Question préliminaire

1) Soit (ax)rer: une famille presque nulle de réels. On suppose

Z Oé,\¢A = 0[0,1]—>R-

AeR’
Supposons la famille o non nulle ce qui autorise & poser Ay = min{A € R |, # 0}. alors
0=— 3 an | @) £0
= _ [0 X ~
¢)\0 ATA z—0t 20
AeR’

Voila bien chose absurde ! donc la famille o est nulle.
D’ou la libertié de la famille (qb,\))\eRi.

A. Déterminants de Cauchy.

no A
2) On suppose R(X) est de la forme R(X) = ) L
=1 X + bk
On multiplie la derniere colonne C), par A, et on lui ajoute la combinaison linéaire des
n—1
autres colonnes »_ A;Cy .
i=1
On obtient :
1 1
.......... R(a
a; + bl a + b2 ( 1>
AnDn = ﬁ I
1 1
R(ay,
an + bl Qa, + bg (CL )
1 1
.......... 0
ar+b; a; + b
- : : 0
1 1
R(ay,
ap +b1  an + by (an)

On développe par rapport a la dérniere colonne, on obtient

AnD,, = R(a,)Dp_1.

3)
S’il existe (ki, ko) € [[1,n]] tel que ki # ko et by, = by, alors , par égalité des colonnes Cy,
et Cy,, D, =0, et alors

I (a; —a;)(b; — bi)

1<i<j<n

D, =




Supposons maintenant que les termes de la suite (by)i1<k<, soient deux a deux distincts.
La théorie de la décomposition en éléments simbles assure que R se met sous la forme de

2. .
IT_ (a; —a;)(bj — bi)

& 1<i<j<
Par récurrence montrons que pour tout n € N*, D,, = Stsn
H (ai + b])
1<i<n
1<j<n
1
Pourn=1ona D; = .
ap + by
11 a b — b
i i 1Sz‘<j§n—1(a3 a;)(b; = bi)
Soit un entier n > 2, supposons que D,,_1 =
1<i<n—1
1<j<n-1

On a d’apres la question précédente

A,D,, = R(ap)Dn_1.

n—1 n—1
oA kr—l1(_b” — ) kr—[1<ak +bn)
Ona R(X) = 5. - donc Ay = (X+00) R(X))o—s, = 17 =
] k I (=by +be) I (b, — by)
k=1 k=1
n—1
II (a, — ax)
et R(a,) = L donc puisque A, # 0,

121(% + i)

T (a; —a;)(bj —bi)

R(a,) 1<i<j<n
D, = Dy 1= ——
An 135191(% +bj)
1<j<n

D’ou, le résultat.

4) (a)

HYPOTHESE: d(z,A) = 0.

Soit B une boule ouvert de cantre a. Notons r son rayon, la propriété caractéristique
de la borne inférieure nous offre a € A tel que :

0=d(z,A) <|||lx —a| <d(z,a)+r=r.

Donc la boule B rencontre A en a et donc x € A.
HYPOTHESE: z € A.
Soit ¢ € R7. la boule ouverte de centre x de rayon e rencontre a en un point noté b.
Alors
0<d(z,A) <l|lz—0b]| <e.

Comme ¢ est arbitraire. On a d(x, A) = 0.

Donc on a a I’équivalence entre étre adhérent a A et étre a la distance zéro de A.
4) (b) Vu en colles.

5) Posons pour tout n € N, 6, = d(z, A,,) et § = d(x, A).

Soit € € R,




e Observons que

0 < O,

pour tout n € N, puisque A, C A.
e La propriété de la borne supérieure nous fournit a € A tel que

< |z —al <d+e.

L’élément a est élément, par définition d’'une réunion d'un des A, disons A, ; la crois-
sance de la suite (A4,),en veut méme que

Vn € [ng, +oofa € A,
Donc, pour tout entier n, si n > ng, alors
o <|lx—al]| <d+e.
Par ces deux points on a
Vn € N, |d(z, A)a(z, An)| < e.

Donc

d(z,A,) — d(z, A)

n—-+o0o

6) Soit une suite (z,)en & valeurs dans BNV,
Cette suite a valeur dans B est bornée, elle est a fortiori bornée comme suite de I'espace
vectoriel de dimension finie V' et a ce titre possede une suite extraite (z4())pen de limite
¢, élément de V :

2o — €l — 0,

n—-4o00

(avec || - ||v la norme induite sur V pa || - ||.)

. A fortiori £ est limite de (z4(p))pen dans (E, |- ||) et, comme B est fermée, ¢ est élément
de B, donc au total f € BNV.

Ainsi BNV est-il un compact de (E, || - ||).

e L’inclusion BNV C V assure :
d(z, V) <d(z,BNV).
e Soit y € V. Deux cas :
— siye€ Balorsy € BNV et donc d(z, BNV) < |l —y]|;
— siy ¢ B alors ||y —z|| > ||z|| = ||z = 0| > d(z,BNV),car 0 € BNV.

Donc dans tous les cas, d(z, BN'V) < d(z,y) ; donc la borne inférieure étant le plus grand
des minorant

dlx,BNV) <d(z,V).



Alinsi, par ces deux points :

dlz,BNV) =d(z,V)

7)L’application
E—=Ryw—|y—=z|

est 1-lipschitzienne donc contiue. Elle atteint donc sa borne inférieure sur le compact
BNV autrement dit 1 existe y € BNV tel que d(x, BNV) = ||z — y|| .
D’apres la question 6) d(z,V) = d(x, BNV) donc d(z,V) = ||z — y|| .

C. Distance d’un point a un sous-espce de dimension finie dans un espace
euclidien.

8) Soit V' un sous-espace vectoriel de dimension finie de F, et 7 la projection orthogonale
sur V' ( elle existe car V est de dimension finie donc il admet un supplémentaire orthogonal
)
Soit z € E..
Pourtout v €V, ||z — v ||?=| x — 7(z) ||* + || 7(z) — v ||* car z — 7(z) Lw(z) —v € V.
Donc pour tout v € V,

|z —v|?<|| 2 —n(x) |

avec égalité si et seulement si v = 7(x).
Donc la distance de x & V' est atteinte en et seulement en 7(z).

9) Soient (x4, xg, ..., x,) € E™ et V un sous-espce vectoriel de £ de dimension n contenant
vect(xq, To, .., Tp).

Notons By = (ey, €, ..., €,) une base orthonormée de Vet M = Matpg, (21, x9, ..., x,), la
matrice du systéme de vecteurs (z1, za, ..., x,) dans la base By.

On a M(zy,29,...,0,) = MM .

En effet, posons pour tout j € [[1,n]],

(MTM)[i,g) = Y muimi = (wil),
k=1

d’apres I'expression du poduit scalaire dans une base orthonomée.

Donc G(z1, ..., ,) = det M? et comme det M = 0 si et seulement si la famille (x1, 73, ..., ,,)
est liée :

G(z1, g, ...,x,) = 0 si et seulement si la famille (21, zs, ..., x,,) est liée.

10) Soit z € E.

On a
(21| x)
G(%l,xg,...,xn’x): M($1,$2,...,xn) .
(za | 2)

Soit 7 le projecteur orthogonal sur V. Pour tout i € [[1,n]],
(@i | 2) = (w; | w(2)) + (2 | 2 = 7(x)) = (2; [ 7(2))
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car x — m(z) € V* et de plus

2] = llz — (@) ||* + [[= ()|
Donc
0
G(r1, 29, ..., Ty, T) = M{(z1, 2, o) 0
(7(@) | 21) - (w(@) |zn o —7(2)]?
(1 | m(x))
M (z1, 9, ..., 2,) :
! (@, | 7(2))
(m(z) [21) -+ (7(2) |20 I ()|

= ||‘r - 7T($)H2 G($1, L2y eeny 'rn) + G(xla T2y -ey T, W(IE’))

On a d’apres 9) G(z1, za, ..., x,, m(x))) = 0) car (x1, za, ..., z,, w(x)) est lide.
Ainsi

G(x1, Za, .., T, ) = ||z — 7(2)|]> G (21, T2, ..., ).

D’autre part d(z, V) = ||z — m(x)|| et G(z1, z2, ..., x,) # 0 car la famille (z1, za, ..., z,,) est
libre, donc
G(x1, T2, .y Ty, T)

d(z,V)* =

G(xy1, T2y ..., Ty)

11) Soit f € C([0,1]), on a
win = ( | 1 |f<as>|2das)é <(/ 1 Noo(f)2dw); — L), 0.1)

Soient A une partie de C([0,1]) et f € A . Soit B, une boule de centre f pour la norme
N,

L’inégalité (0.1) précédente veut que By contienne dans la boule By, de centre f, de méme
rayon, pour la norme N,,. Par définition de ’adhérence, B, rencontre A. Donc a fortiori
Bs rencontre A.

-2
La boule By étant quelconque f € A.

—0o0

2
Ainsi| A C A

12) ¢, désigne la fonction constante 1.



On considere la suite de fonctions (f,),>1 de C([0,1]) définie par :

nax si x€ [0, ﬂ
VYn e N* | fu(z) =

On a pour tout n € N, f, € V.

(Nz(fn—¢0))2:/ |fn(sc)—1|2d:c§%x1:_ —5 0

0

-2
donc ¢y € Vj.

13) Soit g € C([0,1]). Comme g = (g — g(0)¢o) + g(0)¢o En utilisant les notation de la
question 12, la suite (g — g(0)do + g(0) fn)nen converge dans (C([0,1]), Na) vers g et est
a valeur dans V' — 0.

—2
Donc g € Vg
Conclusion : Vj est dense dans (C([0,1]), Vs).

—0o0
On a ¢y ¢ Vo , en effet , sinon il existerait une suite de fonctions (f,)n>o0 de Vo qui
convergerait uniformément vers ¢q.
En particulier ( f,,),>0 convergerait simplement vers ¢, sur [0, 1] et donc ¢o(0) = lim f,(0) =
= n——+00

0, ce qui est absurde.
Donc Vj n’est pas dense dans C([0, 1]) pour la norme No.

14) Supposons que V' soit un sous-espace vectoriel d'un espace vectoriel normé E sur le
corps K.

oOnaVC‘_/,donc‘_/#@.

e Soient x et y deux éléments de Vet (A, 1) € K2 On dispose de suites (2, )n>0 €t (Yn)n>0
d’éléments de V' qui convergent respectivement vers z et y. La suite (x, + Ayn)n>0 est &
valeur dans V, car V' est un sous espace vectoriel de E et converge vers x + \y.

Donc = + \y € v

Deux ces deux points vient que V st également un sous-espace vectoriel de E.

15) Soit V un sous-espace vectoriel de C'(]0, 1]).

e On suppose que V est dense dans C([0, 1]) pour la norme N, alors en particulier, pour
tout m > 0, ¢,,, € V= C([0,1]).

e Réciproquement supposons que pour tout m > 0, ¢, € 7‘;0 et soit f € C([0,1]).

Par 14., vect(¢,,,m € N) C V. Mais vect(dm, m € N) est ensemble des fonctions
polynomiales sur le segment [0, 1], le théoréme de Weierstarss assure que

C([0,1]) = vect(¢m, m € N) .

Donc
OOOO —0o

C([0,1]) = vect(¢pm, m € N) . C V=V,
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Ainsi V est-il dense dans C([0,1]) pour la norme N.

16) Soit V' un sous-espace vectoriel de C([0, 1]).
On suppose que V est dense dans C([0, 1]) pour la norme Ny, alors il a fortiori, pour tout

m >0, (meV ([0, 1]).
-2
Réciproquement supposons que pour tout m >0, ¢, € V.

Par 14., vect(¢,,, m € N) C V toujourq grace au théoreme de Weierstarss et en utilisant
11, Donc

—9 _9

C([0,1]) = vect(¢m, m € N)™ C vect(dm,m € N)2 cV=V.

Ainsi V est-il dense dans C([0,1]) pour la norme Ns.
E. Un critere de densité de W pour la norme N.

Pour tout n € N, on note W), I'espace vectoriel engendré par la famille finie (¢, )o<k<n-
W est le sous-espace vectoriel de C'(]0, 1]) engendré par la famille (¢, )ken-

17) On a la suite (W,,),>0 est une suite croissante de sous-espaces vectoriels de C([0, 1]
et W = L>J0Wn donc d’apres la question 5) pour tout entier p > 0 lir+n d(¢u, Wy) =
n> n—-+oo

d(dpu, W).
Supposons que 'espace W soit dense dans C([0, 1]) pour la norme Nj et soit p un entier
positif, on a d’apres la question 4) d(¢,, W) = 0 donc lir+n d(¢u, Wy) = 0.

n—-+0oo

Réciproquement, supposons que 1151_1 d(¢u, Wy) = 0, pour tout entier p > 0.
n—-+0oo

—2
Alors, pour tout entier p > 0, d(¢,, W) = 0, et donc d’apres la question 4) ¢, € W
Donc d’apr es la question 16,) W est dense dans C([0,1]) pour la norme Ns.

18) On a d’apres les questions 1) et 10)

d(qﬁ;“ w. )2 _ G(¢>\07¢)\1a "‘7¢/\n’ gbu)
G(¢>\0’¢)\1a “'7¢>\n>
1
Pour tout (o, 8) € N, on a (¢, | ¢5) = fo @ 2Pdy = P
Posons pour tout k € [[0,n]], Bx = A+ 1 et §=pu+ 1, remarquons que Ay + 5 # 0 et
p+ B #0.
Calculons
1 1 1 1
SV syl NI A T
o? Bo od B 07 I6) 0 6]
AM+B M+ B AM+Bn M+B
G(Prgs Prrs s Orr Ou) = : : : :
1 1 1 1
An + An + M+ B A\, +
Fho At i Anpt
p+Bo  pt B p+Bn  p+pB



D’apres la partie A) :

. oei o, (A = 2 (85 = B) odL (n=X)(5 = f)
(qb)\o? ¢/\1a R ¢/\n7 ¢u) - Ogglgn()\i T BJ) X (IU n ﬁ)oglggn(u T 5i)0§1}§n()\i n 5) .
0<j<n

De méme on a

IL (A —N)(B; = Bi)

Gl hrgs gy ovns By, ) = =I=0
OSI;ISn()\i +55)

0<j<n

Au total,

IT (= A)(B — Br)

0<k<n

(w+8) I (n+pBk) IL (A +B)

0<k<n 0<i<n

I (1 — )

0<k<n
Cu+1) I Ne4+p+1) I (Ne+p+1)

0<k<n 0<i<n

et par suite

V20 F Te=0M +p+1°

d(¢#7 Wn) -

19) Soit p > 0. Supposons que la suite (Ag)ren tende vers +oo.

Ay —
M) tend vers 1.
A+ p+ 1/ oy

alors il est clair que la suite (
Ak — pf

Réciproquement, supposons que pour tout p > 0, la suite [ ———
A +p+1

> tende vers 1
keN

Soit A € R.. choisissons un entier naturel p tel que u > A.

Ap—al

r+p+1

La fonction h est continue sur [0, u|, dérivable sur [0, u] et pour tout = € [0,u] A'(z) =
1+ 2u

(x+p+1)7 "

Donc

Considérons la fonction h : Ry ;z —

Yz € 0,4, 0 < h(z) < h(0) = # (0.2)

Ak — pl

Comme [ ————
()\k +pu+1

) tend vers 1 on dispose de ky € N tel que :
keN

M — p 1
Vi kol :
€[o O]]’Ak+u+1 >u+1

Donc pour tout k élément de [0, ko], d’apres (0.2)
>‘k: > W > A7
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Ainsi la suite (A\g)ren tend-elle vers +oo .

20) D’apres la question 17) l'espace W est dense dans C([0, 1]) pour la norme Nj si et
seulement si liril d(¢u, Wy) = 0, pour tout entier p > 0.
n——+0o0

Donc il suffit de montrer que : lim d(¢,, W, ) = 0 pour tout entier ;z > 0 si et seulement
n——+0o0o

1
si la série Z)\— est divergente.

k Ak
e Supposons que pour tout entier >0, lim d(¢,, W,) = 0.
n—+oo
n )\k

Alors en particulier pour 4 =0 on a lim II = 0. En passant au logarithme (on

n—+ook=0\, + 1
1
abienln(l—l——) >0),
A

n

) 1
ngrfooz —1In (1 + )\—k> = —00.

D’autre part par concavité du logarithme, pour tout entier &k > 0,

Donc la série Z

est divergente.
k=1 Ak

1
e Réciproquement supposons la série > —soit divergente.

k>1 2k
Soit g un entier positif .
La suite (d(¢u, Wn)),cy €st une suite décroissante minorée par 0, donc converge, soit

= lim d
o=, 0 o W)
Supposons « non nul, donc strictement positif.
A —
Pzl g A0 T)

n—l>r—{loo)\n -+ ol +1 n—>-l—ood(¢u7 n— 1)

D’apres la question 19) on a la suite (Ag)ren tend vers +00. On peut choisir kg € N tel
que Vk > ko A\ > p.
Alors pour tout n > ko,

e — " 20+ 1
H ¢ :Zm(l_L>
]{;+/~/L+]- — e Fp+1

—ko
Comme In (1 — {24 ~ 2““ , par comparaison de séries négatives > In (1 — 22t
Aetptl ) gyt o KT Ap+pt+1
0
diverge et la suite de ses sommes partlelles tend vers —oo.

Donc "
— 0
H )\k —|— i —|— 1 n—+o0
et donc la suite (d(¢,, Wy)),oy tend vers 0, ce qui est absurde.
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— 0.

n—-+o0o

Donc (d(¢p, Wh))

neN

1
Doc W est dense dans C([0, 1]) pour N si et seulement si Z)\— est divergente.
k Ak
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