
MP∗ KERICHEN 2025-2026

DS no5 (X, ENS)

Notations

Dans tout le problème, le corps de scalaires est R. Si X et Y sont deux espaces vectoriels
normés, on note L(X, Y ) l'espace des applications linéaires de X dans Y et on note ∥|f |∥ la
norme opérateur (norme triple) usuelle de toute application linéaire continue f ∈ L(X, Y )
(cf. partie II). On notera toujours I l'application identité, quel que soit l'espace sous-
jacent, Tr(u) la trace d'un endomorphisme u sur un espace vectoriel de dimension �nie et
det(u) son déterminant. Le déterminant d'une matrice carrée A sera noté det(A). En�n,
F⊥ désignera l'orthogonal (au sens du produit scalaire sous-jacent) d'un sous-espace F .

Définitions

Soit (E, ∥ · ∥) un espace normé, on dit qu'une série
∑
n∈N

xn d'éléments de E estconvergente

si la suite de ses sommes partielles converge.

On dit qu'une série
∑
n∈N

xn d'éléments de E est inconditionnellement convergent si, pour

tout choix de signes (ϵi)i∈N ∈ {−1, 1}N, la série
∑
n∈N

ϵnxn est convergente dans E.

Préliminaire.
Soit (E, ∥ · ∥) un espace normé. Une suite (xn)n∈N à valeurs dans E est dite de Cauchy, si
pour tout ε ∈ R∗

+, il existe n0 ∈ N tel que pour tout (p, q) ∈ N2, si p ≥ q ≥ n0 alors :

∥xp − xq∥ ≤ ε.

1. Montrer qu'une suite (xn)n∈N à valeurs dans E qui converge est de Cauchy.

Si toutes les suites de Cauchy à valeurs dans E convergent on dit que E est complet

ou encore que E est un espace de Banach.
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2. Montrer qu'une suite à valeurs dans E de Cauchy est bornée.

3. Montrer qu'une suite à valeurs dans E de Cauchy qui admet une valeur d'adhérence
converge.

4. Montrer que si E est de dimension �nie alors E est un espace de Banach.

Partie I.

1) Démontrer qu'une série de réels
∑

n≥0 xn est inconditionnellement convergente si et
seulement si

∑
n≥0 |xn| est convergente.

2) Soit (E, ∥.∥) un espace vectoriel normé de dimension �nie, Soit une série
∑

n≥0 xn de E.
Montrer qu'elle est inconditionnellement convergente si et seulement si elle est absolument
convergente c'est-à-dire si et seulement si

∑
n≥0 ∥xn∥ converge.

On note c0 l'espace des suites réelles convergentes vers 0, que l'on munit de la norme
∥u∥∞ = sup

k∈N
|uk|, avec u = (uk)k∈N.

3. On considère (x(n))n∈N une suite de Cauchy d'éléments de (c0, ∥ · ∥∞), la variable n est

noté en exposant plutôt qu'en indice, pour tout n ∈ N, x(n) est donc une suite
(
x
(n)
k

)
k∈N

élément de c0.

a. Montrer que pour tout k ∈ N, la suite réelle (x(n)(k))n∈N est de Cauchy de R.

b. Montrer qu'il existe une suite réelle (ak)k∈N telle que pour tout k ∈ N, (x(n)
k )n∈N

converge vers ak.

c. Montrer que la suite (ak)k∈N ∈ c0.

d. Montre que c0 est un espace de Banach.

4) Pour tout n ∈ N, on dé�nit l'élément x(n) =
(
x
(n)
k

)
k∈N

de c0 par x
(n)
k = 1

n+1
si k = n et

0 sinon. Montrer que la série
∑
n∈N

x(n) est inconditionnellement convergente dans c0.

5) Conclure.

Partie II : lemme de Lewis.

Dans cette partie, (E, ∥.∥) désigne un espace vectoriel normé de dimension n, où n ∈ N\{0}.
On dé�nit ℓn2 comme l'espace Rn muni de sa structure euclidienne canonique. La norme est

donc
∥∥(xi, . . . , xn)

∥∥
2
=

(
n∑

k=1

x2
k

)1/2

. On note β0 la base canonique de Rn.

L'application L(ℓn2 , E) → R+ ; v 7→ sup{∥v(x)∥, ∥x∥2 ≤ 1} est une norme sur L(ℓn2 , E), qui
sera notée ∥| · |∥
Soit

K = {u ∈ L(ℓn2 , E), ∥|u|∥ = 1}.
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On �xe une base β de E. Pour u ∈ L(ℓn2 , E), on dé�nit Φ(u) = |det(A)| où A est la matrice
représentative de u dans les bases β0 et β.

1) Montrer qu'il existe u0 ∈ K tel que sup
u∈K

Φ(u) = Φ(u0)

2) Montrer que u0 est inversible.

3) On �xe v ∈ L(ℓn2 , E) et ϵ > 0. Montrer que 1
∣∣det(I + ϵu−1

0 ◦ v)
∣∣ ⩽ (1 + ϵ∥|v|∥)n.

4) Soit f ∈ L(Rn). Montrer que pour tout réel t, on a det(I + tf) = 1 + tTr(f) + o(t).

5) En déduire que u0 véri�e : pour tout v ∈ L(ℓn2 , E), on a Tr(u−1
0 ◦ v) ⩽ n∥|v|∥

Que vaut sup{Tr(u−1
0 ◦ v) | v ∈ L(ℓn2 , E) avec ∥|v|∥ ⩽ 1} ?

Partie III : lemme de Dvoretzky-Rogers.
On reprend les notations de la partie II.

1) Soit i ∈ {1, . . . , n− 1}. Soit F un sous-espace de ℓn2 de dimension i. On note P ∈ L(ℓn2 )
la projection orthogonale sur F⊥.

� 1-a) Montrer que
n− i

n
⩽ ∥|u0 ◦ P |∥.

� 1-b) En déduire qu'il existe y ∈ F⊥ tel que ∥u0(y)∥ ⩾
n− i

n
et ∥y∥2 = 1.

2) Construire une base orthonormale (y1, . . . , yn) de ℓn2 telle que ∥u0(yj)∥ ⩾
n− j + 1

n
,

pour tout j ∈ {1, . . . , n}.
3) Soit m =

[
n
2

]
+ 1 où

[
n
2

]
désigne la partie entière de n

2
. On dé�nit les vecteurs de E :

vi = ∥u0(yi)∥−1 .u0(yi) pour 1 ⩽ i ⩽ m.

Montrer que pour tous a1, . . . , am ∈ R,

∥∥∥∥∥
m∑
i=1

aivi

∥∥∥∥∥ ⩽ 2

(
m∑
i=1

a2i

)1/2

Partie IV : théorème de Dvoretzky-Rogers.
Dans cette partie, (X, ∥.∥) désigne un espace de Banach de dimension in�nie.

On �xe une suite de réels positifs (cn)n∈N telle que
∞∑
n=0

c2n converge. On pose c = 2

(
∞∑
n=0

c2n

)1/2

.

1) Montrer qu'il existe une suite strictement croissante d'entiers (nj)j∈N avec n0 = 0

véri�ant
∑
n⩾nk

c2n ⩽ c24−k pour tout entier k.

2) Montrer qu'il existe une suite (vn)n∈N de vecteurs de X de norme 1 telle que pour tout

entier k et pour tous réels ank+1, . . . , ank+1
∈ R,

∥∥∥∥∥
nk+1∑

i=nk+1

aivi

∥∥∥∥∥ ⩽ 2

(
nk+1∑

i=nk+1

a2i

)1/2

.

1. det désigne ici abusivement le déterminant des matrices dans les bases β0 et β.
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3) Montrer qu'il existe une suite (xn)n∈N de vecteurs de X telle que ∥xn∥ = cn et telle que
la série

∑
xn soit inconditionnellement convergente dans X

4) En déduire que dans un espace de Banach de dimension in�nie, il existe une suite (xn)n∈N
de vecteurs telle

∑
xn soit inconditionnellement convergente dans X et la série

∑
∥xn∥

diverge.

Partie V : � unicité � dans le lemme de Lewis.
On reprend les notations de la partie II. On rappelle que ℓn2 = Rn, muni de sa tructure
euclidienne canonique. u0 est l'application construite dans la partie II.

1) Montrer que pour tout endomorphisme orthogonal w de Rn, u0◦w a les mêmes propriétés
que u0 : on rappelle que u0 est inversible, ∥|u0|∥ = 1 et pour tout v ∈ L(ℓn2 , E), on a
Tr(u−1

0 ◦ v) ⩽ n∥|v|∥.
2) Soit f ∈ GL(Rn) (on rappelle qu'il s'agit de l'ensemble des endomorphismes inversibles
de Rn).

� 2-a) Montrer qu'il existe un endomorphisme s de Rn, symétrique dé�ni positif 2 tel
que
f ∗ ◦ f = s ◦ s.

� 2-b) Montrer qu'il existe un endomorphisme orthogonal u de Rn et un endomor-
phisme s symétrique dé�ni positif tels que f = u ◦ s.

On suppose qu'il existe u1 ∈ L(ℓn2 , E) ayant les mêmes propriétés que u0 : u1 est inversible,
∥|u1|∥ = 1 et pour tout v ∈ L(ℓn2 , E), on a Tr(u−1

1 ◦ v) ⩽ n∥|v|∥.
3) Montrer qu'il existe un automorphisme orthogonal u de Rn et un endomorphisme s
symétrique dé�ni positif tel que u1 = u0 ◦ u ◦ s.
4) Montrer que det(s) = 1 et que Tr (s−1) ⩽ n.

5) Montrer que si t1, . . . , tn > 0, alors

(
n∏

k=1

tk

) 1
n

⩽
1

n

n∑
k=1

tk. Etudier le cas d'égalité.

6) Conclure.

Partie VI : Opérateurs absolument sommants.
Soient X et Y deux espaces vectoriel normés dont on note respectivement les normes ∥.∥
et ∥.∥′. Soit T ∈ L(X, Y ), on note Λ(T ) l'ensemble des constantes C ⩾ 0 telles que pour
tout choix d'un nombre �ni de vecteurs x1, . . . , xp ∈ X, on ait

p∑
j=1

∥T (xj)∥′ ⩽ C sup
{∥∥ p∑

j=1

ϵjxj

∥∥ ; ϵ1, . . . , ϵp ∈ {−1, 1}
}

2. c'est à dire un endomorphisme s tel que pour tout x et tout y élément de Rn, (x|s(y)) = (s(x)|y) et
(s(x)|x) soit positif, et nul si et seulement si x est nul.
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On dit que T ∈ L(X, Y ) est absolument sommante si Λ(T ) est non vide.

1) Soit T ∈ L(X, Y ) absolument sommante. Montrer que Λ(T ) admet un plus petit élément
que l'on notera π(T )

2) Soit T ∈ L(X, Y ) absolument sommante. Montrer que T est continue et comparer ∥|T |∥
et π(T )

3) Soient X et Y deux espaces vectoriels normés. Montrer que l'ensemble des applica-
tions absolument sommantes de X dans Y est un sous espace vectoriel de L(X, Y ) et que
T 7→ π(T ) est une norme sur cet espace.

4) Soit X l'espace des fonctions continues sur [0, 1] à valeurs réelles muni de la norme sup
usuelle : ∥f∥∞ = sup

x∈[0,1]
|f(x)|. On désigne par Y l'espace des fonctions continues sur [0, 1]

à valeurs réelles muni de la norme ∥f∥1 =
∫ 1

0

|f(x)| dx. Soit J l'application de X dans Y

qui à toute fonction continue sur [0, 1] associe elle-même.
Montrer que J est absolument sommante et calculer π(J).

5) Montrer (de façon élémentaire) que l'identité de c0 n'est pas absolument sommante.

6) Soient (E, ∥.∥) un espace vectoriel normé et une suite (xn)n∈N de vecteurs de E.

� 6-a) Montrer que (Mp)p∈N est croissante, où MP = sup
{∥∥ p∑

j=0

ϵjxj

∥∥; ϵ0, . . . , ϵp ∈

{−1, 1}
}

� 6-b) En déduire que si la série
∑
n∈N

xn est inconditionnellement convergente dans E
alors la suite (Mp)p∈N est bornée.

� 6-c) Soient T ∈ L(X, Y ) absolument sommante et une série
∑
n∈N

xn inconditionnel-

lement convergente dans X. Que peut on dire de
(∥∥T (xj)

∥∥′)
j∈N

?

7) A quelle condition nécessaire et su�sante l'identité d'un espace de Banach est absolu-
ment sommante ?
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MP∗ KERICHEN 2025-2026

DS no5 bis (X, ENS)
D'après une correction de S. Gonord.

Préliminaire.

1. Soit (xn)n∈N, suite à valeurs dans E qui admet une limite ℓ.
Soit ε ∈ R∗

+. On dispose de n0, entier tel que pour tout n ∈ [[n0,+∞[[ on ait :

∥xn − ℓ∥ ≤ ε

2
.

Donc pour tout p et tout q entiers tels que p ≥ q ≥ n0, par inégalité triangulaire

∥xp − xq∥ ≤ ∥xp − ℓ∥+ ∥ℓ− xq∥ ≤ ε

2
+

ε

2
= ε.

Donc notre suite (xn)n∈N est bien de Cauchy.

2. Soit (xn)n∈N une suite de Cauchy à valeurs dans E. En particulier, il est loisible de
choisir N ∈ N tel que pour tout p et tout q, entiers tels que p ≥ q ≥ N , on ait
∥xp − xq∥ ≤ 1. Alors pour tout n ∈ N,

∥xn − xN∥ ≤ max{1, ∥x0 − xN∥, ∥x1 − xN∥, ..., ∥xN−1 − xN∥},

et donc (xn)n∈N est bornée.

3. Soit (xn)n∈N une suite de Cauchy à valeurs dans E qui admet une valeur d'adhérence
notée ℓ.
Soit ε ∈ R∗

+.
� Que (xn)n∈N soit de Cauchy nous fournit n0 ∈ N tel que pour tout (p, q) ∈ N, si

p ≥ q ≥ n0 alors :
∥xp − xq∥ ≤ ε

2
. (1)

� Que ℓ soit une valeur d'adhérence permet de trouver un entier n1 ≥ n0 tel que :

∥xn1 − ℓ∥ ≤ ε

2
. (2)
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Soit alors n ≥ n1. Les équtions (1�2) nous assurent que :

∥xn − ℓ∥ ≤ ∥xn − xn1∥+ ∥xn1 − ℓ∥ ≤ ε

2
+

ε

2
= ε.

Donc, xn −→
n→+∞

ℓ.

4. Supposons E de dimension �nie et prenons (xn)n∈N une suite de Cauchy à valeurs
dans E. Par 2, (xn)n∈N est bornée, donc puisque E est de dimension �nie, le théorème
de Bolzano-Weierstrass assure que (xn)n∈N admet une valeur d'adhérence et alors 3
assure la convergence de cette suite.
Donc E est complet.

I.1. � Supposons
∑

xn inconditionnellement convergente. Pour tout n ∈ N ϵn = sgn (xn)
de sorte que ϵnxn = |xn|. La convergence de

∑
ϵxn =

∑
|xn| nous assure de la

convergence absolue de
∑

xn.
� Supposons que

∑
xn converge absolument. Alors pour toute suite (ϵn)n∈N Ã va-

leurs dans {1,−1},
∑

εnxn est absolument convergente donc convergente. Donc∑
xn est inconditionnellment convergente.

I.2. Montrons que, si
∑

xn est inconditionnellement convergente alors
∑

∥xn∥ converge.
On prend une base B de E et, comme les normes sont toutes équivalentes, on choisit
(sans restreindre la généralité de la démonstration) ∥x∥ = ∥x∥∞ dans cette base. Si
on écrit xn,i les coordonnées de xn dans la base B de E alors

∑
xn,i est incondition-

nellement convergente donc absolument convergente vu la première question et ceci
pour tout i.
Comme chaque série coordonnée est absolument convergente, on en déduit que

∑
xn

est absolument convergente.
Remarque : la réciproque étant évidente on a l'équivalence en dimension �nie des
propositions :
i.
∑

xn est inconditionnellement convergente.
ii.
∑

xn est absolument convergente.

I.3. a. Soit k ∈ N, pour tout p et q,

|x(p)(k)− x(q)(k)| ≤ ∥x(p) − x(q)∥∞.

Donc, la suite (x(n))n∈N étant de Cauchy, la suite réelle (x(n)(k))n∈N l'est aussi.
b. Pour tout entier k ≥ 1, comme R, espace vectoriel de dimension 1 est complet

(cf. prémiminaire 4.), la suite (x
(n)
k )n∈N converge vers un réel ak.

c. Soit ε ∈ R∗
+. le caractère de Cauchy de (x(n))n∈N fournit n0 ∈ N tel que pour tout

couple (p, q) d'entiers tels que p ≥ q ≥ n0, alors ∥x(p)−x(q)∥∞ ≤ ε
2
. Donc la borne

supérieure étant un majorant, pour tout couple (p, q) ∈ [[n0,+∞]]2, et tout k ∈ N,

∥x(p)
k − x

(q)
k ∥∞ ≤ ε

2
.
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Laissons dans cette inégalité p tendre vers +∞ et l'on obtient que pour tout entier
q ≥ n0 et tout entier k,

∥ak − x
(q)
k ∥ ≤ ε

2
. (3)

A ce stade les 5/2 eussent pu, pour conclure, évoqué légitimement le théorème de la double

limite en considérant (x(n))n∈N comme une suite d'applications dé�nies sur la partie N de R de

limite nulle en +∞, qui converge uniformément vers a (cf (5).

Plus élémentairement remarquons que x(n0) admet 0 comme limite de sorte que
l'on dispose de k1 ∈ N, tel que pour tout k ∈ [[k1,+∞]],

|x(n0)
k | ≤ ε

2
. (4)

Donc, par (3�4), pour tout entier k, si k ≥ k1,

|ak| ≤ |ak − x(n0)(k)|+ |x(n0)(k)| ≤ ε

2
+

ε

2
= ε.

Donc la a est élément de c0.
d. La borne supérieure étant le PLUS PETIT des majorants, linégalité (3), dit que

pour tout entier q ≥ n0, on a :

∥a− xq∥∞ ≤ ε

2
. (5)

Donc (x(n))n∈N converge dans (c,∥ · ∥∞) vers a.
Donc l'espace vectoriel normé (c,∥ · ∥∞) est complet.

La preuve de la complétude pour une norme de type � norme in�nie � ; obéit souvent

à ce schéma. On détermine une limite ponctuel, on montre que cette limite habite

l'espace considéré, on termine en montre la convergence vers la limite ponctuelle

dans l'e.v.n. considéré.

I.4. x(n) = (0, . . . , 0, 1
n+1

, 0, . . .) donc
N∑

n=0

εnx
(n) = (ε0,

ε1
2
, . . . , εN

N+1
, 0, . . .) qui converge vers

la suite x ∈ c0 dé�nie par xk =
εk

k + 1
car

∥∥∥∥x−
N∑

n=0

εnx
(n)

∥∥∥∥
∞

=
1

N + 2
.

Conclusion : la série
∑

x(n) est inconditionnellement convergente.

I.5. On a ∥x(n)∥∞ =
1

n+ 1
et la série

∑
∥x(n)∥∞ diverge. Ceci prouve qu'en dimension

in�nie on n'a pas l'équivalence de la question 2.

Deuxième partie
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II.1. K est un compact (fermé borné en dimension �nie), Φ est continue (A 7→ detA est
continue en tant que fonction polynomiale, u 7→ A est continue en tant qu'application
linéaire en dimension �nie et x 7→ |x| est continue) donc Φ est bornée sur K et atteint
ses bornes.
Conclusion : il existe u0 ∈ K tel que sup

u∈K
Φ(u) = Φ(u0).

II.2. On note β0 = (e1, . . . , en), β = (ε1, . . . , εn) et on dé�nit v ∈ L(ℓn2 , E) par v(ei) = εi,

on a évidemment Φ(v) = 1. On pose alors w =
v

|||v|||
∈ K, Φ(w) =

1

|||w|||n
par

conséquent Φ(u0) ≥ Φ(w) > 0 et en conclusion u0 est inversible.

II.3. On remarque que si |||w||| ≤ 1 alors Φ(w) ≤ Φ(u0) (en e�et, en posant v =
w

|||w|||
alors

Φ(w) = |||w|||n︸ ︷︷ ︸
≤1

Φ(v)︸︷︷︸
≤Φ(u0)

) donc, comme |||u0 + εv||| ≤ 1 + ε|||v||| (inégalité triangulaire)

alors, en posant w =
u0 + εv

1 + ε|||v|||
on obtient

∣∣∣∣det( u0 + εv

1 + ε|||v|||

)∣∣∣∣ ≤ | detu0|

soit | detu0| det(I+εu−1
0 ◦v) ≤ | detu0|(1+ε|||v|||)n et on obtient le résultat demandé

en simpli�ant par | detu0| > 0.
Remarque : on a noté detu0 le déterminant de la matrice de u0 ce qui correspond ici
à une notation impropre car u0 n'est pas un endomorphisme.

II.4. Résultat classique sur les polynômes caractéristiques que l'on peut également démon-
trer en dérivant la fonction polynomiale P (t) = det(In + tA) où A est la matrice de
f dans la base canonique de Rn :

P (t) = det(C1(t), . . . , Cn(t)) avec Ci(t) = (ta1i, . . . , 1 + taii, . . . , tani)
T

on a P (0) = 1 et

P ′(t) =
n∑

i=1

det(C1(t), . . . , C
′
i(t), . . . , Cn(t)) avec C ′

i(t) = (a1i, . . . , aii, . . . , ani)
T

donc P ′(0) = Tr(A) puisque det(C1(0), . . . , C
′
i(0), . . . , Cn(0)) = aii et �nalement

det(Id+tf) = 1 + tTr(f) + o(t) car P (t) = P (0) + tP ′(0) + o(t).

II.5. On rassemble les résultats des deux questions précédentes

1 + tTr(u−1
0 ◦ v) + o(t) ≤ (1 + t|||v|||)n︸ ︷︷ ︸

=1+nt|||v|||+o(t)
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soit, en soustrayant 1 et en divisant par t > 0, on obtient Tr(u−1
0 ◦ v) ≤ n|||v|||+ o(1)

et, en passant à la limite quand t → 0+,

Tr(u−1
0 ◦ v) ≤ n|||v|||.

Ensuite on a sup{Tr(u−1
0 ◦ v) | v ∈ L(ℓn2 , E) avec |||v||| ≤ 1} ≤ n or, pour v = u0 on

a égalité donc

sup{Tr(u−1
0 ◦ v) | v ∈ L(ℓn2 , E) avec |||v||| ≤ 1} = n

Troisième partie

III.1. a. Soit v = u0 ◦ P , on applique le II.5, d'où

Tr(u−1
0 ◦ v) = Tr(P ) = n− i ≤ n|||u0 ◦ P |||

ce qui donne le résultat.
b. |||u0 ◦P ||| = sup

∥x∥2=1

∥u0 ◦P (x)∥ et comme la sphère unité est compacte, la borne

supérieure est atteinte donc il existe x ∈ ℓn2 tel que ∥x∥2 = 1 et |||u0 ◦ P ||| =
∥u0 ◦ P (x)∥.

Soit y =
P (x)

∥P (x)∥2
(P (x) ̸= 0 car ∥u0 ◦ P (x)∥ > 0) alors, comme ∥P (x)∥2 ≤ 1,

∥u0(y)∥ =
∥u0 ◦ P (x)∥
∥P (x)∥2

≥ |||u0 ◦ P ||| ≥ n− i

n
et ∥y∥2 = 1.

III.2. On sait qu'il existe un vecteur y1 ∈ E t.q. ∥y1∥2 = 1 et ∥u0(y1)∥ = 1. Soit F =
Vect(y1) alors, grâce à la question précédente, on sait qu'il existe y2 ∈ F⊥ t.q.

∥y2∥2 = 1 et ∥u0(y2)∥ ≥ n− 1

n
. En outre on a (y1|y2) = 0.

On procède alors par récurrence. Supposons construite la famille orthonormale (y1, . . . , yk)

véri�ant ∀j ∈ [1, k], ∥u0(yj)∥ ≥ n− j + 1

n
. On prend F = Vect(y1, . . . , yk) et on

choisit yk+1 à l'aide de la question III.1.b. On a e�ectivement ∥u0(yk+1)∥ ≥ n− k

n
,

∥yk+1∥2 = 1 et (yj|yk+1) = 0 pour j ≤ k car yk+1 ∈ F⊥. Ceci achève la récurrence.
Conclusion : on a ainsi construit une base orthonormale (y1, . . . , yn) de ℓn2 telle que

∥u0(yj)∥ ≥ n− j + 1

n
pour tout j ∈ [1, n].
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III.3. Si j ≤ m alors
n− j + 1

n
≥ n−m+ 1

n
=

n− [n/2]

n
≥ 1/2 donc

1

∥u0(yj)∥
≤ 2.

Posons bi =
ai

∥u0(yi)∥
, b2i ≤ 4a2i . On a

m∑
i=1

aivi =
m∑
i=1

biu0(yi) = u0

(
m∑
i=1

biyi

)
d'où

∥∥∥∥∥
m∑
i=1

aivi

∥∥∥∥∥ ≤ |||u0|||︸ ︷︷ ︸
=1

.

∥∥∥∥∥
m∑
i=1

biyi

∥∥∥∥∥
2︸ ︷︷ ︸

=(
m∑
i=1

b2i )
1/2 car (yi) b.o.n.

≤ 2
m∑
i=1

a2i

Quatrième partie

IV.1. On peut prendre n0 = 0 car
∑
n≥0

c2n =
c2

4
≤ c2.

La suite up =
∑
n≥p

c2n est décroissante de limite nulle.

On prend n1 = 1 (qui convient bien ici) puis, par récurrence sur k, si on a choisi nk

on prend pour nk+1 le plus petit entier ≥ nk + 1 tel que unk+1
≤ c24−(k+1).

IV.2. Soit Fk un sous-espace vectoriel de E de dimension 2(nk+1−nk)−1 (ceci est possible
car E est de dimension in�nie), on a vu au III que l'on pouvait dé�nir une suite vnk+i

de vecteurs de norme 1 telle que, pour tous réels ank+1, . . . , ank+1
on ait∥∥∥∥∥

nk+1∑
i=nk+1

aivi

∥∥∥∥∥ ≤ 2

(
nk+1∑

i=nk+1

a2i

)1/2

ce qui est le résultat attendu.

IV.3. Posons xn = cnvn et montrons que, quelque soit le choix des εn, la série
∑

εnxn

converge.

On utilise le critère de Cauchy, majorons

∥∥∥∥m+p∑
n=m

εnxn

∥∥∥∥. On note nk le plus grand entier

tel que nk + 1 ≤ m et nh le plus petit entier tel que m+ p ≤ nh alors, en prenant la
propriété du III.2 avec an = εncn si m ≤ n ≤ m+ p et an = 0 si nk +1 ≤ n < m on a∥∥∥∥∥

nk+1∑
n=m

εnxn

∥∥∥∥∥ ≤ 2

(
nk+1∑
n=m

c2n

)1/2

≤ 2c2−k,
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de même avec an = 0 si m+ p < n ≤ nh on a∥∥∥∥∥∥
m+p∑

n=nh−1+1

εnxn

∥∥∥∥∥∥ ≤ 2

 m+p∑
n=nh−1+1

c2n

1/2

≤ 2c2−(h−1).

D'où, en utilisant l'inégalité triangulaire∥∥∥∥∥
m+p∑
n=m

εnxn

∥∥∥∥∥ ≤ 2c(2−k + 2−k−1 + · · ·+ 2−(h−1))

≤ 4c2−k.

la série véri�e bien le critère de Cauchy, elle converge.

IV.4. Il su�t maintenant de choisir cn =
1

n+ 1
.

Remarque : ceci généralise le résultat du I.4.

Cinquième partie

V.1. Soit u1 = u0 ◦ w.
� u1 inversible : évident.
� |||u0 ◦ w||| = sup

∥x∥2=1

∥u0 ◦ w(x)∥ = sup
∥y∥2=1

∥u0(y)∥ = |||u0||| car w est bijectif et

conserve la norme.
� Tr(u−1

1 ◦ v) = Tr(w−1 ◦ u−1
0 ◦ v) = Tr(u−1

0 ◦ v ◦ w−1) ≤ n|||v ◦ w−1||| = n|||v||| car
w−1 est aussi un automorphisme orthogonal.

V.2. a. Classique : f ∗ ◦ f est diagonalisable (endomorphisme autoadjoint) et il existe
une base orthonormée dans laquelle M(f ∗ ◦ f) = Diag(λi) avec λi > 0. On
prend pour s l'endomorphisme de matrice Diag(

√
λi) dans cette base. s est bien

symétrique dé�ni positif.
b. Soit u = f ◦ s−1 alors u∗ = s−1 ◦ f ∗ et u∗ ◦ u = s−1 ◦ f ∗ ◦ f ◦ s−1 = Id donc u est

orthogonal et f = u ◦ s.
V.3. On applique la question précédente à f = u−1

0 ◦ u1.

V.4. On a s = u−1 ◦ u−1
0 ◦ u1 et s symétrique > 0 d'où

0 < det s = | det s| = | detu−1|︸ ︷︷ ︸
=1

.
| detu1|
| detu0|

car le déterminant d'un automorphisme orthogonal vaut ±1. Or, par dé�nition,
| detu0| ≥ | detu1| donc det s ≤ 1.
En�n, comme s−1 = u−1

1 ◦ (u0 ◦ u) on écrit

Tr(s−1) ≤ n|||u0 ◦ u||| =︸︷︷︸
cf VI.1

n|||u0||| = n.
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V.5. Classique : on prend le logarithme et on utilise sa stricte concavité. Il y a égalité pour
t1 = . . . = tn.

V.6. Si λ1, . . . , λn désignent les valeurs propres de s (λi > 0) alors det s = λ1 . . . λn ≤ 1 et

Tr(s−1) =
1

λ1

+ · · ·+ 1

λn

≤ n.

Si on applique l'inégalité de 5 à ti =
1

λi

on obtient

1 ≤

(
n∏

k=1

1

λk

)1/n

≤ 1

n

n∑
k=1

λk ≤ 1.

On a ainsi égalité dans l'inégalité du 5 ce qui signi�e que λ1 = . . . = λn = 1.
Conclusion : s = I (s est diagonalisable et admet une seule valeur propre 1) et
u1 = u0 ◦ u donc il y a �unicité� de u0 à un automorphisme orthogonal près.

Sixième partie

VI.1. � Λ(T ) est un sous-ensemble non vide minoré de R, il possède une borne inférieure
π(T ).

� Montrons que π(T ) ∈ Λ(T ).
Soit h > 0 alors π(T ) + h ∈ Λ(T ) (en e�et, Λ(T ) est un intervalle de R car si
C ∈ Λ(T ) alors ∀C ′ ≥ C, C ′ ∈ Λ(T )). On a ainsi

∀(x1, . . . , xp) ∈ Xp,

p∑
j=1

∥T (xj)∥′ ≤ (π(T ) + h) sup

{∥∥∥∥∥
p∑

j=1

εjxj

∥∥∥∥∥ ; εj = ±1

}

et on sait que l'on peut permuter les quanti�cateurs ∀ donc ∀(x1, . . . , xp) ∈ Xp,

∀h > 0,

p∑
j=1

∥T (xj)∥′ ≤ (π(T ) + h) sup

{∥∥∥∥∥
p∑

j=1

εjxj

∥∥∥∥∥ ; εj = ±1

}

et quand h → 0, on obtient

∀(x1, . . . , xp) ∈ Xp,

p∑
j=1

∥T (xj)∥′ ≤ π(T ) sup

{∥∥∥∥∥
p∑

j=1

εjxj

∥∥∥∥∥ ; εj = ±1

}

soit π(T ) ∈ Λ(T ) c.q.f.d.

VI.2. On prend p = 1 alors ∥T (x1)∥′ ≤ π(T ) sup{∥ε1x1∥︸ ︷︷ ︸
=∥x1∥

; ε1 = ±1}. Soit T est continue et

en outre |||T ||| ≤ π(T ) (et en général, on n'a pas égalité, cf. VI.5).
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VI.3. On note AS(X, Y ) l'ensemble des applications absolument sommantes de X dans Y .
� AS(X, Y ) ̸= ∅ car l'application nulle est absolument sommante et si π(T ) = 0

alors T = 0 or, vu l'inégalité de la question 2, π(T ) = 0 ⇒ |||T ||| = 0 ⇒ T = 0.
� Si T ∈ AS(X, Y ) alors λT ∈ AS(X, Y ) et on a π(λT ) = |λ|π(T ) (évident).
� Montrons l'inégalité triangulaire (et la stabilité pour +) :

p∑
j=1

∥(T + U)(xj)∥ ≤
p∑

j=1

∥T (xj)∥+
p∑

j=1

∥U(xj)∥

≤ π(T ) sup

{∥∥∥∥∥
p∑

j=1

εjxj

∥∥∥∥∥ ; εj = ±1

}
+ π(U) sup

{∥∥∥∥∥
p∑

j=1

εjxj

∥∥∥∥∥ ; εj = ±1

}

≤ [π(T ) + π(U)] sup

{∥∥∥∥∥
p∑

j=1

εjxj

∥∥∥∥∥ ; εj = ±1

}
donc T + U ∈ AS(X, Y ) et π(T + U) ≤ π(T ) + π(U).

VI.4. Soit x ∈ [0, 1], on pose |fj(x)| = εjfj(x) où εj = ±1 selon le signe de fj(x). On a
ainsi

p∑
j=1

|fj(x)| =
p∑

j=1

εjfj(x)

≤

∥∥∥∥∥
p∑

j=1

εjfj

∥∥∥∥∥
∞

≤ sup


∥∥∥∥∥

p∑
j=1

εjfj

∥∥∥∥∥
∞

; εj = ±1

 .

Cette dernière quantité étant indépendante de x, on peut donc intégrer de 0 à 1 d'où
p∑

j=1

∥J(fj)∥1 =
p∑

j=1

∫ 1

0

|fj(x)| dx =

∫ 1

0

(
p∑

j=1

|fj(x)|

)
dx

≤ sup


∥∥∥∥∥

p∑
j=1

εjfj

∥∥∥∥∥
∞

; εj = ±1


donc J est absolument sommante et π(J) ≤ 1.
En�n, si π(J) < 1 alors, en prenant f = 1 qui appartient à X on obtient

1 = ∥f∥1 ≤ π(J)∥f∥∞ < 1

ce qui est absurde.
Conclusion : π(J) = 1.
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VI.5. C'est une conséquence immédiate de la partie I.
En e�et, la série

∑
x(n) est inconditionnellement convergente mais n'est pas absolu-

ment convergente. On a Xp =
p∑

j=1

εjx
(j) = (ε0, . . . ,

εp
p+ 1

, 0, . . .) donc ∥Xp∥ = 1. Or

s'il existe π(I) alors les sommes partielles
p∑

j=1

∥ I(x(j))︸ ︷︷ ︸
=x(j)

∥ sont majorées et cela entraîne

que la série
∑

x(j) est absolument convergente ce qui est faux.

VI.6. a. Soit Mp =

∥∥∥∥∥ p∑
j=0

εjxj

∥∥∥∥∥ (la borne supérieure est atteinte car on opère sur un

ensemble �ni) on utilise alors l'inégalité suivante :

2

∥∥∥∥∥
p∑

j=0

εjxj

∥∥∥∥∥ =

∥∥∥∥∥2
p∑

j=0

εjxj

∥∥∥∥∥
=

∥∥∥∥∥
p∑

j=0

εjxj + xp+1 +

p∑
j=0

εjxj − xp+1

∥∥∥∥∥
≤

∥∥∥∥∥
p∑

j=0

εjxj + xp+1

∥∥∥∥∥+
∥∥∥∥∥

p∑
j=0

εjxj − xp+1

∥∥∥∥∥ ≤ 2Mp+1

ce qui donne e�ectivement Mp ≤ Mp+1.
b. On raisonne par l'absurde en supposant que lim

p→+∞
Mp = +∞.

Montrons par récurrence sur n qu'il existe une suite (pn) d'entiers strictement

croissante et une famille (εj) ∈ {−1,+1}N telle que

∥∥∥∥∥ pn∑
j=0

εjxj

∥∥∥∥∥ ≥ n.

� n = 0 : immédiat.
� On suppose la propriété vraie à l'ordre n. Choisissons pn+1 > pn tel que

Mpn+1 ≥ 1 + n+ 2Mpn . On écrit que Mpn+1 =

∥∥∥∥∥pn+1∑
j=0

ε′jxj

∥∥∥∥∥ et on pose εj = ε′j

pour j ∈ [pn + 1, pn+1].
On a alors ∥∥∥∥∥

pn+1∑
j=0

εjxj

∥∥∥∥∥ =

∥∥∥∥∥
pn+1∑
j=0

ε′jxj −
pn∑
j=0

ε′jxj +

pn∑
j=0

εjxj

∥∥∥∥∥
≥

∥∥∥∥∥
pn+1∑
j=0

ε′jxj

∥∥∥∥∥− 2Mpn

≥ Mpn+1 − 2Mpn ≥ n+ 1.
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Conclusion : la série
∑

xn n'est pas inconditionnellement convergente ce qui
est contraire à l'hypothèse donc la suite Mp est croissante et majorée donc
convergente.

c. Si T est absolument sommante et
∑

xn inconditionnellement convergente alors,
en notant M = sup

p∈N
Mp qui existe d'après la question précédente, on a

p∑
j=0

∥T (xj)∥′ ≤ π(T )M

donc la série
∑

∥T (xj∥′ est convergente.

VI.7. � On a vu au IV.4 que dans un espace de Banach de dimension in�nie, il existe
une suite (xn) de vecteurs inconditionnellement convergente mais non absolument
convergente.

� On vient de voir à la question précédente que, si I est absolument sommante alors
toute suite inconditionnellement convergente est absolument convergente.

On a donc l'implication suivante : si l'identité d'un espace de Banach est absolument
sommante alors cet espace est de dimension �nie.
Montrons la réciproque. Comme toutes les normes sont équivalentes, choisissons la
norme 1 pour E espace vectoriel normé de dimension n, rapporté à une base B. On
identi�e E à Rn et on écrit xj = (xj,1, . . . , xj,n). On a les relations

p∑
j=1

∥xj∥1 =
p∑

j=1

n∑
i=1

|xj,i| =
n∑

i=1

p∑
j=1

|xj,i|∥∥∥∥∥
p∑

j=1

εjxj

∥∥∥∥∥
1

=

∥∥∥∥∥
(

p∑
j=1

εjxj,1, . . . ,

p∑
j=1

εjxj,n

)∥∥∥∥∥
1

=
n∑

i=1

∣∣∣∣∣
p∑

j=1

εjxj,i

∣∣∣∣∣ .
Soit i0 ∈ [1, n] tel que M =

p∑
j=1

|xj,i0| = max
p∑

j=1

|xj,i| alors
p∑

j=1

∥xj∥1 ≤ nM puis, en

prenant εj = sgn (xj,i0), on a

∥∥∥∥∥ p∑
j=1

εjxj

∥∥∥∥∥
1

≥ M .

Conclusion : on a ainsi prouvé que, pour toute suite (xj) de vecteurs de E,

p∑
j=1

∥xj∥1 ≤ n sup


∥∥∥∥∥

p∑
j=1

εjxj

∥∥∥∥∥
1

; εj = ±1

 .

Finalement on a l'équivalence : l'identité d'un espace de Banach est absolument som-
mante ssi cet espace est de dimension �nie.
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