MP* KERICHEN 2025-2026

DS 1n° (X, ENS)

NOTATIONS

Dans tout le probléme, le corps de scalaires est R. Si X et Y sont deux espaces vectoriels
normés, on note L£(X,Y") 'espace des applications linéaires de X dans Y et on note ||| f||| la
norme opérateur (norme triple) usuelle de toute application linéaire continue f € L(X,Y)
(cf. partie IT). On notera toujours I Papplication identité, quel que soit Iespace sous-
jacent, Tr(u) la trace d’'un endomorphisme u sur un espace vectoriel de dimension finie et
det(u) son déterminant. Le déterminant d’une matrice carrée A sera noté det(A). Enfin,
F* désignera l'orthogonal (au sens du produit scalaire sous-jacent) d’un sous-espace F'.

DEFINITIONS
Soit (E, || -||) un espace normé, on dit qu’une série Z x, d’éléments de E estconvergente

neN
si la suite de ses sommes partielles converge.

On dit qu'une série an d’éléments de E est inconditionnellement convergent si, pour
neN
tout choix de signes (€;);eny € {—1, 1}, la série Z €y est convergente dans E.
neN
Préliminaire.
Soit (E, || -||) un espace normé. Une suite (z,)nen & valeurs dans E est dite de Cauchy, si
pour tout e € R* | il existe ny € N tel que pour tout (p,q) € N, si p > ¢ > ng alors :

[zp — x4l < e
1. Montrer qu’une suite (z,),en & valeurs dans F qui converge est de Cauchy.

Si toutes les suites de Cauchy a valeurs dans E convergent on dit que F est complet
ou encore que E est un espace de Banach.



2. Montrer qu’une suite & valeurs dans £ de Cauchy est bornée.

3. Montrer qu’une suite a valeurs dans E de Cauchy qui admet une valeur d’adhérence
converge.

4. Montrer que si E est de dimension finie alors E est un espace de Banach.
Partie 1.

1) Démontrer qu’une série de réels ) ..z, est inconditionnellement convergente si et
seulement si ) - |z,| est convergente.

2) Soit (E, ||.||) un espace vectoriel normé de dimension finie, Soit une série > ., x, de E.
Montrer qu’elle est inconditionnellement convergente si et seulement si elle est absolument
convergente c’est-a-dire si et seulement si ) . [|z,|| converge.

On note ¢y 'espace des suites réelles convergentes vers 0, que I'on munit de la norme
[ul| o = sup |ug|, avec u = (up)en
keN

3. On considére (z(™),cy une suite de Cauchy d’éléments de (co, || - || ), la variable n est
noté en exposant plutéot qu’en indice, pour tout n € N, (™ est donc une suite (xl(“n))keN
élément de cg.
a. Montrer que pour tout k € N, la suite réelle (™ (k)),ey est de Cauchy de R.
b. Montrer qu’il existe une suite réelle (ay)ren telle que pour tout k& € N, (m,(f))neN
converge vers ay.
c. Montrer que la suite (a)gen € co.

d. Montre que ¢y est un espace de Banach.
4) Pour tout n € N, on définit I'¢lément z(™) = (:Ef?) de co par z\") = =g sik=mnet
keN

0 sinon. Montrer que la série E 2™ est inconditionnellement convergente dans cq.
neN

5) Conclure.
Partie II : lemme de Lewis.

Dans cette partie, (E, ||.||) désigne un espace vectoriel normé de dimension n, ou n € N\{0}.
On définit £ comme l'espace R"™ muni de sa structure euclidienne canonique. La norme est
1/2

donc ||(, ... ,:L’n)H2 = Zx% . On note fy la base canonique de R™.
k=1

L’application L(¢5, E) — Ry ; v+ sup{||v(z)|],||z]2 < 1} est une norme sur L({3, E), qui
sera notée ||| - ||
Soit

K ={ue L, E), |lulll =1}



On fixe une base  de E. Pour u € L(¢3, E), on définit ®(u) = |det(A)| ot A est la matrice
représentative de u dans les bases 3 et (3.

1) Montrer qu’il existe uy € K tel que sup ®(u) = P(uy)
u€eK

2) Montrer que ug est inversible.

3) On fixe v € L(£5, E) et € > 0. Montrer que'  |det(I + eug ' o v)| < (1+ €|v]|)™

4) Soit f € L(R™). Montrer que pour tout réel t, on a det(l +¢f) =1+t Tr(f) + o(t).
5) En déduire que uq vérifie : pour tout v € L(€5, E), on a  Tr(ug* ov) < nf||v|

Que vaut  sup{Tr(uy' ov) | v € L({3, E) avec |[[|v]|| <1} ?

Partie III : lemme de Dvoretzky-Rogers.

On reprend les notations de la partie II.

1) Soit i € {1,...,n — 1}. Soit F' un sous-espace de ¢5 de dimension i. On note P € L({})

la projection orthogonale sur F'*.
n—i

— 1-a) Montrer que < |[Juo o P||-
— 1-b) En déduire qu’il existe y € F* tel que  |Juo(y)|| = D70 e lyll, = 1.
. n n—j+1
2) Construire une base orthonormale (yy,...,y,) de €3 telle que |lug(y;)|| > ————,
n

pour tout j € {1,...,n}.

3) Soit m = [%} +1ou [g} désigne la partie entiére de 7. On définit les vecteurs de F :

v = JJuo(y:) | o
<23}

=1

ao(y;) pour 1 <@ < m.

m

E a;v;

i=1

Montrer que pour tous aq,...,a, € R,

Partie IV : théoréme de Dvoretzky-Rogers.

Dans cette partie, (X, ||.||) désigne un espace de Banach de dimension infinie.

. OO 1/2
On fixe une suite de réels positifs (¢, ),en telle que Z 2 converge. On pose ¢ = 2 (Z ci) :

n=0 n=0
1) Montrer qu’il existe une suite strictement croissante d’entiers (n;);ey avec ng = 0
vérifiant E ci < A4k pour tout entier k.
nz>ng

2) Montrer qu’il existe une suite (v, ),en de vecteurs de X de norme 1 telle que pour tout

Nkt1 Nkt1 1/2
entier k et pour tous réels a,, 1,...,a,,,, €R, E a;v; || <2 E af .

1. det désigne ici abusivement le déterminant des matrices dans les bases 3y et 3.



3) Montrer qu’il existe une suite (z,),en de vecteurs de X telle que ||z,| = ¢, et telle que
la série Y x,, soit inconditionnellement convergente dans X

4) En déduire que dans un espace de Banach de dimension infinie, il existe une suite (2, ),en
de vecteurs telle ) x, soit inconditionnellement convergente dans X et la série > ||z,
diverge.

Partie V : « unicité » dans le lemme de Lewis.
On reprend les notations de la partie II. On rappelle que /5 = R™, muni de sa tructure
euclidienne canonique. ug est I'application construite dans la partie II.

1) Montrer que pour tout endomorphisme orthogonal w de R™, ugow a les mémes propriétés
que ug : on rappelle que wugy est inversible, |||ug|]] = 1 et pour tout v € L({5, E), on a
Tr(ug " ov) < nl[vl]l.

2) Soit f € GL(R™) (on rappelle qu’il s’agit de 'ensemble des endomorphismes inversibles

de R™).
— 2-a) Montrer qu'il existe un endomorphisme s de R™, symétrique défini positif? tel
que
ffof=so0s.

— 2-b) Montrer qu'il existe un endomorphisme orthogonal u de R™ et un endomor-
phisme s symétrique défini positif tels que f =w o s.

On suppose qu'il existe u; € L(¢4, F) ayant les mémes propriétés que ug : u; est inversible,
||u1]|| = 1 et pour tout v € L(£3, E), on a Tr(u; ' o v) < nl||v]||.

3) Montrer qu’il existe un automorphisme orthogonal v de R™ et un endomorphisme s
symétrique défini positif tel que u; = ugowu o s.

4) Montrer que det(s) =1 et que Tr(s™!) < n.

3=

n n
1
5) Montrer que si ty,...,t, > 0, alors H 178 < - E tx. Etudier le cas d’égalité.
k=1 "=

6) Conclure.

Partie VI : Opérateurs absolument sommants.
Soient X et Y deux espaces vectoriel normés dont on note respectivement les normes ||.||
et ||.|I'. Soit T € L(X,Y), on note A(T) I'ensemble des constantes C' > 0 telles que pour
tout choix d’un nombre fini de vecteurs z,...,2, € X, on ait

P P
Z IT(2;)| < C sup {” Zej:ch D €1y ..., 6p € {1, 1}}
=1 =1

2. c’est a dire un endomorphisme s tel que pour tout z et tout y élément de R™, (z|s(y)) = (s(z)|y) et
(s(x)|z) soit positif, et nul si et seulement si = est nul.
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On dit que T' € L(X,Y") est absolument sommante si A(T") est non vide.

1) Soit T' € L(X,Y') absolument sommante. Montrer que A(T") admet un plus petit élément
que I'on notera 7(7T)

2) Soit T' € L(X,Y) absolument sommante. Montrer que T est continue et comparer |||7|||
et m(T)

3) Soient X et Y deux espaces vectoriels normés. Montrer que 'ensemble des applica-
tions absolument sommantes de X dans Y est un sous espace vectoriel de £L(X,Y") et que
T — m(T') est une norme sur cet espace.

4) Soit X lespace des fonctions continues sur [0, 1] & valeurs réelles muni de la norme sup

usuelle : || f|| ., = sup |f(z)|. On désigne par Y l’espace des fonctions continues sur [0, 1]
z€[0,1] 1

a valeurs réelles muni de la norme || f||, = |f(z)| dx. Soit J I'application de X dans Y
0

qui & toute fonction continue sur [0, 1] associe elle-méme.
Montrer que J est absolument sommante et calculer 7(J).

5) Montrer (de fagon élémentaire) que I'identité de ¢y n’est pas absolument sommante.

6) Soient (F,||.||) un espace vectoriel normé et une suite (z,),en de vecteurs de E.

p
— 6-a) Montrer que (M,)yen est croissante, ou Mp = sup{” Zej:cj| €0y, €p €

J=0

{(-1.1}}
— 6-b) En déduire que si la série Z x, est inconditionnellement convergente dans E
alors la suite (M),),en est bornéesn
— 6-¢) Soient T € L(X,Y) absolument sommante et une série an inconditionnel-
neN
lement convergente dans X. Que peut on dire de <HT(xj)H,>j€N ?
7) A quelle condition nécessaire et suffisante I'identité d’un espace de Banach est absolu-
ment sommante ?



MP* KERICHEN 2025-2026

O .
DS n°5 bis (X, ENS)
D’aprés une correction de S. Gonord.
Préliminaire.
1. Soit (x,)nen, suite & valeurs dans E qui admet une limite £.
Soit € € R%. On dispose de ng, entier tel que pour tout n € [ng, +oo[ on ait :
€

n_g <
o — ] < 5

Donc pour tout p et tout g entiers tels que p > ¢ > ng, par inégalité triangulaire

9 €
Iy = 2all < llzy — )+ 1€ =l < 5+ 5 =<

Donc notre suite (2, ),en est bien de Cauchy.

2. Soit (x,)nen une suite de Cauchy a valeurs dans E. En particulier, il est loisible de
choisir N € N tel que pour tout p et tout ¢, entiers tels que p > ¢ > N, on ait
|z, — x,4]] < 1. Alors pour tout n € N,

[z = wn |l < max{l, [[zo — znll, lor = anll; oo lon-1 — 2nl},

et donc (z,)nen est bornée.
3. Soit (x,)nen une suite de Cauchy a valeurs dans F qui admet une valeur d’adhérence
notée /.
Soit £ € RY.
— Que (,)nen soit de Cauchy nous fournit ng € N tel que pour tout (p,q) € N, si
p > q > ng alors :
5
ey — ol < 5 0
— Que /£ soit une valeur d’adhérence permet de trouver un entier ny > ng tel que :

. 2)

ln, — £l <

DO ™



I.1.

1.2.

I.3.

Soit alors n > n;. Les équtions (1-2) nous assurent que :

[ = €] < lwn = @n, | + [z, — €] <

DO | ™

Donc, xz, — /.
n—-+oo

. Supposons E de dimension finie et prenons (z,),en une suite de Cauchy a valeurs

dans E. Par 2, (z,,)nen est bornée, donc puisque E est de dimension finie, le théoréme
de Bolzano-Weierstrass assure que (2, )neny admet une valeur d’adhérence et alors 3
assure la convergence de cette suite.

Donc E est complet.

— Supposons Y x, inconditionnellement convergente. Pour tout n € N¢,, = sgn (x,,)
de sorte que €,z, = |z,|. La convergence de > ex,, = > |z,| nous assure de la
convergence absolue de > z,,.

— Supposons que 3, converge absolument. Alors pour toute suite (e,)neny A va-
leurs dans {1,—1}, > e,x, est absolument convergente donc convergente. Donc
> x, est inconditionnellment convergente.

Montrons que, si > z,, est inconditionnellement convergente alors Y ||x,|| converge.
On prend une base B de E et, comme les normes sont toutes équivalentes, on choisit
(sans restreindre la généralité de la démonstration) ||z|| = ||z]|~ dans cette base. Si
on écrit z,,; les coordonnées de z,, dans la base B de E alors ) z,,; est incondition-
nellement convergente donc absolument convergente vu la premiére question et ceci
pour tout .

Comme chaque série coordonnée est absolument convergente, on en déduit que >z,
est absolument convergente.

Remarque : la réciproque étant évidente on a I’équivalence en dimension finie des
propositions :

i. > x, est inconditionnellement convergente.

ii. >z, est absolument convergente.

a. Soit k € N, pour tout p et g,
\:c(p)(k) _ x(q)(k)\ < Hx(p) _ SU(q)Hoo-

Donc, la suite (z(™),cy étant de Cauchy, la suite réelle (x(™(k)),en 'est aussi.
b. Pour tout entier £ > 1, comme R, espace vectoriel de dimension 1 est complet
(cf. prémiminaire 4.), la suite (xé,"))neN converge vers un réel ay.
c. Soit € € R le caractére de Cauchy de (™), en fournit ny € N tel que pour tout
couple (p, q) d’entiers tels que p > g > ny, alors ||z — 2@, < 5. Donc la borne
supérieure étant un majorant, pour tout couple (p,q) € [ng, +00]?, et tout k € N,

£
ol = 2l < 5

7



1.4.

I.5.

Laissons dans cette inégalité p tendre vers +o00 et 'on obtient que pour tout entier

q > ng et tout entier k,

lax — 22| <

9

5 (3)
A ce stade les 5/2 eussent pu, pour conclure, évoqué légitimement le théoréme de la double
limite en considérant (x("))neN comme une suite d’applications définies sur la partie N de R de

limite nulle en 400, qui converge uniformément vers a (cf (5).

Plus élémentairement remarquons que (") admet 0 comme limite de sorte que
I'on dispose de k; € N, tel que pour tout k € [k, +0o0],

Done, par (3—4), pour tout entier k, si k > ky,
] < lax — 2" R)| + O E) < 54 5=

Donc la a est élément de cq.

d. La borne supérieure étant le PLUS PETIT des majorants, linégalité (3), dit que
pour tout entier ¢ > ng, on a :

€
la =2 < 5. (5)
Donc (2(™),en converge dans (c || - [|o) vers a.
Donc Pespace vectoriel normé (c || - ||o) est complet.

La preuve de la complétude pour une norme de type « norme infinie » ; obéit souvent
a ce schéma. On détermine une limite ponctuel, on montre que cette limite habite
l’espace considéré, on termine en monire la convergence vers la limite ponctuelle
dans l’e.v.n. considéré.

N
(™ =(0,...,0, n+r1, 0,...) donc ZO enz™ = (g, 5o 3410 0, .- .) qui converge vers
la suite x € ¢y définie pa k_ ca % enz(™ !
uite x € ¢ nie par r; = r ||z — T = —.
0 S = . N+2

Conclusion : la série > 2™ est inconditionnellement convergente.

1
On a |||, = e et la série > ||2(™||, diverge. Ceci prouve qu’en dimension

infinie on n’a pas I’équivalence de la question 2.

DEUXIEME PARTIE



IT.1.

I1.2.

I1.3.

I1.4.

I1.5.

K est un compact (fermé borné en dimension finie), ® est continue (A — det A est
continue en tant que fonction polynomiale, u — A est continue en tant qu’application
linéaire en dimension finie et  — |z| est continue) donc ® est bornée sur K et atteint
ses bornes.

Conclusion : il existe uy € K tel que sup ®(u) = P (up).

uek
On note By = (e1,...,6,), 8= (1,...,&,) et on définit v € L({5, E) par v(e;) = &,
on a évidemment ®(v) = 1. On pose alors w = HIZW € K, d(w) = |Hw1H|n par
conséquent ®(ug) > ®(w) > 0 et en conclusion wuy est inversible.
On remarque que si |||w||| < 1 alors ®(w) < ®(ug) (en effet, en posant v = !HZHI alors

O(w) = |[|w]||™ ®(v)) donc, comme |||ug + ev||| < 1+ ¢l||v]|| (inégalité triangulaire)

<1 <P(up)
alors, en posant w = _totev on obtient
1 +¢[vl]]
‘det (M)‘ < | det ug|
1 +¢[vl]]

soit | det uo| det(I +eug'ov) < |detuo|(1+¢l||v|||)" et on obtient le résultat demandé
en simplifiant par | det ug| > 0.

Remarque : on a noté det ug le déterminant de la matrice de uy ce qui correspond ici
a une notation impropre car ug n’est pas un endomorphisme.

Reésultat classique sur les polynomes caractéristiques que 1’on peut également démon-
trer en dérivant la fonction polynomiale P(t) = det([, + tA) o A est la matrice de
f dans la base canonique de R™ :

P(t) = det(Cy(t),...,Cu(t)) avec Ci(t) = (tays, ..., 1 +tag, ... tay)"

ona P(0)=1et
P'(t) = Zdet(Cl(t), LG, Cu(1) avee C(t) = (aviy -+ - Gigy - - Qi) "
=1

donc P'(0) = Tr(A) puisque det(C,(0),...,C7(0),...,Ch(0)) = a; et finalement
det(Id+tf) = 1+t Tr(f) 4 o(t) car P(t) = P(0) +tP'(0) + o(t).

On rassemble les résultats des deux questions précédentes

1+ tTr(uy' ov) +o(t) < (1+t|||v||)"
—_———

=1+nt|||v]||+o(t)



soit, en soustrayant 1 et en divisant par ¢ > 0, on obtient Tr(uy "' ov) < n|||v|||+o(1)
et, en passant a la limite quand ¢ — 0,

Tr(ug™ 0 v) < nlfv]]].

Ensuite on a sup{Tr(uy* ov) | v € L(¢}, E) avec |||[v||| < 1} < n or, pour v = ug on
a égalité donc

sup{Tr(ug' ov) | v € L(Ly, E) avec |||v]|| <1} =n

TROISIEME PARTIE
I1I1.1. a. Soit v = ug o P, on applique le I1.5, d’oul
Tr(ug' owv) = Tr(P) =n —i < nl|jug o P||]

ce qui donne le résultat.

b. |||lugo P||| = sup |lugo P(z)|| et comme la sphére unité est compacte, la borne
[[z]l2=1

supérieure est atteinte donc il existe € £ tel que ||z]la = 1 et |||ug o P||| =
[ug o P(x)]].
P(x)

Soit y = W (P(x) # 0 car ||up o P(x)|| > 0) alors, comme ||P(x)||2 <1,
Z)l2

||uo o P(z)]| n—1i
lwoW)ll = — 57— = llluwoo P|| >
’ 1P ()2 ’

et [lylla =1.

III.2. On sait qu'il existe un vecteur y; € F t.q. ||yil2 = 1 et |Juo(y1)|| = 1. Soit F =
Vect(y;) alors, grace a la question précédente, on sait qu’il existe y, € F* t.q.

n—1
[2ll2 = 1 et fluo(y2)ll =
On procéde alors par récurrence. Supposlons construite la famille orthonormale (y;, . .., yx)
vérifiant ¥j € [1,&], luo(y;)l| > L~

. En outre on a (y1|y2) = 0.

1
. On prend F = Vect(yi,...,yx) et on

—k
choisit yx41 a laide de la question III.1.b. On a effectivement |lug(yxs1)| > n

b

lyks1ll2 =1 et (y;]yes1) = 0 pour j < k car ypy1 € F*. Ceci achéve la récurrence.
Conclusion : on a ainsi construit une base orthonormale (yi,...,y,) de £ telle que
Jj+1

n - .
[Juo(y)ll = —— — bourtout j € [1,n].

10



111.3.

IV.1.

Iv.2.

IV.3.

n—j+1>n—m+1:n—[n/2]

Si j < m alors > >1/2 donc ——
n n n HUo Yj ||
a m
Posons b; = ————, b? < 4a?. On a ZCLM Z biug(yi) = wo (Z lyl) d’ou
Huo(yl)H i=1 i=1 i=1
m
> awif| < [Jfuoll] - iYi
T S~——
=1 -1
:(§ b2)1/2 car (y;) b.o.n.
i=1
m
<23
i=1
QUATRIEME PARTIE
2
On peut prendre ng = 0 car > 2 = — < ¢?
n>0 4

La suite u, = Y ¢2 est décroissante de limite nulle.
n>p

On prend n; = 1 (qui convient bien ici) puis, par récurrence sur k, si on a choisi ny
on prend pour ngyq le plus petit entier > ny + 1 tel que u,,,, < 24~ (k+1)

Soit F}, un sous-espace vectoriel de E de dimension 2(ng1 —ny) — 1 (ceci est possible
car E est de dimension infinie), on a vu au III que 'on pouvait définir une suite v, 1,
de vecteurs de norme 1 telle que, pour tous réels a,, ;1,...,a,,,, on ait
Nk41 NE41 1/2
E a; vl <2 E a?
i=ng+1 i=ng+1

ce qui est le résultat attendu.

Posons z,, = ¢,v, et montrons que, quelque soit le choix des ¢,, la série »_e,x,

converge.
m—+p

> Enn

=m
tel que ni + 1 < m et ny, le plus petit entier tel que m + p < ny, alors, en prenant la
propriété du II1.2 avec a,, = e,c, sim <n<m-+peta,=0sin,+1<n<mona

On utilise le critére de Cauchy, majorons . On note ny le plus grand entier

Ng41 Ng41 1/2
Z Enln|l <2 (Z ci) < 202_k,
n=m n=m

11



IV.4.

V.3.
V.4.

de méme avec a, =0sim+p<n<n,ona

1/2
m—+p m—+p
d o oeama|| <2 > < 2¢27 (1),
n=np_1+1 n=np_1+1

D’ou, en utilisant 'inégalité triangulaire

m-+p

§ EnTn

n=m

S 20(2—k + 2—k—1 et 2—(h—1))

< 427k,

la série vérifie bien le critére de Cauchy, elle converge.

1
Il suffit maintenant de choisir ¢, = T

n
Remarque : ceci généralise le résultat du [.4.

CINQUIEME PARTIE

. Soit u; = ug o w.

— w; inversible : évident.

— lluwg o wl||| = sup |Jug o w(x)|]| = sup |luo(¥)| = |||uol|| car w est bijectif et
l|lz[2=1 lyll2=1
conserve la norme.
— Tr(u;tov) = Tr(w ™ ougt ov) = Tr(uy ovow™) < nf|jvow™||| = n|||v]|| car

w~! est aussi un automorphisme orthogonal.

a. Classique : f* o f est diagonalisable (endomorphisme autoadjoint) et il existe
une base orthonormée dans laquelle M (f* o f) = Diag()\;) avec A; > 0. On
prend pour s 'endomorphisme de matrice Diag(y/)A;) dans cette base. s est bien
symétrique défini positif.

b. Soit u = fos talorsu* =stof*etu*ou=s"1of*ofos!=1Iddoncu est
orthogonal et f =wuos.

On applique la question précédente & f = uy ' o uy.

Onas=u"touy' oup et s symétrique > 0 d’out
det
0 < dets = |dets| = |detu™!| .ﬂ
N— |detU0|

car le déterminant d’un automorphisme orthogonal vaut +1. Or, par définition,
| det ug| > | det u;| donc det s < 1.
Enfin, comme s~ = u; ' o (ug o u) on écrit

Tr(s™") < nllfug o ull] =_ nll|uol|| = n.
cf VI.1
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V.5. Classique : on prend le logarithme et on utilise sa stricte concavité. Il y a égalité pour
t1=...=1n.

V.6. Si \q,...,\, désignent les valeurs propres de s (\; > 0) alors dets = Ay ...\, < 1et

1 1
Tr(s™!) = Tttt s
1 n

1
Si on applique I'inégalité de 5 a t; = x on obtient

n 1/n n
1 1
1< — <—E A < 1.
_<g)\k) _nk=1 e

On a ainsi égalité dans l'inégalité du 5 ce qui signifie que \y = ... =\, = 1.
Conclusion : s = I (s est diagonalisable et admet une seule valeur propre 1) et
up = ug o u donc il y a “unicité” de up a un automorphisme orthogonal prés.

SIXIEME PARTIE

VI.1. — A(T) est un sous-ensemble non vide minoré de R, il posséde une borne inférieure
(7).
— Montrons que 7(7T) € A(T).
Soit h > 0 alors m(T) + h € A(T) (en effet, A(T") est un intervalle de R car si
C e A(T) alors VC' > C, C" € A(T)). On a ainsi
Zajxj ;€5 = i—l}

et on sait que l'on peut permuter les quantificateurs V donc V(z1,...,x,) € X?,

Zgjxj ; €5 = :I:l}

soit m(T") € A(T) c.q.f.d.
VI.2. On prend p =1 alors || T(z1)]|" < m(T) sup{||le1z1]| ; €1 = £1}. Soit T est continue et
——

V(z1,...,2,) € XP, ZHT(%)H'S( (T)+h) sup{

J=1

Vh >0, ZHT(%)H/ (n(T) + h) sup{

j=1

et quand h — 0, on obtient

E :@%

V(z1,...,2,) € XP, ZHT% | <= (T sup{

7=1

=zl

en outre |||T]|| < 7(T) (et en général, on n’a pas égalité, cf. VL.5).
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VL.3. On note AS(X,Y) 'ensemble des applications absolument sommantes de X dans Y.
— AS(X,Y) # 0 car I'application nulle est absolument sommante et si m(7T) = 0
alors T'= 0 or, vu I'inégalité de la question 2, 7(T) =0= |||T]||=0=T = 0.
— SiT € AS(X,Y) alors AT € AS(X,Y) et on a w(AT) = |A|7n(T) (évident).
— Montrons l'inégalité triangulaire (et la stabilité pour +) :

IR SIELAIED W

sup{ Zgjxj ; €5 = il} sup{
< [n(T) +=(U)] sup{ iajxj £ = :I:l}

donc T+ U € AS(X,)Y) et 7(T +U) < n(T) + n(U).

VI.4. Soit x € [0,1], on pose |f;(z)| = €;f;j(x) ot €; = %1 selon le signe de f;(z). On a
ainsi

j:ﬂ}

E :53%

Z |fi(z)| = Zéjfj(x)

i

< sup ;e ==+l

p
> el
j=1 -

Cette derniére quantité étant indépendante de x, on peut donc intégrer de 0 a 1 d’ou

ZHJ(fj)Hl:Z/O |fj(x)]dx:/0 (Zlfj(:c)l) dz
Zgjfj

donc J est absolument sommante et 7(J) < 1.
Enfin, si 7(J) < 1 alors, en prenant f = 1 qui appartient a X on obtient

L= [flly <7(N)Iflloe <1

< sup ; g5 =1

ce qui est absurde.
Conclusion : w(J) = 1.
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VI.5. C’est une conséquence immeédiate de la partie 1.
En effet, la série > 2(™ est inconditionnellement convergente mais n’est pas absolu-

2_0,...) donc || X,| = 1. Or

P .
ment convergente. On a X, = > ;29 = (g,.. ., 1
j=1

p .
¢il existe 7 (1) alors les sommes partielles S || I(z") || sont majorées et cela entraine
j=1
—20)

que la série ) 2U) est absolument convergente ce qui est faux.

p
VI.6. a. Soit M, = ||>_e;x;|| (la borne supérieure est atteinte car on opére sur un
Jj=0

ensemble fini) on utilise alors I'inégalité suivante :

p p
E €;; 2 E €;i;
§=0 §=0
p p
= [D_ &5 + T + )75 — T
§=0 =0

p
E EjT; — Tp4+1
J=0

2

- < 2M,4,

p
S E €jT; + Tpt1
J=0

ce qui donne effectivement M, < M, ;.

b. On raisonne par I’absurde en supposant que lim M, = 4o0.
p—+o0

Montrons par récurrence sur n qu’il existe une suite (p,) d’entiers strictement
pﬂ/

> EiT;

j=0

croissante et une famille (g;) € {—1,+1}" telle que > n.

— n =0 : immédiat.
— On suppose la propriété vraie a 1'ordre n. Choisissons p,.1 > p, tel que

Pn+1

/ 0
2 €;%;|| et on pose €; = €
]:

M,

Pn+1

> 1+n+2M,,. On écrit que M,

Pn+1 =

pour j € [p, + 1, ppy1).

On a alors
Pn+1 Pn+1 Pn Pn
E E;Ti|| = E €;; E €;%5 + E €T
=0 =0 =0 =0
Pn+1
/
> E ;x| — 2Mp,
Jj=0
> Manrl —2M,, > n+1.
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Conclusion : la série )z, n’est pas inconditionnellement convergente ce qui
est contraire a I’hypotheése donc la suite M, est croissante et majorée donc
convergente.

c. Si T est absolument sommante et »_ z,, inconditionnellement convergente alors,

en notant M = sup M, qui existe d’aprés la question précédente, on a
peEN

Z 1T (2;)||" < m(T)M

donc la série ) ||T'(x;]|" est convergente.

VI.7. — On a vu au IV.4 que dans un espace de Banach de dimension infinie, il existe
une suite (z,,) de vecteurs inconditionnellement convergente mais non absolument
convergente.

— On vient de voir & la question précédente que, si I est absolument sommante alors
toute suite inconditionnellement convergente est absolument convergente.

On a donc I'implication suivante : si I'identité d’un espace de Banach est absolument
sommante alors cet espace est de dimension finie.

Montrons la réciproque. Comme toutes les normes sont équivalentes, choisissons la
norme 1 pour E espace vectoriel normé de dimension n, rapporté a une base B. On

identifie £ a R et on écrit x; = (x;1,...,2,,). On a les relations
p p n n p
D il =0 el = >0l
j=1 j=1 i=1 i=1 j=1
p p p n p
Ze’fjl'j Zejxj,l,...,qum :Z Zijﬂ
=1 . j=1 j=1 L=l =1
p p p
Soit ip € [1,n] tel que M = > |z;;| = max Y |z;,| alors > ||z;]i < nM puis, en
j=1 j=1 j=1

p
prenant €; = sgn (CEj,io), on a Z g5 = M.

.:1
J 1

Conclusion : on a ainsi prouvé que, pour toute suite (x;) de vecteurs de E,

p p
Z |lz;]l1 < nsup Zejafj ;e;==%1
j=1 j=1 )

Finalement on a I’équivalence : I'identité d’un espace de Banach est absolument som-
mante ssi cet espace est de dimension finie.
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