MP* KERICHEN 2025-2026

DM n°8

Nous allons édudier dans ce DM les séries de Fourier.

La premiére partie introduit la série de Fourier d’une application continue par morceaux périodique, la
deuxiéme en exprime la somme partielle au moyen d’une intégrale. C’est dans la troisiéme partie que sera
établi un résultat de convergence de la série de Fourier d'une application, sous des hypothéses fortes de
régularité (théoréme de Dirichlet), enfin la quatriéme partie établit la convergence en moyenne de la série de
Fourier. Une ultime partie s’adresse aux candidats aux ENS.

DEFINITIONS ET RAPELS

Définition 1. Soit k un élément de N. Une application f d’un segment [a,b] de R dans est dite C* par
morceaur (continue par morceaus dans le cas ot k = 0) si par définition il existe une subdivision (ag, a1, ..., an)
de [a,b], telle que pour i = 0,...,m — 1 la restriction de f a ]a;,a;+1] soit prolongeable a [a;,a;11] en une
application de classe C*.

En particuier une application C° par morceaus admet en tout point une limite & droite et & gauche.
Définition 2. Soit k un élément de N. Une application f de R dans pérodique de période 2r est dite C* par

morceaux (continue par morceaux dans le cas ot k = 0) si par définition sa restriction o [—m, 7| lest.

Nous aurons besoin du résultat suivant vu en exercice.

Lemme de Lebesgue. Soit g une application d’un segment [a,b] dans R continue par morceauz. Notons

/ g sin(\.).
[a,b]

I(A)ﬁ)o.
—>

I()\), pour tout réel X\, la quantité

Alors

I. SERIES DE FOURIER

on note e,, pour tout élément n de , 'application
en @ R—; t— exp(int).

1. calculer pour tout couple (p,q) d’élément de ,
1
— €p€q-
27 [0,27] P

2. Soit (¢n)ne une famille de complexes. On suppose que la série coeg + >, c_pe_p + cpe, converge
n>1
normalement de somme f.

Montrer que f est 2m-périodique continue et que pour tout entier relatif n, ¢, = % f[o o] €1 f

Réciproquement si f est une application 27 périodique continue par morceaux on appelle série de

Fourier de f la série d’applications

co(fleo + Y cn(fle—n + calf)ens

n>1



ou pour tout n €,

1
) = 5 /W e_nf

On notera pour tout n € N, S,,(f) la somme partielle d’indice n de cette série d’applications.

Notons que la série de Fourier est définie sans présager de sa convergence, et dans le cas de convergence
rien ne dit que sa somme soit f. C’est ces points qui feront 'objet de ’étude qui suit.

+00
On note parfois encore la série de Fourier de f, > ¢, (f)en et dans le cas de la convergence > ¢, (f)en

ne n=—oo
I’application somme.

3. Montrer que pour tout application f de R dans continue par morceaux 2m-périodique, c,(f) — 0

lorsque n tend vers +oo.

II. NOYAU DE DIRICHLET
Soit f une application de R dans , 2w-périodique, continue par morceaux.

Donnons une forme intégrale de la somme partielle de la série de Fourier.

1. Montrer que pour tout élément n de N et tout réel x,
2m
Sn(f)(@) = [ f(t) Dn(z—1t) dt.

0

ou D, désigne I'application
1 n
Dp:R—C, - <1+;2cos(kt)> ,

avec la convention qu’une somme vide est nulle.

D,, s’appelle le noyau de Dirichlet.

2. Montrer, pour tout réel z, que :

Sn(f)(x) = [z —1t) Dy (t) dt.

—T

3. Montrer que pour tout entier naturel n et tout réel z non congru & zéro modulo 27,

D, (z)

1
_ 2
Y sin (%)
4. Montrer que D,, est 2m-périodique, paire et que :

2m
D, (z)dz = 1.
0

Il est malheureusement impossible sans hypothéses supplémentaires de prouver la convergence de Sy, (f) (x)
vers f(x). On construit méme sans trop de difficultés des éléments de Cor dont la série de Fourier di-

verge en un point

1. On dit que S, est le produit de convolution de D,, par f, noté D, x f.



III THEOREME DE DIRICHLET

On désigne ici par f une application de R dans , 2r-périodique, C! par morceaux. On se propose de montrer

que pour tout réel x,

n—+oo 2

En particulier en tout point = de continuité de f, S,(f)(z) — f(x).

n—-+o00

Dans la suite  désigne un réel quelconque et Pon note f(z) := w.

1. Montrer le résultat dans le cas ol f est une application de classe C'. On pourra montrer que pour tout

réel x 'application
flz—t) - f(z)
sin(t/2) ’

[-m, 7]\ {0} > R; t —

est prolongeable par continuité a [—m, 7] et utiliser le lemme de Lebesgue.

2. (facultatif)

(a) que:

5,(0)@) = @) = [ (7o =1 = fe-0) Duttidt + [ (a0 = o)) Dute)dt

(b) Soient les applications :
fl@—1) — f(z0)
sin(t/2) ’

flx+1) = f(z40)
sin(t/2) '

Montrer rapidement que g— et g4 admettent un prolongement a [0, 7] continu par morceaux.

g— 0,7 = ; t—

g+ 0,7 =5 t—

(¢) Montrer que l'on a bien :
f(z10) + f(z—0)

n—-+oo 2

Sn(f)(x)

Indication : On utilisera le lemme de Riemann-Lebesgues.

IV. THEOREME DE FEJER

Pour une fonction f simplement continue on ne peut montrer la convergence de la série de Fourier vers f,
I’obstacle principal est la non positivité du noyau de Dirichlet D,,. Nous allons montrer que par contre il
y a convergence « en moyenne » de la série de Fourier vers f . La preuve ressemble & celle du théoréme de
Weierstrass vu dans le précédent TD.

Soit f une application de R dans , 2w-périodique, continue par morceaux.
1. THEOREME DE FEJER

On pose pour tout entier strictement positif n et tout réel x :

() 2=+ (S0 () (@) + 51 () (@) + -+ Sucr (1) (1)),

a) Montrer qu’il existe pour tout entier strictement positif n et tout réel x une application 27-
q p 1Y 1YY
périodique continue F, telle que :

™

My(f) (@)= [ FOF(e—tydt= [ fla—t)Fu(t) dr,

—T —T



pour tout réel x.
Montrer de plus que pour tout entier strictement positif n et tout réel x non congru & 0 modulo

2m :
1 sin? (n%)

- 27 nsin? (%)

F, s’appelle le noyau de Fejér , exhibons les propriétés essentielles de ce noyau.

(b) Montrer que :

i. pour tout entier strictement positif n, F;, est 2x-périodique.

ii. Pour tout entier strictement positif n et pour tout réel x, F, () > 0.

™

i, / F, (t) dt = 1.
—T

iv. Pour tout élément & de ]0, 7|, la suite (F,),cy-converge uniformément vers I’application

nulle sur [—7, —d] U [0, 7].

¢. Soit x un élément de R. On suppose que f est continue en x. Montrer pour tout entier n > 1,

que :

N - 1@ = [ (1 -0~ ) Faoar.

—T
Soit un réel ¢, strictement positif, montrer qu’il existe un réel J, strictement positif, tel que pour

tout n;nN*, 5
'/_: (f—1)- f(x))Fn(t)dt‘ <c

En déduire, en utilisant le 2— b) point iv., que M, (f)(z) tend vers f(x), lorsque n tend vers
Vinfini.

(c) Soit x un élément de R. On ne suppose plus que f est continue en x. Montrer que M, (f)(z) tend
1

vers 5 (f(ﬂs+0) + f(:z:_o)) lorsque n tend vers U'infini.

2. (a) Dans cette question f est supposée continue sur un segment [a, b]. Montrer que la suite (M, (f))nen+
converge uniformément vers f sur [a, b].
(b) En déduire que ’ensemble des polynomes trigonométriques est dense dans (Cg,r, ||HOO) Clest le

théoréme de Weierstrass trigonométrique

3. On suppose que f est continue et que sa série de Fourier converge. Montrer que la somme de sa série

de Fourier est f.



FIGURE 1 — JoserH FOURIER (1768-1830)

Né dans une famille nombreuse d’Auxerre, orphelin & dix ans, il entre néanmoins & la toute jeune Ecole
Normale Supérieure, ot il suit les enseignements de Monge, Laplace et de Lagrange. A la création de L’Ecole
Polytechnique, il devient l'assistant de Lagrange auquel il ne tarde pas a succéder. Suit alors une carriére
de haut fonctionnaire au service de I’Empire qui ne 'empéche pas cependant de poursuivre ses recherches;
il rédige notamment en 1807 un mémoire sur la propagation de la chaleur qui lui vaut d’étre couronné par
I’académie des Sciences et de passer a la postérité : il y expose en effet le moyen de décomposer une fonction
en une somme de < sinus d’arcs multiples >. Les séries de Fourier étaient nées ...

V. DIVERGENCE DE LA SERIE FOURIER D’UNE APPLICATION CONTINUE (réservé
candidats ENS)

Soit f une application de R dans , 2m-périodique, continue. La somme partielle d’ordre n de sa série de

Fourier sera notée S,,(f). On a vu dans la partie I, que pour tout élément n de N et tout réel z,

2

Sn(f)(x) = f(t) Dy (x =) dt,

0
ou D,, désigne I'application
n
D,:R—C,t— % <1+;200s(kt)> ,
avec la convention qu’une somme vide est nulle.
D, s’appelle le noyau de Dirichlet.
On a vu dans I que D,, est 2m-périodique, paire et que :

2m
Dy, (z)dz = 1.
0

1. Pour tout entier naturel n on considére la forme linéaire sur I’espace vectoriel des applications 27-

périodiques continues, C3 (R,) :
An 0 Co(R,) =5 f = Su(f)(0).

On muni CY_(R,) de la norme || - ||oo (définie par ||f|lo = sup |f(z)| ) et du module. Montrer que
z€[0,27]
pour tout n € N, A, est continue et :

[An ]l < | Dl
|| Dy |l1 vaut par définition fozﬂ | Dy (1)t
2. Montrer que ||A,| = ||Dnll1-

3. Montrer que ||Dyli — +oc.
n—-+0oo



4. En utilisant Le théoréme de Banach Steinhauss (voir TD n°® 4), Montrer qu’il existe un G dense Gg de

CY_(R,), tel que pour tout élément f de Gy la série de Fourier de f diverge en 0, ou plus précisément,
tel que sup(S,(f(0)) = +o0.
neN

5. Montrer que pour tout réel z, il existe un G§ dense de G, de C3_(R,), tel que pour tout élément f de

G la série de Fourier de f diverge en x, ou plus précisément, tel que sup(S,(f(z)) = +oo.
neN

6. Soit (zp)pen une suite d’éléments de [0, 2] dense. Montrer qu’il existe un G& dense G de C3_(R,) tel
que pour tout f élément de G et tout élément p de N, sup(S,(f(zp)) = +oc.
neN

7. En déduire que pour tout f élément de G, il existe un Gé dense de R, g, tel que la série de Fourier de

f diverge en tout point de g;.

Bref, les séries de Fourier des applications continues convergent trés mal



