme de K[X],

Xe − 1k.

Tout repose alors sur le point suivant. La division euclidienne dont la construction est
la même dans K que dans tout sous-corps de C. L'intégrité de K fait alors que tout
polynôme non nul de degré n a au plus n racines. Voyons cela.
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• Le résultat est instantanné pour n = 0.
• Supposons le résultat vrai pour un entier n et considérons P un élément de K[X]

de degré n + 1. Soit P n'a pas de racines et il en donc moins que n + 1, soit il en a et
considérons a l'une d'elles. Par division euclidienne de P par (X−a), on a immédiatement

P = (X − a)Q,

avec Q un élément de K[X] de degré n, le reste est en e�et nul comme le montre la
substitution de a à X. L'hypothèse faite assure que Q a au plus n racines, mais l'intégrité
de K assure que toute racine de P est a ou une racine de Q, donc P a au plus n + 1
racines.

Voici le résultat prouvé par récurrence.
Donc le cardinal de G est majoré par le degré de Xe − 1.

|G| ≤ e.

Mais la question précédente fournit un élément z d'ordre e, donc

e = | < z > | ≤ |G|.

Des deux inégalités vient l'égalité |G| = e puis G =< z >. Le groupe G est donc
cyclique.
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