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Nous allons édudier dans ce DM les séries de Fourier.

La première partie introduit la série de Fourier d'une application continue par morceaux périodique, la

deuxième en exprime la somme partielle au moyen d'une intégrale. C'est dans la troisième partie que sera

établi un résultat de convergence de la série de Fourier d'une application, sous des hypothèses fortes de

régularité (théorème de Dirichlet), en�n la quatrième partie établit la convergence en moyenne de la série de

Fourier. Une ultime partie s'adresse aux candidats aux ÉNS.

DÉFINITIONS ET RAPELS

Dé�nition 1. Soit k un élément de N. Une application f d'un segment [a, b] de R dans est dite Ck par

morceaux (continue par morceaux dans le cas où k = 0) si par dé�nition il existe une subdivision (a0, a1, ..., an)

de [a, b], telle que pour i = 0, ..., n − 1 la restriction de f à ]ai, ai+1[ soit prolongeable à [ai, ai+1] en une

application de classe Ck.

En particuier une application C0 par morceaux admet en tout point une limite à droite et à gauche.

Dé�nition 2. Soit k un élément de N. Une application f de R dans pérodique de période 2π est dite Ck par

morceaux (continue par morceaux dans le cas où k = 0) si par dé�nition sa restriction à [−π, π] l'est.

Nous aurons besoin du résultat suivant vu en exercice.

Lemme de Lebesgue. Soit g une application d'un segment [a, b] dans R continue par morceaux. Notons

I(λ), pour tout réel λ, la quantité ∫
[a,b]

g sin(λ .).

Alors

I(λ)−→
λ→0

0.

I. SÉRIES DE FOURIER

on note en, pour tout élément n de , l'application

en : R → ; t 7→ exp(int).

1. calculer pour tout couple (p, q) d'élément de ,

1

2π

∫
[0,2π]

epeq.

2. Soit (cn)n∈ une famille de complexes. On suppose que la série c0e0 +
∑
n≥1

c−ne−n + cnen converge

normalement de somme f .

Montrer que f est 2π-périodique continue et que pour tout entier relatif n, cn = 1
2π

∫
[0,2π] e−nf.

Réciproquement si f est une application 2π périodique continue par morceaux on appelle série de

Fourier de f la série d'applications

c0(f)e0 +
∑
n≥1

c−n(f)e−n + cn(f)en,
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ou pour tout n ∈,
cn(f) =

1

2π

∫
[0,2π]

e−nf

On notera pour tout n ∈ N, Sn(f) la somme partielle d'indice n de cette série d'applications.

Notons que la série de Fourier est dé�nie sans présager de sa convergence, et dans le cas de convergence

rien ne dit que sa somme soit f . C'est ces points qui feront l'objet de l'étude qui suit.

On note parfois encore la série de Fourier de f ,
∑
n∈

cn(f)en et dans le cas de la convergence
+∞∑

n=−∞
cn(f)en

l'application somme.

3. Montrer que pour tout application f de R dans continue par morceaux 2π-périodique, cn(f) 7→ 0

lorsque n tend vers ±∞.

II. NOYAU DE DIRICHLET

Soit f une application de R dans , 2π-périodique, continue par morceaux.

Donnons une forme intégrale de la somme partielle de la série de Fourier.

1. Montrer que pour tout élément n de N et tout réel x,

Sn(f)(x) =

∫ 2π

0
f (t)Dn (x− t) dt.

où Dn désigne l'application

Dn : R → C, t 7→ 1

2π

(
1 +

n∑
k=1

2 cos (kt)

)
,

avec la convention qu'une somme vide est nulle.

Dn s'appelle le noyau de Dirichlet. 1

2. Montrer, pour tout réel x, que :

Sn(f)(x) =

∫ +π

−π
f (x− t)Dn (t) dt.

3. Montrer que pour tout entier naturel n et tout réel x non congru à zéro modulo 2π,

Dn (x) =
1

2π

sin
((

n+ 1
2

)
x
)

sin
(
x
2

) .

4. Montrer que Dn est 2π-périodique, paire et que :∫ 2π

0
Dn (x) dx = 1.

Il est malheureusement impossible sans hypothèses supplémentaires de prouver la convergence de Sn (f) (x)

vers f(x). On construit même sans trop de di�cultés des éléments de C2π dont la série de Fourier di-

verge en un point

1. On dit que Sn est le produit de convolution de Dn par f , noté Dn ⋆ f .
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III THÉORÈME DE DIRICHLET

On désigne ici par f une application de R dans , 2π-périodique, C1 par morceaux. On se propose de montrer

que pour tout réel x,

Sn(f)(x) →
n→+∞

f(x+0) + f(x−0)

2
.

En particulier en tout point x de continuité de f , Sn(f)(x) →
n→+∞

f(x).

Dans la suite x désigne un réel quelconque et l'on note f̃(x) := f(x+0)+f(x−0)
2 .

1. Montrer le résultat dans le cas où f est une application de classe C1. On pourra montrer que pour tout

réel x l'application

[−π, π] \ {0} → R ; t 7→ f(x− t)− f(x)

sin(t/2)
,

est prolongeable par continuité à [−π, π] et utiliser le lemme de Lebesgue.

2. (facultatif)

(a) que :

Sn(f)(x)− f̃(x) =

∫ π

0

(
f(x− t)− f(x−0)

)
Dn(t)dt+

∫ π

0

(
f(x+ t)− f(x+0)

)
Dn(t)dt.

(b) Soient les applications :

g− : ]0, π] → ; t 7→ f(x− t)− f(x−0)

sin(t/2)
,

g+ : ]0, π] → ; t 7→ f(x+ t)− f(x+0)

sin(t/2)
.

Montrer rapidement que g− et g+ admettent un prolongement à [0, π] continu par morceaux.

(c) Montrer que l'on a bien :

Sn(f)(x) →
n→+∞

f(x+0) + f(x−0)

2
.

Indication : On utilisera le lemme de Riemann-Lebesgues.

IV. THÉORÈME DE FEJER

Pour une fonction f simplement continue on ne peut montrer la convergence de la série de Fourier vers f ,

l'obstacle principal est la non positivité du noyau de Dirichlet Dn. Nous allons montrer que par contre il

y a convergence � en moyenne � de la série de Fourier vers f̃ . La preuve ressemble à celle du théorème de

Weierstrass vu dans le précédent TD.

Soit f une application de R dans , 2π-périodique, continue par morceaux.

1. Théorème de Fejér

On pose pour tout entier strictement positif n et tout réel x :

Mn(f) :=
1

n

(
S0 (f) (x) + S1 (f) (x) + ...+ Sn−1 (f) (x)

)
.

(a) Montrer qu'il existe pour tout entier strictement positif n et tout réel x une application 2π-

périodique continue Fn telle que :

Mn(f) (x) =

∫ π

−π
f (t)Fn (x− t) dt =

∫ π

−π
f (x− t)Fn (t) dt,
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pour tout réel x.

Montrer de plus que pour tout entier strictement positif n et tout réel x non congru à 0 modulo

2π :

Fn (x) =
1

2π

sin2
(
nx

2

)
n sin2

(
x
2

) .
Fn s'appelle le noyau de Fejér , exhibons les propriétés essentielles de ce noyau.

(b) Montrer que :

i. pour tout entier strictement positif n, Fn est 2π-périodique.

ii. Pour tout entier strictement positif n et pour tout réel x, Fn (x) ≥ 0.

iii.
∫ π

−π
Fn (t) dt = 1.

iv. Pour tout élément δ de ]0, π[, la suite (Fn)n∈N∗converge uniformément vers l'application

nulle sur [−π,−δ] ∪ [δ, π].

c. Soit x un élément de R. On suppose que f est continue en x. Montrer pour tout entier n ≥ 1,

que :

Mn(f)(x)− f(x) =

∫ +π

−π

(
f(x− t)− f(x)

)
Fn(t)dt.

Soit un réel ε, strictement positif, montrer qu'il existe un réel δ, strictement positif, tel que pour

tout ninN∗, ∣∣∣∣∫ +δ

−δ

(
f(x− t)− f(x)

)
Fn(t)dt

∣∣∣∣ < ε

2
.

En déduire, en utilisant le 2� b) point iv., que Mn(f)(x) tend vers f(x), lorsque n tend vers

l'in�ni.

(c) Soit x un élément de R. On ne suppose plus que f est continue en x. Montrer que Mn(f)(x) tend

vers 1
2

(
f(x+0) + f(x−0)

)
lorsque n tend vers l'in�ni.

2. (a) Dans cette question f est supposée continue sur un segment [a, b]. Montrer que la suite (Mn(f))n∈N∗

converge uniformément vers f sur [a, b].

(b) En déduire que l'ensemble des polynômes trigonométriques est dense dans
(
C2π, ∥.∥∞

)
. C'est le

théorème de Weierstrass trigonométrique

3. On suppose que f est continue et que sa série de Fourier converge. Montrer que la somme de sa série

de Fourier est f .
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Figure 1 � Joseph Fourier (1768�1830)

Né dans une famille nombreuse d'Auxerre, orphelin à dix ans, il entre néanmoins à la toute jeune Ecole
Normale Supérieure, où il suit les enseignements de Monge, Laplace et de Lagrange. À la création de L'Ecole
Polytechnique, il devient l'assistant de Lagrange auquel il ne tarde pas à succéder. Suit alors une carrière
de haut fonctionnaire au service de l'Empire qui ne l'empèche pas cependant de poursuivre ses recherches ;
il rédige notamment en 1807 un mémoire sur la propagation de la chaleur qui lui vaut d'être couronné par
l'académie des Sciences et de passer à la postérité : il y expose en e�et le moyen de décomposer une fonction
en une somme de ≪ sinus d'arcs multiples ≫ . Les séries de Fourier étaient nées . . .

V. DIVERGENCE DE LA SÉRIE FOURIER D'UNE APPLICATION CONTINUE (réservé

candidats ENS)

Soit f une application de R dans , 2π-périodique, continue. La somme partielle d'ordre n de sa série de

Fourier sera notée Sn(f). On a vu dans la partie I, que pour tout élément n de N et tout réel x,

Sn(f)(x) =

∫ 2π

0
f (t)Dn (x− t) dt,

où Dn désigne l'application

Dn : R → C, t 7→ 1

2π

(
1 +

n∑
k=1

2 cos (kt)

)
,

avec la convention qu'une somme vide est nulle.

Dn s'appelle le noyau de Dirichlet.

On a vu dans I que Dn est 2π-périodique, paire et que :∫ 2π

0
Dn (x) dx = 1.

1. Pour tout entier naturel n on considère la forme linéaire sur l'espace vectoriel des applications 2π-

périodiques continues, C0
2π(R, ) :

Λn : C0
2π(R, ) → ; f 7→ Sn(f)(0).

On muni C0
2π(R, ) de la norme ∥ · ∥∞ (dé�nie par ∥f∥∞ = sup

x∈[0,2π]
|f(x)| ) et du module. Montrer que

pour tout n ∈ N, Λn est continue et :

|||Λn||| ≤ ∥Dn∥1,

∥Dn∥1 vaut par dé�nition
∫ 2π
0 |Dn(t)|t..

2. Montrer que |||Λn||| = ∥Dn∥1.

3. Montrer que ∥Dn∥1 −→
n→+∞

+∞.

5



4. En utilisant Le théorème de Banach Steinhauss (voir TD n° 4), Montrer qu'il existe un Gδ dense G0 de

C0
2π(R, ), tel que pour tout élément f de G0 la série de Fourier de f diverge en 0, ou plus précisément,

tel que sup
n∈N

(Sn(f(0)) = +∞.

5. Montrer que pour tout réel x, il existe un Gδ dense de Gx de C0
2π(R, ), tel que pour tout élément f de

Gx la série de Fourier de f diverge en x, ou plus précisément, tel que sup
n∈N

(Sn(f(x)) = +∞.

6. Soit (xp)p∈N une suite d'éléments de [0, 2π] dense. Montrer qu'il existe un Gδ dense G de C0
2π(R, ) tel

que pour tout f élément de G et tout élément p de N, sup
n∈N

(Sn(f(xp)) = +∞.

7. En déduire que pour tout f élément de G, il existe un Gδ dense de R, gf , tel que la série de Fourier de

f diverge en tout point de gf .

Bref, les séries de Fourier des applications continues convergent très mal
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