
Question préliminaire

1) Soit (αλ)λ∈R∗
+
une famille presque nulle de réels. On suppose∑

λ∈R∗
+

αλϕλ = O[0,1]→R.

Supposons la famille α non nulle ce qui autorise à poser λ0 = min{λ ∈ R∗
+|αλ ̸= 0}. alors

0 =

 1

ϕλ0

∑
λ∈R∗

+

αλϕλ

 (x) ∼
x→0+

αλ0 ̸= 0

Voilà bien chose absurde ! donc la famille α est nulle.
D’où la libertié de la famille (ϕλ)λ∈R∗

+
.

A. Déterminants de Cauchy.

2) On suppose R(X) est de la forme R(X) =
n∑

k=1

Ak

X + bk
.

On multiplie la dernière colonne Cn par An et on lui ajoute la combinaison linéaire des

autres colonnes
n−1∑
i=1

AkCk .

On obtient :

AnDn =

∣∣∣∣∣∣∣∣∣∣∣

1

a1 + b1

1

a1 + b2
.......... R(a1)

: : :
: : :
1

an + b1

1

an + b2
R(an)

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

1

a1 + b1

1

a1 + b2
.......... 0

: : :
: : 0
1

an + b1

1

an + b2
R(an)

∣∣∣∣∣∣∣∣∣∣∣
.

On développe par rapport à la dérnière colonne, on obtient

AnDn = R(an)Dn−1.

3)
S’il existe (k1, k2) ∈ [[1, n]] tel que k1 ̸= k2 et bk1 = bk2 alors , par égalité des colonnes Ck1

et Ck2 , Dn = 0, et alors

Dn =
Π

1≤i<j≤n
(aj − ai)(bj − bi)

Π
1≤i≤n
1≤j≤n

(ai + bj)
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Supposons maintenant que les termes de la suite (bk)1≤k≤n soient deux à deux distincts.
La théorie de la décomposition en éléments simbles assure que R se met sous la forme de
2. .

Par récurrence montrons que pour tout n ∈ N∗, Dn =
Π

1≤i<j≤n
(aj − ai)(bj − bi)

Π
1≤i≤n
1≤j≤n

(ai + bj)
.

Pour n = 1 on a D1 =
1

a1 + b1
.

Soit un entier n ≥ 2, supposons que Dn−1 =
Π

1≤i<j≤n−1
(aj − ai)(bj − bi)

Π
1≤i≤n−1
1≤j≤n−1

(ai + bj)
.

On a d’après la question précédente

AnDn = R(an)Dn−1.

On aR(X) =
n∑

k=1

Ak

X + bk
doncAn = ((X+bn)R(X))x=−bn =

n−1

Π
k=1

(−bn − ak)

n−1

Π
k=1

(−bn + bk)

=

n−1

Π
k=1

(ak + bn)

n−1

Π
k=1

(bn − bk)

et R(an) =

n−1

Π
k=1

(an − ak)

n

Π
k=1

(an + bk)
donc puisque An ̸= 0,

Dn =
R(an)

An

Dn−1 =
Π

1≤i<j≤n
(aj − ai)(bj − bi)

Π
1≤i≤n
1≤j≤n

(ai + bj)
.

D’où, le résultat.
4) (a)
Hypothèse: d(x,A) = 0.
Soit B une boule ouvert de cantre a. Notons r son rayon, la propriété caractéristique
de la borne inférieure nous offre a ∈ A tel que :

0 = d(x,A) ≤ |∥x− a∥ < d(x, a) + r = r.

Donc la boule B rencontre A en a et donc x ∈ Ā.
Hypothèse: x ∈ Ā.
Soit ε ∈ R∗

+. la boule ouverte de centre x de rayon ε rencontre a en un point noté b.
Alors

0 ≤ d(x,A) ≤ ∥x− b∥ < ε.

Comme ε est arbitraire. On a d(x,A) = 0.

Donc on a à l’équivalence entre étre adhérent à A et être à la distance zéro de A.
4) (b) Vu en colles.
5) Posons pour tout n ∈ N, δn = d(x,An) et δ = d(x,A).
Soit ε ∈ R∗

+
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• Observons que
δ ≤ δn,

pour tout n ∈ N, puisque An ⊂ A.
• La propriété de la borne supérieure nous fournit a ∈ A tel que

δ ≤ ∥x− a∥ < δ + ε.

L’élément a est élément, par définition d’une réunion d’un des An, disons An0 ; la crois-
sance de la suite (An)n∈N veut même que

∀n ∈ [[n0,+∞[, a ∈ An

Donc, pour tout entier n, si n ≥ n0, alors

δn ≤ ∥x− a∥ < δ + ε.

Par ces deux points on a

∀n ∈ N, |d(x,A)d(x,An)| ≤ ε.

Donc
d(x,An) −→

n→+∞
d(x,A)

6) Soit une suite (xn)∈N à valeurs dans B ∩ V .
Cette suite à valeur dans B est bornée, elle est a fortiori bornée comme suite de l’espace
vectoriel de dimension finie V et à ce titre possède une suite extraite (xϕ(p))p∈N de limite
ℓ, élément de V :

∥xϕ(p) − ℓ∥ −→
n→+∞

0,

(avec ∥ · ∥V la norme induite sur V pa ∥ · ∥.)
. A fortiori ℓ est limite de (xϕ(p))p∈N dans (E, ∥ · ∥) et, comme B est fermée, ℓ est élément
de B, donc au total ℓ ∈ B ∩ V .
Ainsi B ∩ V est-il un compact de (E, ∥ · ∥).

• L’inclusion B ∩ V ⊂ V assure :

d(x, V ) ≤ d(x,B ∩ V ).

• Soit y ∈ V . Deux cas :

— si y ∈ B alors y ∈ B ∩ V et donc d(x,B ∩ V ) ≤ ∥x− y∥ ;

— si y /∈ B alors ∥y − x∥ > ∥x∥ = ∥x− 0∥ ≥ d(x,B ∩ V ), car 0 ∈ B ∩ V .

Donc dans tous les cas, d(x,B∩V ) ≤ d(x, y) ; donc la borne inférieure étant le plus grand
des minorant

d(x,B ∩ V ) ≤ d(x, V ).
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Ainsi, par ces deux points :

d(x,B ∩ V ) = d(x, V )

7)L’application
E → R y 7→ ∥y − x∥

est 1-lipschitzienne donc contiue. Elle atteint donc sa borne inférieure sur le compact
B ∩ V autrement dit l existe y ∈ B ∩ V tel que d(x,B ∩ V ) = ∥x− y∥ .
D’après la question 6) d(x, V ) = d(x,B ∩ V ) donc d(x, V ) = ∥x− y∥ .

C. Distance d’un point à un sous-espce de dimension finie dans un espace
euclidien.

8) Soit V un sous-espace vectoriel de dimension finie de E, et π la projection orthogonale
sur V ( elle existe car V est de dimension finie donc il admet un supplémentaire orthogonal
)
Soit x ∈ E,.
Pour tout v ∈ V , ∥ x− v ∥2=∥ x− π(x) ∥2 + ∥ π(x)− v ∥2 car x− π(x)⊥π(x)− v ∈ V.
Donc pour tout v ∈ V ,

∥ x− v ∥2≤∥ x− π(x) ∥2,
avec égalité si et seulement si v = π(x).
Donc la distance de x à V est atteinte en et seulement en π(x).

9) Soient (x1, x2, ..., xn) ∈ En et V un sous-espce vectoriel de E de dimension n contenant
vect(x1, x2, ..., xn).
Notons B0 = (e1, e2, ...., en) une base orthonormée de V et M = MatB0(x1, x2, ..., xn), la
matrice du système de vecteurs (x1, x2, ..., xn) dans la base B0.
On a M(x1, x2, ..., xn) = M⊤M .
En effet, posons pour tout j ∈ [[1, n]],

(M⊤M)[i, j] =
n∑

k=1

mk,imk,j = ⟨xi|xj⟩,

d’après l’expression du poduit scalaire dans une base orthonomée.
DoncG(x1, ..., xn) = detM2 et comme detM = 0 si et seulement si la famille (x1, x2, ..., xn)
est liée :
G(x1, x2, ..., xn) = 0 si et seulement si la famille (x1, x2, ..., xn) est liée.

10) Soit x ∈ E.
On a

G(x1, x2, ..., xn, x) =

∣∣∣∣∣∣∣∣∣
M(x1, x2, ..., xn)

(x1 | x)
...

(xn | x)
(x | x1) · · · (x | xn ∥x∥2

∣∣∣∣∣∣∣∣∣
Soit π le projecteur orthogonal sur V. Pour tout i ∈ [[1, n]],

(xi | x) = (xi | π(x)) + (xi | x− π(x)) = (xi | π(x))
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car x− π(x) ∈ V ⊥ et de plus

∥x∥2 = ∥x− π(x)∥2 + ∥π(x)∥2 .

Donc

G(x1, x2, ..., xn, x) =

∣∣∣∣∣∣∣∣∣
M(x1, x2, ..., xn)

0
...
0

(π(x) | x1) · · · (π(x) | xn ∥x− π(x)∥2

∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣
M(x1, x2, ..., xn)

(x1 | π(x))
...

(xn | π(x))
(π(x) | x1) · · · (π(x) | xn ∥π(x)∥2

∣∣∣∣∣∣∣∣∣
= ∥x− π(x)∥2G(x1, x2, ..., xn) +G(x1, x2, ..., xn, π(x))

On a d’après 9) G(x1, x2, ..., xn, π(x))) = 0) car (x1, x2, ..., xn, π(x)) est liée.
Ainsi

G(x1, x2, ..., xn, x) = ∥x− π(x)∥2G(x1, x2, ..., xn).

D’autre part d(x, V ) = ∥x− π(x)∥ et G(x1, x2, ..., xn) ̸= 0 car la famille (x1, x2, ..., xn) est
libre, donc

d(x, V )2 =
G(x1, x2, ..., xn, x)

G(x1, x2, ..., xn)

11) Soit f ∈ C([0, 1]), on a

N2(f) =

(∫ 1

0

|f(x)|2 dx
) 1

2

≤
(∫ 1

0

N∞(f)2dx

) 1
2

= N∞(f). (0.1)

Soient A une partie de C([0, 1]) et f ∈
−∞
A . Soit B2 une boule de centre f pour la norme

N2.
L’inégalité (0.1) précédente veut que B2 contienne dans la boule B∞ de centre f , de même
rayon, pour la norme N∞. Par définition de l’adhérence, B∞ rencontre A. Donc a fortiori
B2 rencontre A.

La boule B2 étant quelconque f ∈
−2

A .

Ainsi
−∞
A ⊂

−2

A

12) ϕ0 désigne la fonction constante 1.
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On considère la suite de fonctions (fn)n≥1 de C([0, 1]) définie par :

∀n ∈ N∗ , fn(x) =


n.x si x ∈

[
0, 1

n

]
1 si x ∈

[
1
n
, 1
]

On a pour tout n ∈ N, fn ∈ V0.

(N2(fn − ϕ0))
2 =

∫ 1
n

0

|fn(x)− 1|2 dx ≤ 1

n
× 1 =

1

n
−→

n→+∞
0

donc ϕ0 ∈
−2

V0.

13) Soit g ∈ C([0, 1]). Comme g = (g − g(0)ϕ0) + g(0)ϕ0 En utilisant les notation de la
question 12, la suite (g − g(0)ϕ0 + g(o)fn)n∈N converge dans (C([0, 1]), N2) vers g et est
à valeur dans V − 0.

Donc g ∈
−2

V0

Conclusion : V0 est dense dans (C([0, 1]), N2).

On a ϕ0 /∈
−∞
V0 , en effet , sinon il existerait une suite de fonctions (fn)n≥0 de V0 qui

convergerait uniformément vers ϕ0.
En particulier (fn)n≥0 convergerait simplement vers ϕ0 sur [0, 1] et donc ϕ0(0) = lim

n→+∞
fn(0) =

0, ce qui est absurde.
Donc V0 n’est pas dense dans C([0, 1]) pour la norme N∞.

14) Supposons que V soit un sous-espace vectoriel d’un espace vectoriel normé E sur le
corps K.

• On a V ⊂
−
V , donc

−
V ̸= ∅.

• Soient x et y deux éléments de
−
V et (λ, µ) ∈ K2. On dispose de suites (xn)n≥0 et (yn)n≥0

d’éléments de V qui convergent respectivement vers x et y. La suite (xn + λyn)n≥0 est à
valeur dans V , car V est un sous espace vectoriel de E et converge vers x+ λy.

Donc x+ λy ∈
−
V

Deux ces deux points vient que
−
V est également un sous-espace vectoriel de E.

15) Soit V un sous-espace vectoriel de C([0, 1]).
• On suppose que V est dense dans C([0, 1]) pour la norme N∞, alors en particulier, pour

tout m ≥ 0, ϕm ∈
−∞
V = C([0, 1]).

• Réciproquement supposons que pour tout m ≥ 0, ϕm ∈
−∞
V et soit f ∈ C([0, 1]).

Par 14., vect(ϕm,m ∈ N) ⊂
−∞
V . Mais vect(ϕm,m ∈ N) est l’ensemble des fonctions

polynomiales sur le segment [0, 1], le théorème de Weierstarss assure que

C([0, 1]) = vect(ϕm,m ∈ N)
∞
.

Donc

C([0, 1]) = vect(ϕm,m ∈ N)
∞

⊂ V
∞∞

=
−∞
V .
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Ainsi V est-il dense dans C([0, 1]) pour la norme N∞.

16) Soit V un sous-espace vectoriel de C([0, 1]).
On suppose que V est dense dans C([0, 1]) pour la norme N2, alors il a fortiori, pour tout

m ≥ 0, ϕm ∈
−2

V = C([0, 1]).

Réciproquement supposons que pour tout m ≥ 0, ϕm ∈
−2

V .

Par 14., vect(ϕm,m ∈ N) ⊂
−2

V . toujourq grâce au théorème de Weierstarss et en utilisant
11, Donc

C([0, 1]) = vect(ϕm,m ∈ N)
∞

⊂ vect(ϕm,m ∈ N)
2
⊂ V

2
2

=
−2

V .

Ainsi V est-il dense dans C([0, 1]) pour la norme N2.

E. Un critère de densité de W pour la norme N2.

Pour tout n ∈ N, on note Wn l’espace vectoriel engendré par la famille finie (ϕλk
)0≤k≤n.

W est le sous-espace vectoriel de C([0, 1]) engendré par la famille (ϕλk
)k∈N.

17) On a la suite (Wn)n≥0 est une suite croissante de sous-espaces vectoriels de C([0, 1])
et W = ∪

n≥0
Wn donc d’après la question 5) pour tout entier µ ≥ 0 lim

n→+∞
d(ϕµ,Wn) =

d(ϕµ,W ).
Supposons que l’espace W soit dense dans C([0, 1]) pour la norme N2 et soit µ un entier
positif, on a d’après la question 4) d(ϕµ,W ) = 0 donc lim

n→+∞
d(ϕµ,Wn) = 0.

Réciproquement, supposons que lim
n→+∞

d(ϕµ,Wn) = 0, pour tout entier µ ≥ 0.

Alors, pour tout entier µ ≥ 0 , d(ϕµ,W ) = 0, et donc d’après la question 4) ϕµ ∈
−2

W
Donc d’apr ès la question 16,) W est dense dans C([0, 1]) pour la norme N2.

18) On a d’après les questions 1) et 10)

d(ϕµ,Wn)
2 =

G(ϕλ0 , ϕλ1 , ..., ϕλn , ϕµ)

G(ϕλ0 , ϕλ1 , ..., ϕλn)
.

Pour tout (α, β) ∈ N , on a (ϕα | ϕβ) =
∫ 1

0
xα.xβdx =

1

α + β + 1
.

Posons pour tout k ∈ [[0, n]], βk = λk + 1 et β = µ+ 1, remarquons que λk + βk ̸= 0 et
µ+ β ̸= 0.
Calculons

G(ϕλ0 , ϕλ1 , ..., ϕλn , ϕµ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

λ0 + β0

1

λ0 + β1

..........
1

λ0 + βn

1

λ0 + β
1

λ1 + β0

1

λ1 + β1

1

λ1 + βn

1

λ1 + β
: : : :
1

λn + β0

1

λn + β1

1

λn + βn

1

λn + β
1

µ+ β0

1

µ+ β1

1

µ+ βn

1

µ+ β

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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D’après la partie A) :

G(ϕλ0 , ϕλ1 , ..., ϕλn , ϕµ) =
Π

0≤i<j≤n
(λj − λi)(βj − βi)

Π
0≤i≤n
0≤j≤n

(λi + βj)
×

Π
0≤i≤n

(µ− λi)(β − βi)

(µ+ β) Π
0≤i≤n

(µ+ βi) Π
0≤i≤n

(λi + β)
.

De même on a

G(ϕλ0 , ϕλ1 , ..., ϕλn) =
Π

0≤i<j≤n
(λj − λi)(βj − βi)

Π
0≤i≤n
0≤j≤n

(λi + βj)
.

Au total,

d(ϕµ,Wn)
2 =

Π
0≤k≤n

(µ− λk)(β − βk)

(µ+ β) Π
0≤k≤n

(µ+ βk) Π
0≤i≤n

(λk + β)

=
Π

0≤k≤n
(µ− λk)

2

(2µ+ 1) Π
0≤k≤n

(λk + µ+ 1) Π
0≤i≤n

(λk + µ+ 1)
,

et par suite

d(ϕµ,Wn) =
1√

2µ+ 1

n

Π
k=0

|λk − µ|
λk + µ+ 1

.

19) Soit µ ≥ 0. Supposons que la suite (λk)k∈N tende vers +∞.

alors il est clair que la suite

(
|λk − µ|

λk + µ+ 1

)
k∈N

tend vers 1.

Réciproquement, supposons que pour tout µ ≥ 0, la suite

(
|λk − µ|

λk + µ+ 1

)
k∈N

tende vers 1

Soit A ∈ R. choisissons un entier naturel µ tel que µ ≥ A.

Considérons la fonction h : R+ ;x 7→ |µ− x|
x+ µ+ 1

La fonction h est continue sur [0, µ], dérivable sur [0, µ[ et pour tout x ∈ [0, µ[ h′(x) =

− 1 + 2u

(x+ µ+ 1)2
≤ 0.

Donc
∀x ∈ [0, µ], 0 ≤ h(x) ≤ h(0) =

µ

µ+ 1
. (0.2)

Comme

(
|λk − µ|

λk + µ+ 1

)
k∈N

tend vers 1 on dispose de k0 ∈ N tel que :

∀k ∈ [[0, k0]] ;
|λk − µ|

λk + µ+ 1
>

µ

µ+ 1

Donc pour tout k élément de [[0, k0]], d’après (0.2)

λk > µ ≥ A,
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Ainsi la suite (λk)k∈N tend-elle vers +∞ .

20) D’après la question 17) l’espace W est dense dans C([0, 1]) pour la norme N2 si et
seulement si lim

n→+∞
d(ϕµ,Wn) = 0, pour tout entier µ ≥ 0.

Donc il suffit de montrer que : lim
n→+∞

d(ϕµ,Wn) = 0 pour tout entier µ ≥ 0 si et seulement

si la série
∑
k

1

λk

est divergente.

• Supposons que pour tout entier µ ≥ 0, lim
n→+∞

d(ϕµ,Wn) = 0.

Alors en particulier pour µ = 0 on a lim
n→+∞

n

Π
k=0

λk

λk + 1
= 0. En passant au logarithme (on

a bien ln

(
1 +

1

λk

)
> 0 ),

lim
n→+∞

n∑
k=0

− ln

(
1 +

1

λk

)
= −∞.

D’autre part par concavité du logarithme, pour tout entier k ≥ 0,

ln

(
1 +

1

λk

)
≤ 1

λk

Donc la série
∑
k≥1

1

λk

est divergente.

• Réciproquement supposons la série
∑
k≥1

1

λk

soit divergente.

Soit µ un entier positif .
La suite (d(ϕµ,Wn))n∈N est une suite décroissante minorée par 0, donc converge, soit
α = lim

n→+∞
d(ϕµ,Wn).

Supposons α non nul, donc strictement positif.

lim
n→+∞

|λn − µ|
λn + µ+ 1

= lim
n→+∞

d(ϕµ,Wn)

d(ϕµ,Wn−1)
= 1.

D’après la question 19) on a la suite (λk)k∈N tend vers +∞. On peut choisir k0 ∈ N tel
que ∀k ≥ k0 λk > µ.
Alors pour tout n ≥ k0,

ln

(
n∏

k=k0

λk − µ

λk + µ+ 1

)
=

n∑
k=0

ln

(
1− 2µ+ 1

λk + µ+ 1

)

Comme ln
(
1− 2µ+1

λk+µ+1

)
∼

k→+∞
−2µ+1

λk
, par comparaison de séries négatives

∑
k≥k0

ln
(
1− 2µ+1

λk+µ+1

)
diverge et la suite de ses sommes partielles tend vers −∞.
Donc

n∏
k=k0

λk − µ

λk + µ+ 1
−→

n→+∞
0

et donc la suite (d(ϕµ,Wn))n∈N tend vers 0, ce qui est absurde.
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Donc (d(ϕµ,Wn))n∈N −→
n→+∞

0.

Doc W est dense dans C([0, 1]) pour N2 si et seulement si
∑
k

1

λk

est divergente.
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