DM bis n^o4 Sujet type Mines

Le but de ce sujet est de calculer l'intégrale de Dirichlet généralisée

$$\int_0^{+\infty} \frac{1 - (\cos(t))^{2p+1}}{t^2} \mathrm{d}t$$

et d'appliquer ce calcul pour évaluer une espérance.

Partie I : Calcul d'une intégrale

Dans tout ce qui suit, x est un élément de]0,1[fixé.

1. Montrer que pour tout $\theta \in]-\pi,\pi[,$ la fonction définie par

$$f:]0, +\infty[\rightarrow \mathbf{C}$$

$$t \mapsto \frac{t^{x-1}}{1 + te^{i\theta}}$$

est définie et intégrable sur $]0, +\infty[$.

Soit r la fonction définie par

$$r:]-\pi,\pi[\rightarrow \mathbf{C}$$

$$\theta \mapsto \int_0^{+\infty} \frac{t^{x-1}}{1+te^{i\theta}} dt .$$

2. Montrer que la fonction r est de classe \mathcal{C}^1 sur $]-\pi,\pi[$ et que :

$$\forall \theta \in]-\pi, \pi[, \quad r'(\theta) = -ie^{i\theta} \int_0^{+\infty} \frac{t^x}{(1 + te^{i\theta})^2} dt.$$

Indication: soit $\beta \in]0, \pi[$, montrer que pour tout $\theta \in [-\beta, \beta]$ et $t \in [0, +\infty[$, $|1+te^{i\theta}|^2 \geqslant |1+te^{i\beta}|^2 = (t+\cos(\beta))^2 + (\sin(\beta))^2$.

Soit g la fonction définie par

$$r:]-\pi,\pi[\rightarrow \mathbf{C}$$

$$\theta \mapsto e^{ix\theta} \int_0^{+\infty} \frac{t^{x-1}}{1+te^{i\theta}} dt .$$

3. Montrer que la fonction g est de classe C^1 sur $]-\pi,\pi[$ et que pour tout $\theta\in]-\pi,\pi[$:

$$g'(\theta) = ie^{ix\theta} \int_0^{+\infty} h'(t) dt,$$

où h est la fonction définie par

$$\begin{array}{ccc} h: &]0, +\infty[& \to & \mathbf{C} \\ & t & \mapsto & \frac{t^x}{1 + te^{i\theta}} \end{array}.$$

Calculer h(0) et:

$$\lim_{t\to +\infty} h(t).$$

En déduire que la fonction g est constante sur] $-\pi,\pi[$.

4. Montrer que pour tout $\theta \in]0, \pi[$,

$$g(\theta)\sin(x\theta) = \frac{1}{2i}\left(g(-\theta)e^{ix\theta} - g(\theta)e^{-ix\theta}\right) = \sin(\theta)\int_0^{+\infty} \frac{t^x}{t^2 + 2t\cos(\theta) + 1}dt.$$

5. En déduire que :

$$\forall \theta \in]0, \pi[, g(\theta)\sin(x\theta) = \int_{\cot \theta}^{+\infty} \frac{(u\sin(\theta) - \cos(\theta))^x}{1 + u^2} du,$$

où
$$\cot \cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)}$$
.

6. Montrer, en utilisant le théorème de convergence dominée, que :

$$\lim_{\theta \to \pi^{-}} g(\theta) \sin(x\theta) = \int_{-\infty}^{+\infty} \frac{\mathrm{d}u}{1 + u^{2}}.$$

7. En déduire que

$$\int_0^{+\infty} \frac{t^{x-1}}{1+t} dt = \frac{\pi}{\sin(\pi x)}.$$

Partie II: Une expression (utile) de la fonction sinus

On rappelle que x est un élément de]0,1[fixé.

8. Montrer que

$$\int_0^{+\infty} \frac{t^{x-1}}{1+t} dt = \int_0^1 \left(\frac{t^{x-1}}{1+t} + \frac{t^{-x}}{1+t} \right) dt.$$

9. Montrer que:

$$\int_0^1 \frac{t^{x-1}}{1+t} dt = \sum_{k=0}^{+\infty} \frac{(-1)^k}{k+x}.$$

10. Établir l'identité

$$\int_0^{+\infty} \frac{t^{x-1}}{1+t} dt = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+x} + \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1-x}.$$

11. En déduire que l'on a

$$\frac{\pi}{\sin(\pi x)} = \frac{1}{x} - \sum_{n=1}^{+\infty} \frac{2(-1)^n x}{n^2 - x^2}.$$

12. En déduire enfin que :

$$\forall y \in]0, \pi[, \quad \sum_{n=1}^{+\infty} \frac{2(-1)^n y \sin(y)}{y^2 - n^2 \pi^2} = 1 - \frac{\sin(y)}{y}.$$

Partie III : Calcul d'une intégrale de Dirichlet généralisée

13. Montrer que l'intégrale

$$\int_0^{+\infty} \frac{1 - (\cos(t))^{2p+1}}{t^2} dt$$

converge et que :

$$\int_0^{+\infty} \frac{1 - (\cos(t))^{2p+1}}{t^2} dt = (2p+1) \int_0^{+\infty} (\cos(t))^{2p} \frac{\sin(t)}{t} dt.$$

14. Montrer que pour tout $n \in \mathbf{N}^*$:

$$\int_{\frac{\pi}{2} + (n-1)\pi}^{\frac{\pi}{2} + n\pi} (\cos(t))^{2p} \frac{\sin(t)}{t} dt = \int_{0}^{\frac{\pi}{2}} (\cos(t))^{2p} \frac{2(-1)^{n} t \sin(t)}{t^{2} - n^{2} \pi^{2}} dt.$$

15. En déduire que :

$$\int_{\frac{\pi}{2}}^{+\infty} (\cos(t))^{2p} \frac{\sin(t)}{t} dt = \int_{0}^{\frac{\pi}{2}} (\cos(t))^{2p} \left(\sum_{n=1}^{+\infty} \frac{2(-1)^{n} t \sin(t)}{t^{2} - n^{2} \pi^{2}} \right) dt.$$

16. En déduire que :

$$\int_0^{+\infty} (\cos(t))^{2p} \frac{\sin(t)}{t} dt = \int_0^{\frac{\pi}{2}} (\cos(t))^{2p} dt.$$

Dans le cas p = 0, cette intégrale est communément appelée « intégrale de Dirichlet ».

17. Montrer que:

$$(\cos(t))^{2p} = \frac{1}{2^{2p}} \left(\binom{2p}{p} + 2\sum_{k=0}^{p-1} \binom{2p}{k} \cos(2(p-k)t) \right).$$

Indication: on pourra développer $\left(\frac{e^{it}+e^{-it}}{2}\right)^{2p}$.

18. En déduire que :

$$\int_0^{+\infty} \frac{1 - (\cos(t))^{2p+1}}{t^2} dt = \frac{\pi}{2} \frac{(2p+1)!}{2^{2p}(p!)^2}.$$

Partie IV : Calcul de $E(|S_n|)$

Toutes les variables aléatoires sont définies sur un même espace probabilisé (Ω, \mathcal{A}, P) . Soient $(X_k)_{k \in \mathbb{N}^*}$ des variables aléatoires indépendantes, de même loi donnée par :

$$P(X_1 = -1) = P(X_1 = 1) = \frac{1}{2}.$$

Pour tout $n \in \mathbf{N}^*$, on note $S_n = \sum_{k=1}^n X_k$.

19. Déterminer, pour tout $n \in \mathbb{N}^*$, $E(S_n)$ et $V(S_n)$.

Soient S et T deux variables aléatoires indépendantes prenant toutes deux un nombre fini de valeurs réelles. On suppose que T et -T suivent la même loi.

20. Montrer que:

$$E(\cos(S+T)) = E(\cos(S))E(\cos(T)).$$

21. En déduire que pour tout $n \in \mathbb{N}^*$, et pour tout $t \in \mathbb{R}$:

$$E(\cos(tS_n)) = (\cos(t))^n.$$

22. Soient $a, b \in \mathbf{R}$ tels que $a \neq 0$ et $|b| \leq |a|$. Montrer que

$$|a+b| = |a| + \operatorname{signe}(a)b$$

où signe(x) = x/|x| pour tout x réel non nul. En déduire que :

$$\forall n \in \mathbf{N}^*, E(|S_{2n}|) = E(|S_{2n-1}|).$$

23. Montrer que pour tout $s \in \mathbf{R}$

$$\int_0^{+\infty} \frac{1 - \cos(st)}{t^2} dt = \frac{\pi}{2} |s|.$$

24. En déduire que pour tout $n \in \mathbf{N}^*$:

$$E(|S_n|) = \frac{2}{\pi} \int_0^{+\infty} \frac{1 - (\cos(t))^n}{t^2} dt.$$

25. Conclure que :

$$\forall n \in \mathbf{N}^*, \quad E(|S_{2n}|) = E(|S_{2n-1}|) = \frac{(2n-1)!}{2^{2n-2}((n-1)!)^2}.$$

Fin du problème