
Majoration du rayon spectral de la matrice de Hilbert

Soit n un entier   1. L’espace vectoriel Rn
est muni de sa structure eucli-

dienne canonique. La norme euclidienne associée est notée k k. On note M n(R)

l’ensemble des matrices carrées d’ordre n à coefficients réels, et on identi-

fiera Rn
à l’ensemble Mn,1(R) des matrices colonnes à coefficients réels. On

note
t
X = (x0 x1 · · ·xn°1) 2 M1,n(R) la matrice ligne transposée de la matrice

colonne

X =

0

BBB@

x0

x1

.

.

.

xn°1

1

CCCA 2Mn,1(R).

Enfin, on note eX la fonction polynomiale définie sur R par la formule

eX (t ) =
n°1X

k=0

xk t
k

.

L’objet du problème est l’étude de quelques propriétés de la matrice de

Hilbert Hn =
°
h

(n)

j ,k

¢
0… j ,k…n°1

2Mn,n(R) définie par

Hn =

0
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.

On a donc h
(n)

j ,k
= 1

j+k+1
pour tous j ,k 2 {0,1, . . . ,n °1}.

A. Une propriété de Perron-Frobenius

1) Montrer que la matrice Hn est symétrique réelle et définie positive. On

pourra s’aider du calcul de l’intégrale

Z
1

0

° eX (t )
¢

2
d t .

On note V le sous-espace propre de Hn associé à la plus grande valeur propre

Ωn de Hn .

2) Montrer que X 2 V si et seulement si
t
X Hn X = ΩnkX k2

.
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Soit X0 =

0

BBB@

x0

x1

.

.

.

xn°1

1

CCCA un vecteur non nul de V . On note |X0| =

0

BBB@

|x0|
|x1|

.

.

.

|xn°1|

1

CCCA.

3) Établir l’inégalité
t
X0 Hn X0 … t|X0|Hn |X0| et en déduire que |X0| 2 V .

4) Montrer que Hn |X0|, puis que X0, n’a aucune coordonnée nulle.

5) En déduire la dimension du sous-espace propre V .

B. Inégalité de Hilbert

Soit X =

0

BBB@

x0

x1

.

.

.

xn°1

1

CCCA un vecteur de Rn
et P un polynôme à coefficients réels.

6) En s’aidant du calcul de l’intégrale

Zº

0

P (e
iµ

)e
iµ

dµ, montrer l’inégalité

ØØØØ
Z

1

°1

P (t )dt

ØØØØ…
Zº

0

ØØP (e
iµ

)
ØØdµ, puis l’inégalité

t
X Hn X …

Zº

0

ØØ eX (e
iµ

)
ØØ2

dµ.

7) En déduire que
t
X Hn X …ºkX k2

.

8) Montrer que la suite (Ωn)n 1 est croissante et convergente.

C. Un opérateur intégral

Dans la suite du problème, pour tout entier n > 0 et tout réel x, on pose

Kn(x) =
n°1X

k=0

x
k

.

Soit E l’espace vectoriel des fonctions à valeurs réelles, continues et intégrables

sur [0,1[ et Tn : E ! E l’application définie par

Tn( f )(x) =
Z

1

0

Kn(t x) f (t )dt .

9) Montrer que Tn est un endomorphisme de E , dont 0 est valeur propre.

(On rappelle que ∏ 2C est valeur propre de Tn s’il existe f 2 E non nulle

telle que Tn( f ) =∏ f .)

10) Pour tout X 2Rn
, calculer Tn( eX ). En déduire que Tn et Hn ont les mêmes

valeurs propres non nulles.
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On note A l’ensemble des fonctions ' 2 E à valeurs strictement positives

sur ]0,1[ telles que
1

' admette un prolongement continu sur [0,1]. On rappelle

que Ωn est la plus grande valeur propre de Hn .

11) En utilisant un vecteur propre associé à Ωn , montrer que

Ωn … inf
'2A

sup

x2]0,1[

1

'(x)

Z
1

0

Kn(t x)'(t )dt

En utilisant la partie A, montrer que l’on a égalité dans l’inégalité précé-

dente.

D. Une majoration explicite des rayons spectraux

Soit ' 2A et n 2N. Dans la suite du problème, on pose, pour tout x 2 ]0,1[ :

rn(x) = 1

'(x)

Z
1

0

Kn(t x)'(t )dt ,

Jn(x) =
Z

1

0

t
n'(t )

1° t x
dt ,

©n(x) = x
n

Jn(x)

'(x)
.

La fonction Gamma d’Euler est définie sur R§
+ par la formule

°(x) =
Z+1

0

t
x°1

e
°t

dt .

On admet, et on pourra utiliser sans démonstration, les formules suivantes :

°(x +1) = x °(x) pour tout x > 0.

°(n) = (n °1)! pour tout entier n > 0.

°(Æ)°(Ø)

°(Æ+Ø)
=

Z
1

0

t
Æ°1

(1° t )
Ø°1

dt pour tous réels Æ> 0,Ø> 0.

12) Montrer que Jn est dérivable sur ]0,1[ et que l’on a l’égalité

x J
0
n

(x) =
Z

1

0

t
n'(t )

(1° t x)2
dt ° Jn(x).

On suppose dorénavant que' 2A est de classe C
1

sur [0,1[ et que (1°t )'(t ) !
0 lorsque t ! 1

°
.
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13) Montrer que

n Jn(x) = c +n Jn°1(x)+ (x °1)

Z
1

0

t
n'(t )

(1° t x)2
dt +

Z
1

0

t
n

(1° t )'0
(t )

1° t x
dt

où c est un coefficient à déterminer et où '0
désigne la dérivée de '. (On

pourra traiter à part le cas n = 0, où l’on considère que n Jn°1(x) = 0 et où

l’on montrera que c ='(0).)

14) Déduire des deux questions précédentes que

x(1°x)J
0
n

(x) = c+(n+1)(x°1)Jn(x)+n

Z
1

0

t
n°1'(t )dt+

Z
1

0

t
n

(1° t )'0
(t )

1° t x
dt .

15) Soit ∞ 2 R. Résoudre l’équation différentielle (1° t)y
0 = °∞y sur l’inter-

valle [0,1[. À quelles conditions une solution y(t) de cette équation

différentielle vérifie-t-elle les hypothèses faites sur '?

On suppose désormais ces conditions réalisées et que la fonction ' est la solu-

tion de cette équation différentielle telle que '(0) = 1.

16) Montrer que la fonction©n est dérivable sur ]0,1[ et que l’on a :

©0
n

(x) =°(∞+1)
©n(x)

x
+ cn

x
n°1

(1°x)1+∞

où l’on donnera l’expression de la constante cn en fonction de n et de ∞.

17) En déduire que pour tout x 2 ]0,1[,

©n(x) = cn

x1+∞

Z
x

0

t
n+∞

(1° t )1+∞ dt .

18) En déduire que pour n   1,

Ωn … inf

Æ 2 ]0,1[
sup

x2]0,1[

1

x1°Æ

Z
x

0

1°µn t
n

tÆ(1° t )1°Æ dt

où l’on a posé µn = n!

(1°Æ)(2°Æ) . . . (n °Æ)
.

Un calcul montre, et on l’admet, que l’inégalité précédente implique l’inégalité :

Ωn … inf
Æ2]0,1[

µ(1°Æ)/n

n

Zµ°1/n
n

0

dt

tÆ(1° t )1°Æ .

19) En déduire que Ωn … 2!n arcsin

≥
1

!n

¥
, où l’on a posé !n = 2

µ
(n!)

2

(2n)!

∂1/2n

.

20) Donner un équivalent de !n °1, puis un équivalent de º°2!n arcsin
1

!n

lorsque n !+1.

FIN DU PROBLÈME
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