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EXERCICE Soit la série entière de la variable complexe z,
+∞∑
n≥1

zn√
n
.

1. Donner le rayon de convergence de cette série entière. On note f sa somme.

2. Déterminer l'ensemble Z des complexes z pour lesquels l'application

u 7→ 1

eu2 − z

est intégrable sur ]0,+∞[. Soit

g : Z → C ; z 7→ 2z√
π

∫ +∞

0

du

eu2 − z
.

3. Montrer que f et g coïncident sur {z ∈ C| |z| < 1}.
4. Montrer que f(eiθ) = g(eiθ), pour tout θ ∈]0, 2π[.

PROBLÈME

Fonction Γ

I. La fonction gamma

On va étudier la fonction Γ d'Euler, déjà rencontrée en exercice et dé�nie, rappelons le, sur R∗
+

par

Γ : R∗
+ → R ;x 7→

∫ +∞

0

tx−1e−tdt,

pour tout réel strictement positif.

1. Montrer que Γ est de classe C∞ et donner l'expression de ses dérivées.

2. Montrer que pour tout réel x ≥ 0, Γ(x+ 1) = xΓ(x) ; en déduire Γ(n) pour tout entier n ≥ 1.

3. Montrer que Γ est convexe.

4. Montrer que la dérivée de Γ s'annule en un et un seul point de R∗
+.

5. Donner la limite en +∞ et un équivalent en 0 de Γ. Tracer l'allure de la courbe représentative
de Γ.

6. Soit un réel x > 0. Pour tout entier n ≥ 0, l'application

un : R∗
+ → R ; t 7→

{
tx−1

(
1− t

n

) 1
n , si t ≤ n,

0, sinon.
.

Montrer que
∫ +∞
0

un(t)dt tend vers Γ(x) lorsque n tend vers +∞.

On considère dans le suite l'applications

I : R∗
+ → R ; x 7→

∫ 1

0

tx−1e−tdt

7. Montrer que pour tout réel x > 0,

I(x) =
+∞∑
n=0

(−1)n

n!(n+ x)
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8. Montrer que pour tout réel x qui n'est pas un entier négatif ou nul,
∑ (−1)n

n!(n+x)
converge.

9. Montrer que pour réel x,
∫ +∞
1

tx−1e−tdt converge.

On dispose donc du prolongement à C \ Z− de Γ suivant :

Γ̃ : R \ Z− → R ; x 7→
+∞∑
n=0

(−1)n

n!(n+ x)
+

∫ +∞

1

tx−1e−tdt.

10. Montrer que Γ̃ est indé�niment dérivable.

III. Caractérisation de la fonction gamma par convexité de son logarithme

On se propose de donner une caractérisation de la fonction Γ due à Bohr 1 et Mollerup, plus
précisément :
l'ensemble F des applications f de R∗

+ dans R strictement positives, continues, telles que

i. f(1) = 1 ;
ii. Pour tout x ∈ R∗

+, f(x+ 1) = xf(x) ;
iii. l'application ln ◦f est convexe 2.

possède un unique élément, la fonction Γ d'Euler.

1. Inégalité d'Hölder

Soient p et q des réels conjugués, c'est-à-dire que 1
p
+ 1

q
= 1.

On rappelle l'inégalité d'Hölder vue en exercice en début d'année :
Soit n un entier naturel non nul, pour tout n-uplets (xi)i=1,...,n et (yi)i=1,...,n de réels positifs

ou nuls, on a
n∑

i=1

xiyi ≤

(
n∑

i=1

xp
i

) 1
p
(

n∑
i=1

yqi

) 1
q

. (1)

Soient f et g des éléments de C0(R∗
+,R).

(a) Soient [a, b] un segment non réduit à un point inclus dans R∗
+. Montrer que∣∣∣∣∫ b

a

f(t)g(t)dt

∣∣∣∣ ≤ (∫ b

a

|f |p
) 1

p
(∫ b

a

|g|q
) 1

q

. (2)

(b) On suppose que |f |p et |g|p sont intégrables sur R∗
+. Montrer que fg est intégrable sur R∗

+

et que ∣∣∣∣∫ +∞

0

f(t)g(t)dt

∣∣∣∣ ≤ (∫ +∞

0

|f |p
) 1

p
(∫ +∞

0

|g|q
) 1

q

. (3)

(Inégalité d'Hölder.)

2. Montrer que Γ ∈ F .

3. Soit f un élément de F . Possons g = ln ◦f . Montrer que pour tout élément x de ]0, 1[ et tout
entier naturel non nul n,

lnn ≤ g (n+ 1 + x)− g (n+ 1)

x
≤ ln (n+ 1) .

En déduire, que pour tout élément x de ]0, 1[ et tout entier naturel non nul n,

0 ≤ g (x)− ln

(
n!nx

x (x+ 1) .... (x+ n)

)
≤ ln

(
1 +

1

n

)
.

1. Le frère !
2. Ce qui veut dire que f est très convexe.
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4. En déduire que f = Γ.

5. Montrer que pour tout élément x de R∗
+, Γ (x) = lim

n→+∞

(
n!nx

x(x+1)....(x+n)

)
.

6. Retrouver le résultat de la question précédente en utilisant la question I. 6.

IV. Fonction B 3

1. Montrer que la quantité B (x, y) =
∫ 1

0
tx−1 (1− t)y−1 d t est bien dé�nie pour tout élément x

et tout élément y de R∗
+.

2. Montrer que pour tout élément x et tout élément y de R∗
+,

B (x, y) =
Γ (x) Γ (y)

Γ (x+ y)
.

On pourra utiliser la partie I.

3. Calculer B
(
1
2
, 1
2

)
, en déduire Γ

(
1
2

)
, puis

∫ +∞
−∞ e−s2 d s.

Application : Une particule est attirée vers un point �xe O, par une force inversement propor-
tionnelle à sa distance à O. Si la particule est initialement au repos, calculer le temps qu'elle
mettra à atteindre le point O.

3. Il s'agit d'un bêta majuscule
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Indication pour l'exercice

1. Regardez simplement série de Riemann
∑
n≥1

1n√
n

2. Soit z ∈ C. L'intégrabilité de u 7→ 1

eu2−z
sur ]0,+∞[ exige (pour respecter le programme)

que cette application soit dé�nie et continue par morceaux sur ]0,+∞[. Comme l'exponentiel
induit une bijection de R∗

+ sur ]1,+∞[, si u 7→ 1

eu2−z
est intégrable sur ]0,+∞[, alors z n'est

pas élément de ]1,+∞[.

Suposons inversement : z /∈]1,+∞[.

Regarder la convergence au voisinage de +∞, puis de 0, dans le dernier cas distinguer
z = 1 zt z ̸= 1

Concluons : Z = C \ [1,+∞[.

3. Soit z un élément du disque ouvert unité de C .

Posons h : ]0,+∞[→ R ; u 7→ z

eu2−z
et pour n ∈ N∗, fn; ]0,+∞[→ R ; u 7→ zn(e−u2

)n,

ainsi la série
∑
n≥1

fn converge simplement et a pour somme h. Notons que tant les fn que f

sont continues.

Utiliser par exemple le théorème d'interversion série/intégrale

g(z) =
2√
π

+∞∑
n=1

∫
R∗

+

fn =
+∞∑
n=1

zn√
n
= f(z).

4. On peut constater que le théorème précédent ne marche plus pour z de module 1. Sans doute

pourrait-on montrer le résultat par une transformation d'Abel pour la série, ou plus sûrement

en appliquant, comme on le voit souvent le théorème de convergence dominée. Nous allons

donner une preuve élémentaire.

Soit θ ∈]0, 2π[ et z = eiθ Gardons les notations de 3, et notons pour tout n ∈ N∗ Sn la
somme partielle de la série

∑
n≥1

fn.

Pour tout N ∈ N∗ et tout u ∈]0,+∞[, puisque z ̸= 1, le cours de première sur les suites

géométriques a�rme non sans raison que h =
N∑

n=1

fn +
zN+1e−(N+1)u2

1−ze−u2
, etc.
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