Majoration du rayon spectral de la matrice de Hilbert

Soit n un entier = 1. L'espace vectoriel R” est muni de sa structure eucli-
dienne canonique. La norme euclidienne associée est notée || ||. On note .4 ,(R)
I'ensemble des matrices carrées d’ordre n a coefficients réels, et on identi-
fiera R" a 'ensemble .4, 1 (R) des matrices colonnes a coefficients réels. On
note X = (xp x1---Xp-1) € A »,(R) la matrice ligne transposée de la matrice

colonne
X0

X1
X=| | |edp®.
Xn-1

Enfin, on note X la fonction polynomiale définie sur R par la formule
_ n-1
X0 =Y xptr.
k=0

Lobjet du probleme est I'étude de quelques propriétés de la matrice de
Hilbert H,, = (h(.”))()sj ren_1 € Ann(R) définie par

Ik
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On adonc hﬁ”]z = j+,1€+1 pour tous j,k€{0,1,...,n—1}.

A. Une propriété de Perron-Frobenius
1) Montrer que la matrice Hj, est symétrique réelle et définie positive. On

1
pourra s'aider du calcul de l'intégrale f (X(n)*dr.
0

On note 7 le sous-espace propre de Hj, associé a la plus grande valeur propre
pn de Hy,.

2) Montrer que X € 7 si et seulement si X H, X = p,,|| X||%.



Xo | ol

X1 |x1]
Soit Xy = . un vecteur non nul de 7. On note | Xy| =

Xn—-1 |Xp-1l
3) FEtablir I'inégalité Xy H,, Xy < /| Xo| H, | Xo| et en déduire que | Xo| € 7.
4) Montrer que H,|Xyl, puis que Xy, n’a aucune coordonnée nulle.

5) En déduire la dimension du sous-espace propre 7.

B. Inégalité de Hilbert
X0
X1
Soit X=| . |unvecteurdeR"” et P un polynéme a coefficients réels.

Xn-1

” . .
6) En s’aidant du calcul de 'intégrale f P(e?)e’® d9, montrer I'inégalité

. 0
‘f P(r)dt
-1

7) En déduire que X H,X < 7| X|?.

8) Montrer que la suite (p,),>1 est croissante et convergente.

b/ . T .
< f |P(e?)| 46, puis I'inégalité X H, X < f |X ()| do.
0 0

C. Un opérateur intégral

Dans la suite du probléme, pour tout entier n > 0 et tout réel x, on pose
n-1
Kn(x)= ) xF.
k=0

Soit E I'espace vectoriel des fonctions a valeurs réelles, continues et intégrables
sur [0,1[ et T, : E — E l'application définie par

1
Tn(f)(x):f0 K, (tx)f(r)dt.

9) Montrer que T} est un endomorphisme de E, dont 0 est valeur propre.
(On rappelle que A € C est valeur propre de T, s’il existe f € E non nulle
telle que T, (f) = Af.)

10) Pour tout X € R”, calculer T,,(X). En déduire que T, et H, ont les mémes
valeurs propres non nulles.



On note «f 'ensemble des fonctions ¢ € E a valeurs strictement positives
sur 10, 1[ telles que ~ admette un prolongement continu sur [0, 1]. On rappelle
que p, est la plus grande valeur propre de H,,.

11) En utilisant un vecteur propre associé a p,, montrer que

1 1
< inf su —f K, (tx)p(t)dt
P <P€£¢xe]0I,)l[(P(x) o ¢

En utilisant la partie A, montrer que 'on a égalité dans l'inégalité précé-
dente.

D. Une majoration explicite des rayons spectraux

Soit ¢ € of et n € N. Dans la suite du probléme, on pose, pour tout x € ]0,1[ :

1 1
rn(x)=—f K, (tx)p(1)dt,
@(x) Jo

B ltn(p(t)
]n(X)_‘[() l—tx dt)

n
®,(x) = X ]n(x).
@(x)

La fonction Gamma d’Euler est définie sur R’ par la formule
+00
I'(x)= f e tdr.
0

On admet, et on pourra utiliser sans démonstration, les formules suivantes :

I'x+1)=xT'(x) pour tout x > 0.

I'(n)=(mn-1)! pour tout entier n > 0.
I'a)T 1

)] :f 11 - 0P dr pour tous réels @ >0, > 0.
[la+p) 0

12) Montrer que J, est dérivable sur ]0,1[ et que 'on a I’égalité

L (1)
U — —
xJp(x) = 5 (l—tx)zdt Tn(x).

On suppose dorénavant que ¢ € < est de classe C'sur [0,1[ et que (1-0)p(t) —
Olorsque t —1".



13) Montrer que
L tg(t Li'(1-0e' (¢
(p()dt+f ( )(p()dt
(1-tx)? 0 1-tx
ol ¢ est un coefficient a déterminer et ot ¢’ désigne la dérivée de ¢. (On

pourra traiter a part le cas n =0, ot1 'on considere que nJ,-(x) =0 et ou
I’on montrera que ¢ = ¢(0).)

njp(x)=c+nj_1(x)+(x— l)f
0

14) Déduire des deux questions précédentes que

1 1 ¢n¢1 _ !
tn_l(p(t)dt+f ra-0e(0 4,

x(1-x) ], (x) = c+(n+1)(x—1)]n(x)+nf
0 1-1tx

0

15) Soit y € R. Résoudre I’équation différentielle (1 — 1)y’ = —yy sur l'inter-
valle [0,1[. A quelles conditions une solution y(f) de cette équation
différentielle vérifie-t-elle les hypotheses faites sur ¢ ?

On suppose désormais ces conditions réalisées et que la fonction ¢ est la solu-
tion de cette équation différentielle telle que ¢(0) = 1.

16) Montrer que la fonction ®,, est dérivable sur ]0,1[ etquel'ona:

o (0= 1)2r® . X"
S T T T Ty

ol 'on donnera I’expression de la constante ¢, en fonction de n et de y.

17) En déduire que pour tout x € 10, 1[,

I
(D”(x)_x1+on (1—t)1+7’dt

18) En déduire que pourn =1,

. 1 [* 1-0,t"
pns inf  sup —— m —
ael0,1[ xe]0,1[ X o t%(1-1)

n!
l-a)2-a)...n-a)
Un calcul montre, et on 'admet, que I'inégalité précédente implique I'inégalité :

oul’'onaposéf, =

9;1/1’1 dt
< inf 9(1_“)/”f _—.
Pns oetoar m o rr1-ple
1 (n')g 1/2n
19) En déduire que p, < anarcsin(—), oul'on a posé w, =2 (—) .
Wy (2n)!

1

20) Donner un équivalent de w, — 1, puis un équivalent de 7 — 2w, arcsin -
n

lorsque n — +oo.

FIN DU PROBLEME



