MP* Lycée Kerichen 2025-2026

DM n°7
PREMIER EXERCICE

1l s’agit d’un résultat classique
Cryptographie

Le but de se probléme est l’étude du principe de criptage RSA, qui permet de communiquer de fagon sure des
données. Ce résultat est a connaitre

Dans tout le probléme ¢ désignera l'indicatrice d’Euler.

1. CHIFFREMENT DU MESSAGE
On étudie le cryptage d’un message par un expéditeur. Soient p et g des nombres premiers distincts
et n leur produit : n = pg. On appelle n module de chiffrement

(a) Donner sans démonstration, en fonction de p et ¢, la valeur de ¢(n).
(b) Soit e un entier premier avec ¢(n). On appelle e exposant de chiffrement. Montrer qu’il existe un
entier naturel d tel que ed = 1 [p(n)]

Le couple (n,e) est appelé clef publique (elle peut étre transmise a Iexpéditeur), le couple (n,d) est
appelé clef privée, elle reste connue du seul destinataire du message.

Dans la suite on considére un entier M (représentant le message) strictement inférieur & n. On note
C lélément de {0,1,...,n — 1} congru & M°¢ modulo n. Cet entier représente le message codé qui est
transmis.

2. DECHIFFREMENT DU MESSAGE

On se propose de montrer que C? est congru a M modulo n, ce qui permet au destinataire de trouver
M, grace a sa clef (n,d).
(a) Montrer que M®? est congru & M modulo p. On distinguera les deux cas M premier avec p et M non

premiers avec p.
(b) En déduire que C? = M|n).

Remarque : pour trouver d a partir de e et n il faut savoir inverser e dans Z/p(n)Z ce qui nécessite
de connaitre ¢(n) et donc le couple (p,q). La décomposition de n en facteurs premiers peut étre trés
difficile si les nombres premiers p et ¢ ont été choisis trés grands.

SECOND EXERCICE

( Pour tous : 1.,2.,3.4. et 5. le reste est facultatif. )

Entiers de Gauss

Soient Z[i] ’ensemble des nombres complexes de la forme u + iv, avec (u,v) € Z? et 'application. ¢ ; Z[i] —
N; a+— aa.
1. Montrer que Z[i] est un sous-anneau du corps C.
2. Déterminer Z[i]*, ensemble des éléments inversibles de Z[i].
3. Montrer que pour tout élément a de Z[i] et tout élément b de Z[i]*, il existe un couple (q,r) d’éléments
de Z[i] tel que a = bg+ r et ¢(r) < p(b). On dit que 'anneau Z[i] est euclidien pour ¢.
4. Montrer que tout idéal de Z[i] est de la forme aZ[i], on dit que Z[i] est principal.

5. Soit @ un élément de Z[:]. Montrer que si ¢(a) est premier, alors a est un élément irréductible de Z[i].
Rappelons qu’un élément ¢ d’un anneau intégre est dit irréductible si par définition il n’est pas inversible
et si il admet la décomposition a = be, alors a ou b est inversible.

6. Soit p un nombre premier impair et y un élément de (Z/pZ)”, on dit que y est un carré s’il existe un
élément z de (Z/pZ)" tel que 22 = y.



p—1 .
—1 2 t 2
(a) Montrer que H = { Yz, S1 Yy est un carre,

1 ]
z€(Z/pZ)* ypT7 smon .
Indication : on pourra regrouper deux a deux dans le produit les termes x et yz~!.
(b) En déduire
p—1 - . .
yz =1, si y est un carré,
y 2z =-—1, sinon .

7. Soit p un nombre premier, impaire OU NON. Montrer ’équivalence entre les propriétés suivantes :
i. p est irréductible dans Z[i] ;
ii. p=3[4];
iii. Tl n’existe pas d’élément a de Z[i] tel que p = ¢(a).

8. En déduire les irréductibles de Z[i].

PROBLEME

Premiére partie : UN EXEMPLE D’EXTENSION DU CORPS Q

1. Soit P le polynome X3 — X — 1.
Montrer que P n’a pas de racines rationnelles. En déduire que P est irréductible dans Q[X].
Montrer que P a une racine réelle que l’on notera w.
2. Soit K le Q-espace vectoriel engendré par (wi)ieN.
Montrer que K est de dimension finie, et donner une base simple de K.
3. Montrer que K est une Q-sous-algébre de R, muni de sa structure naturelle de Q-algébre.
4. Montrer que K est un sous-corps de R.

Deuxiéme partie : CAS GENERAL D’EXTENSION DE Q

Soit a un reéel.

1. Montrer que tout sous-corps de R contient Q.

2. Montrer que I’ensemble des sous-corps de R qui contiennent a admet un plus petit élément pour ’inclu-
sion. On le notera dans la suite Q(a).

3. Montrer que ¢ : Q[X] — R; P — P(a) est un morphisme de la Q-algébres Q[X] dans la Q algebre R.
On note Q[a] son image.

4. Soit I :={P € Q[X], P (a) = 0}. Montrer que I est un idéal de Q[X].

5. Le réel a est dit algébrique (sur Q), si, par définition, a est racine d’un polynéme non nul & coefficients
entiers.
Montrer que a est algébrique si et seulement si I est non réduit a {0}.
Dans cette partie on suppose dans la suite que que a est algébrique, sauf a la derniére
question.

6. Montrer qu’il existe un et un seul élément de Q[X] unitaire, p,, tel que I = p, Q[X].
Montrer que p, est irréductible dans Q[X]. Montrer que si a est irrationnel, alors le degré de p, est

supérieur ou égal & 2. Déterminer ju, pour a = v/2 et pour a = 4/ %

7. Montrer que QJa] est un corps. Montrer que Q(a) = Q]a).
Montrer que Q(a) est un Q-espace vectoriel de dimension n, ou n est le degré de 4, dont on donnera
une base simple.

8. Si a est non algébrique, montrer qu’alors Q(a) est un Q-espace vectoriel de dimension infinie *.

Troisiéme partie : CORPS FINIS
Facultatif.

Soit (F,+, x) un corps. On note 1y l'unité de F et pour tout entier k et tout élément a de F, k - a, désigne
lélément a + a + - -+ a pour k > 1, ’élément (—a) + (—a) + - - -+ (—a) pour k < —1 et enfin 1y pour k =0
—_———

k termes —k termes
On admet le résultat élémentaire suivant :
L’application
w1 Z—->F; k—k-lp

1. On pourrait montrer que Q(a) est isomorphe en tant que corps au corps Q(X).



est un morphisme d’anneaux.
Son noyau est donc un sous groupe de (Z,+), donc de la forme pZ, ou p désigne un élément de N. L’entier
naturel p s’appelle caractéristique de F.

1. Montrer que si p est nul alors F est infini.

Dans toute la suite on supposera que F est fini, donc que p est non nul.

2. Montrer qu'’il existe une et une seule application ¢ de Z/pZ dans F tel que ¢ = ¢ om,, ou 7, désigne la
surjection (dite canonique) de Z sur Z/pZ, qui & un entier x associe sa classe modulo p.

3. Montrer que ¢ est un morphisme d’anneaux injectif.

4. On note k = ¢ (Z/pZ). Montrer que k est un sous-anneau de F isomorphe & Z/pZ. En déduire que p est
un nombre premier.

5. Montrer que k est le plus petit sous-corps de F.
Le sous-corps k est appelé sous corps premier de F, on vient de voir qu’il est isomorphe & Z/pZ

6. En munissant F d’une structure d’espace vectoriel sur k, montrer que le cardinal de F est une puissance
de p.

L’étude de la réciproque est traitée dans un DM bis.
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PREMIER EXERCICE

1. CHIFFREMENT DU MESSAGE

(a)
p(n) =p@e(g) ={@-1g-1).

(b) Le lemme de Bezout assure 'existence d’entiers u et v tels que :
(u+ kp(m))e + (v — ke)p(n) = 1
On choisi k, pour queb : u + k¢(n) soit strictement positif...

2. DECHIFFREMENT DU MESSAGE

(a) e PREMIER CAS : M premier avec p.
Donc p ne divise pas M.D’aprés 2.(b), il existe un entiet h tel que ed = 1 4+ h(p — 1). Donc
Me? = M x (M®=D)" donc M = M [p] (Fermat).
e SECOND CAS : M non premier avec p.
Comme p est premier, il divise M et donc M*<...

Dans tous les cas | M = M [p]

(b) De la précédente question et comme p et ¢ sont premiers entre eux, pg|Me? — M Soit M = M [n].
Mais C' = M€ [n]. Donc C% = M*¥[n] et finalement | C? = M|[n] |.

Entiers de Gauss

1. Sans probléme.

2. Si Z est inversible dans Z[i], alors ¢ est inversible dans I’anneau Z donc vaut 1. On trouve sans mal les
élément de Z[i] de module 1 et ’on montre instantanément qu’ils sont inversibles...

3. Le complexe § est élément d’un carré de coté 1 dont les sommets sont des entier de Gauss, prendre pour
q le ou I'un des sommets plus proche de g

4. cf. sous-groupes de Z ou idéaux de K[X].
5. Résulte directement de p(bc) = p(b)p(c) ...

6. Regrouper deux a deux dans le produit les termes x et yx~!, Papplication de Z/pZ)* qui & x associe
yx~! est une involution si y est le carré de z alors deux et seulement deux élément z et —z sont leur

propre image sinon aucun !
7. Facile

8. Soit p un nombre premier, impaire OU NON. Montrer I’équivalence entre les propriétés suivantes :
Par la question précédente (1) n’est pas un carré si et seulement si p = 3 [4].
i.=ii.
On raisonne par I’absurde si ii. est faux, —1 sécrit a® + kp et donc p divide dans Z[i] (a + i)(a — i),
absurde!
il.=iii.
Par I’absurde, si p = o + 32 on a pas ii. en regardant la congruence modulo 4 d’un carré.
iii.=>i. On suppose iii. et p de la forme p = ab on a p? = ¢(a)@(b), si ni p(a) = 1 ni ¢(b) = 1 alors
p(a) = ¢(b) = p.....
9. On a montrer que les les entier premier congrus a 3 modulo 4 et les entier de Gauss a tels que ¢(a) soit
premier sont irreductibles.
Montrer que ce sont les seuls, & un inversible prés... On prendra un irreductible a et on raisonnera
sur les diviseurs premier p de ¢(a).
On a que a divise ¢(a), donc a divise un facteur premier p de ¢(a) p = ab. Puis p* = ¢(a)p(b)
Deux cas b inversible ou non .



Extensions de corps

Premiére partie

1.

2.

Donc on déduit ( cf. exercice du cours) que les seules racines rationnelles possibles sont 1 et —1. Or
P(1) = -1, P(—1) = —1. Donc P n’admet pas de racines rationnelles.

Le polyndme P est de degré impair a coefficients réels, il admet donc une racine réelle w.

Soit ¢ un élément de K. Par définition de K, il existe un entier naturel n et des rationnels ag, a1, ..., a,

tels que : ¢ = Z a;w'. Soit 1’élément de Q[X], C = Z a;X". Par division euclidienne de C par P dans
i=0 i=0
Q[X] on obtient que K est le Q-espace vectoriel engendré par la sous famille de (w?);en, (W%, wh, w?).

La famille (w, w!, w?) est libre. Soit A, iz et v des rationnels tels que : A\w? + pw+ v = 0. Soit I’élément
de Q[X], C = )\X2 + 11X + v. Supposons C non nul. Alors par division euclidienne : P = QC + uX + v

avec ) € Q[X], u et v des rationnels. En substituant dans cette égalité w a l'indéterminée, il vient
0 = uw 4+ v. Comme w est irrationnel © = 0 et donc v = 0, et donc C divise P, irréductible,...

Finalement (w”, w!, w?) est une base de K.

e K est stable par combinaison linéaire.
e K est stable par produit.
e Enfin 1 =uw’ € K.

De ces trois points on déduit : K est une Q-sous-algébre de R.

. D’aprés (c), K est un sous-anneau de R, il est donc commutatif et non trivial.

Soit, par ailleurs, z un élément non nul de K. Il existe, d’aprés (b), des rationnels a, b et ¢ non tous
nuls, tels que z = aw? + bw + c. Soit D = aX? +bX + C. P et D sont, dans Q[X], premiers entre eux,
par Bezout x est inversible... Conclusion : K est un sous-corps de R.

Deuxiéme partie CAS GENERAL :
Soit a un réel.

1.

Soit Ky un sous-corps de R. Il contient 1, est stable par somme et différence et par passage a l'inverse
et multiplication il contient donc Q.

. Soit IC 'ensemble des sous-corps de R qui contiennent a. considérer

Qla) = Kex K.

Facile ID’aprés la question précédente, ¢ induit notamment un morphisme de 'anneau Q[X] sur anneau
R. I en est le noyau, c’est donc un idéal de Q[X].

e HYPOTHESE : I non réduit & 0.
Il existe donc un polynéome P élément de Q[X], non nul tel que P(a) = 0. Multiplier P par le produit
des dénominateurs de ses coefficients...

e HYPOTHESE : a est algébrique.
Presque immédiatement : I est non réduit a {0}.

I est un idéal de Q[X], donc, d’aprés le programme, il existe P élément de Q[X] (appelé générateur de
I), tel que I = PQ[X], I étant non nul, P # 0. Soit P un générateur de I. P € I donc P|P. par symétrie
des roles P|P donc P et P sont associés. Les générateurs de I sont associés, il en existe donc un et un
seul unitaire, o, qui est défini par pq, = a~' P, avec a le coefficient domlnant de P.

te(a) = 0, donc p, ne saurait étre un inversible de Q[X]. Soient A et B des éléments de Q[X], tels
que p, = AB. A(a)B(a) = pq(a) = 0 Montre que I'un des polynémes A ou B est inversible car sinon I
contiendrait un polynéme de degré strictement plus petit que celui de pu, Donc p, est irréductible.

Le degré de u, est supérieur ou égal & 2 , sinon il serait égal & 1 et a serait rationnel.
_ y2

Maintenant a = 4/ % L’élément de Q[X], X*—X2—1 admet a comme racine. Donc j,|X*—X2—1.
On peut montrer que X* — X2 — 1 est irréductible dans Q[X] (regarder ses racines). Donc

=Xt X2 1.




6.

7.
8.

QJa] est I'image par le morphisme d’anneaux ¢ de 'anneau Q[X] (cf. 3.), c’est donc un sous-anneau de
R. Comme R est un corps, Panneau Q[a] est commautatif et non trivial. Soit 2 un élément non nul de QJa].
Il existe P € Q[X] tel que x = P(a). La division euclidienne de P par y, conduit a l'existence de Q et R
éléments de Q[X] tels que : P = Quq + R et d°R < d°u,. Dot z = P(a) = Q(a)pa(a) + R(a) = R(a).
étant non nul, R est non nul, Donc p, ne saurait divisé R, polyndéme dont le degré est inférieur au sien.
Or p, est irréductible dans Q[X] (cf. 6.), donc R et p, sont premiers entres eux dans Q[X]. Le lemme
de Bezout permet de montrer 'inversibilité de x.

CONCLUSION : Qla] est un corps.

Qla] est un corps qui contient a. Donc Q(a) C Qla]
Soit Soit x un élément de Qla]. Il sécrit

avec n un naturel et co,cq,...,c, des rationnels. le corps Q(a) contenant 1 et a et étant stable par
multiplication, il contient a’, pour i = 0,1...,n. Par ailleurs ¢; € Q(a) (cf. 1.). Donc le corps Q(a) étant
n

stable par multiplication est addition, il contient > c;a’ = z. Donc Q[a] C Q(a).
i=0

CoNcLUSION : Q(a) = Qlal]. Q[a] est 'image par ¢, morphisme de Q-espaces vectoriels, de I’espace

vectoriel Q[X] (cf. 3.), c’est donc un sous-espace vectoriel du Q-espace vectoriel R. En raisonnant comme
dans le début de la question on montre que

Q[a] = vect(a®,at, ..., a" ).
Q
la famille la famille (a°,a®,...,a" 1) engendre donc Qla).
On montre que la famille (a°, al,...,a” 1) est libre. Soient g, A1, ..., \,_1 des rationnels tels que :

Xoa® + Arat + -+ Ap_1a™ ! = 0. Soit I'élément de Q[X], C = Ao X? + A X1+ -+ + A, XL
Supposons C' non nul. Alors par division euclidienne : i, = QC + R avec Q € Q[X], R € Q[X] et
d°R < n — 1. Reste & montrer la nulité de R...

Finalement (a°,al,...,a" ') est une base de Qla], qui est donc de dimension n.

facile!

Si a est non algébrique, (a™),en+ est libre...

Troisiéme partie : CORPS FINIS

1.
2.

Montrer que si p est nul alors ¢ est infini...

Montrer qu’il existe une et une seule application ¢ de Z/pZ dans F tel que ¢ = ¢ o mp, out m, désigne
la surjection (dite canonique) de Z sur Z/pZ, qui & un entier z associe sa classe modulo p. Il faut poser
&(Z) = () en ayant soin de montrer que cette quantitée ne dépend pas du représentant x de Z; cf.
structure des groupes cycliques

3. Pas bien dur...

4. On note k = ¢ (Z/pZ). k est un sous-anneau de F isomorphe & Z/pZ, par injectivité de @. Reste a

remarquer que k est intégre.

. Tout sous-corps de F contient 1, donc k est le plus petit sous-corps de F.

Le sous-corps k est appelé sous corps premier de F, on vient de voir qu’il est isomorphe & Z/pZ

Facile!
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Correction du DM n°7
PREMIER EXERCICE

1. CHIFFREMENT DU MESSAGE

(a) On a que p est premier donc un entier k n’est pas premier avec p si et seulement si p divise k, donc
o(p)=p—1(1,2,...,p— 1 sont premiers avec p). De méme p(q) = ¢— 1. Or p et ¢, nombres premiers
distincts sont premiers entre eux, donc d’aprés 1. (a),

o(n) =p@e(g) ={@-1@-1).

(b) Le lemme de Bezout assure l’existence d’entiers u et v tels que : ue + vp(n) = 1. Plus généralement
pour tout entier k,
(u+kp(n))e+ (v—ke)p(n) =1

En prenant pour k > |ul, u + kg(n) est strictement positif, en notant d ce nombre,
ed =1[p(n)]

2. DECHIFFREMENT DU MESSAGE

(a) e PREMIER CAS : M premier avec p.
Donc p ne divise pas M. Le petit théoréme de Fermat donne alors : MP~! = 1 [p]. Par ailleurs,d’aprés
2.(b), il existe un entiet h tel que ed = 14 h(p —1). Donc M°? = M x (M@= et (MP-D)r =
1" = 1[p], donc M*? = M [p]
e SECOND CAS : M non premier avec p.
Comme p est premier, il divise M, donc M et M¢? sont tous deux congrus & 0 modulo p.

Dans tous les cas | M = M [p]

(b) De la précédente question, il vient : p|M¢? — M et de méme q|M¢? — M. Comme p et ¢ sont premiers
entre eux, pg|/M® — M Soit M = M [n]. Mais C = M¢[n]. Donc C? = M¢?[n] et finalement

C?= Min]|.

PROBLEME

Premiére partie
1. Soit P le polynome X2 — X — 1.
Supposons que P ait une racinne rationnelle r. Elle s’écrit : r = P avec p € Z, g € N et p et g premiers
q

entre eux. On a donc : 3 —r — 1 = 0, Soit
P’ —pi* —¢*=0. (1)

On déduit de cette égalité que p divise ¢. Or p et ¢ sont premiers entre eux donc le théoréme de GaufR dit
que p divise ¢2. Une nouvelle application du théoréme de gauf donne que p divise ¢, enfin une derniére
application de ce théoréme donne que p divise 1. Donc :

p=1 (2)
On déduit aussi de (1) que ¢ divise p®. Un raisonnement analogue au précédent donne g|1. Donc

q=+1. (3)
Donc on déduit de (2-3), que les seules racines rationnelles possibles sont 1 et —1. Or P(1) = —1,
P(—1) = —1. Donc P n’admet pas de racines rationnelles.

Montrons que P est irréductible dans Q[X]. En premier lieu P n’est pas inversible. Ensuite, supposons
que P s’écrive P = AB, avec A et B éléments de Q[X]. Alors d°A + d°B = d°P. Or ni A ni B ne sont
de degré 1, car un élément de Q[X] de degré 1 admet une racine rationnelle et P n’en admet pas. Donc
d°A=0etd°B=30ud°B=0et D°A =3.

En conclusion P est irréductible dans Q[X].

Le polyndéme P est de degré impair a coefficients réels, il admet donc une racine réelle w.



2. Soit ¢ un élément de K. Par définition de K, il existe un entier naturel n et des rationnels ag, a1, ..., a,

tels que : ¢ = Zaiwi. Soit l’élément de Q[X], C = ZaiXi. Par division euclidienne de C' par P dans
i=0 1=0
Q[X] on obtient :
C=QP+rX?+sX +t, (4)

avec Q € Q[X], r, s et t des rationnels. En substituant w a 'indéterminée dans (4), il vient : ¢ = C(w) =
Q(W)P(w) + rw? + sw +t = rw? + sw + t. Donc ¢ étant quelconque, on a : K est le Q-espace vectoriel
engendré par la sous famille de (w?);en, (W9, wh, w?).

Montrons que la famille (w°,w!, w?) est libre. Soit A, et v des rationnels tels que : Aw? + pw+v = 0.
Soit ’élément de Q[X], C = AX? + uX + v. Supposons C non nul. Alors par division euclidienne : P =
QC +uX +v avec Q € Q[X], u et v des rationnels. En substituant dans cette égalité w & 'indéterminée,
il vient 0 = uw + v. Comme w est irrationnel © = 0 et donc v = 0, et donc C divise P. Mais P
étant irréductible C' est constant non nul, ce qui contredit C'(w) = 0. Donc C est nul, c’est-a-dire :
A=p=v=0.Doula liberté¢ de (w°, w',w?).

Finalement (w®, w!, w?) est une base de K.

3. e K sous-espace vectoriel sur @@ de R est stable par combinaison linéaire.
e soient z et 2’ des éléments de K. Il existe des rationnels a, b, c,a’, b, ¢ tels que £ = aw? +bw+c, 2’ =
a'w? +Vw+ . Alors
zx’ = ad'w? + (ab’ + a'b)w® + (ac’ + d'c + b )w? + (b’ + 'b)w + cc.
Donc zx' € V%Ct(wi)iEN = K. Donc K est stable par produit.

e Enfin 1 =w’ € K.
De ces trois points on déduit : K est une Q-sous-algébre de R.

4. D’apres (c), K est un sous-anneau de R, il est donc commutatif et non trivial.

Soit, par ailleurs, z un élément non nul de K. Il existe, d’aprés (b), des rationnels a, b et ¢ non tous
nuls, tels que x = aw? +bw + c. Soit D = aX?+bX + C. P et D sont, dans Q[X], premiers entre eux, en
effet P est irréductible (cf. 1.) et ne divise pas D, puisque d°P > d°D > —oco. Le lemme de Bezout assure
donc lexistence de U et V éléments de Q[X] tels que : UD+ VP = 1. En substituant w a I'indéterminée
X dans cette égalité, il vient :

U(w)D(w) + V(w)P(w) = zD(w) = 1.

Donc D(w) est Pinverse de z. L’inverse de x est donc élément de K.
Conclusion : K est un sous-corps de R.

Deuxiéme partie CAS GENERAL :
Soit a un réel.

1. Soit Ky un sous-corps de R. Il contient 1, donc, étant stable par somme et différence il contient Z. K
étant stable par passage a 'inverse et multiplication il contient Q.

2. Soit K I’ensemble des sous-corps de R qui contiennent a. Soit Q(a), 'intersection de tous les éléments
de IC:
= N K.
Q(a) KeK
e Q(a) est un sous-corps de R comme intersection non vide (R € K) de sous-corps.
e Pour tout élément K de K, a € K, donc a € Q(a).
e Soit K un sous-corps de R qui contient a, par définition de I, Ky € K donc

Q(a) = 0 _K C Ko.

Donc ’ensemble K des sous-corps de R qui contiennent a,
admet Q(a) comme plus petit élément pour l'inclusion.
3. Soient P et @ des éléments de Q[X], A et u des rationnels.
e G(AP + Q) = (AP + uQ)(a) = AP(a) + nQ(a) = A(P) + u6(Q).
* ¢(PxQ)=(PxQ)(a) = P(a) x Q(a) = ¢(P) + ¢(Q).
e 0(1) = 1.
Donc ¢ est un morphisme de la Q-algébre Q[X] dans la Q-algébre R.
4. D’apres la question précédente, ¢ induit notamment un morphisme de ’anneau Q[X] sur 'anneau R. I
en est le noyau, c’est donc un idéal de Q[X].




5. e HYPOTHESE : I non réduit a 0.
Il existe donc un polynoéme P élément de Q[X], non nul tel que P(a) = 0. Notons d le degré de P
et pour ¢ = 0,1,...,d, a; sont coeflicient de degré i. Pour tout i € {0,1,...,n}, a; s’écrit &, avec
i
pi € Z et q; € N*. Posons § = gg X q1 X -+ X qq. 6P est un polynéme non nul & coefficients entiers et
(6P)(a) =0. Donc a est algébrique.
e HYPOTHESE : a est algébrique.
Donc a est racine d’un polynéme P non nul & coefficients entiers. Donc I admet P comme élément
et I est non réduit a 0.
Donc a est algébrique si et seulement si I est non réduit a {0}.

6. I est un idéal de Q[X], donc, d’apreés le programme, il existe P élément de Q[X] (appelé générateur de
I), tel que I = PQ|[X], I étant non nul, P # 0. Soit P un générateur de I. P € I donc P|P. par symétrie
des roles P|P donc P et P sont associés. Les générateurs de I sont associés, il en existe donc un et un
seul unitaire, pq, qui est défini par j, = a~' P, avec a le coefficient dominant de P.

ta(a) = 0, donc p, ne saurait étre un inversible de Q[X]. Soient A et B des éléments de Q[X], tels
que pg = AB. A(a)B(a) = pq(a) = 0. L’intégrité de Q assure donc que A(a) ou B(a) est nul. Prenons
par exemple A(a) nul. Alors A € I donc 4|4, or Alu, donc A et p, sont associés et donc B est de degreé
0. Donc p, est irréductible.

Supposons que d°u, < 1. d°u, # —oo (I non nul) et d°u, # 0 car u,(a) = 0, donc d°u, = 1. Il existe
donc s et t rationels tels que s # 0 et u, = sX +t. De py(a) = 0 on déduit a = —é, et donc a € Q. Par
contaposition :

si a est irrationnel, alors le degré de pu, est supérieur ou égal & 2.

L’élément de Q[X], X2 — 2 admet v/2 comme racine. Donc X2 — 2|p 5. Or V2 est notoirement
irrationnel donc, comme on vient de le voir, d°u, 5 > 2. Donc X? — 2 qui est unitaire est égal a Kz

2

Maintenant a = 4/ # L’¢lément de Q[X], X*—X?—1 admet a comme racine. Donc p,|X*— X2 1.

Montrons que X* — X2 — 1 est irréductible dans Q[X]. Supposons qu’il existe A et B éléments de Q[X]
tels que :
X*—-X%?-1=AB.

En notant o/ = ’1%‘/5 X% — X2 — 1 admet quatre racines complexes, a, —a,ia’, —ia’. /5 étant

irrationnel, on montre qu’aucune de ses racines n’est rationnelle, donc ni A ni B n’est de degré 1.
Supposons que d°A = 2 et donc d°B = 2. L’un des deux polynémes A et B, disons pour fixer les idées A,

admet a’ comme racine, étant a coefficients rationnels donc réels, il admet aussi comme racine ia’ = —ia’.

Donc il existe ¢ € R*, tel que A = ¢(X? — #) A étant & coefficients rationnels, ¢ est rationnel, mais

alors cl’T‘/g est rationnel ce qui conduit & la rationnalité de v/5, ce qui est faux. Donc finalement un des
polynomes A et B est de degré 0, et donc X* — X? — 1 est irréductible.

Donc fi,, diviseur de X% — X2 — 1 est associé & X% — X? — 1. Ces deux polynémes étant unitaires ils sont
égaux :

po = Xt — X% - 1.

7. Q[a] est I'image par le morphisme d’anneaux ¢ de 'anneau Q[X] (cf. 3.), c’est donc un sous-anneau de
R. Comme R est un corps, 'anneau Q[a] est commutatif et non trivial. Soit x un élément non nul de Q[a.
Il existe P € Q[X] tel que z = P(a). La division euclidienne de P par u, conduit a l’existence de @ et R
éléments de Q[X] tels que : P = Quq + R et d°R < d°u,. D’ott @ = P(a) = Q(a)uq(a) + R(a) = R(a).
x étant non nul, R est non nul, Donc u, ne saurait divisé R, polynéme dont le degré est inférieur au
sien. Or p, est irréductible dans Q[X] (cf. 6.), donc R et u, sont premiers entres eux dans Q[X]. Le
lemme de Bezout affirme donc lexistence de deux éléments U et V' de Q[X] tels que UR+ Vi, = 1. En
substituant a & I’indéterminé X, on obtient :

1=U(a)R(a) + V(a)pa(a) = U(a)z.

Donc U(a) = 7% et donc 271 € QJa]. Autrement dit Q[a] est stable par passage a linverse.

CONCLUSION : Qla] est un corps.




Q[a] est un corps qui contient a. Donc Q(a) C Qa]
Soit Soit z un élément de Qla]. Il sécrit

avec n un naturel et cg,cq,...,c, des rationnels. le corps Q(a) contenant 1 et a et étant stable par
multiplication, il contient a*, pour i = 0,1...,n. Par ailleurs ¢; € Q(a) (cf. 1.). Donc le corps Q(a) étant
n .
stable par multiplication est addition, il contient > ¢;a* = x. Donc Qla] C Q(a).
i=0
CoNCLUSION : Q(a) = Qa]. Q[a] est 'image par ¢, morphisme de Q-espaces vectoriels, de 1’espace

vectoriel Q[X] (cf. 3.), c’est donc un sous-espace vectoriel du Q-espace vectoriel R. En raisonnant comme
dans le début de la question on montre que tout élément x de Qa] est de la forme = R(a) ou R est un
élément de Q[X], de degré inférieur strictement a n, degré de p,. En notant ¢; le coefficient d’ordre i de
R, pouri=0,1,2...,n—1, x s’écrit :
n—1
x = Z cia'.
i=0

Donc Qla] C v%ct(ao7 a',...,a™ ). L’inclusion inverse étant évidente,
Q[a] = vect(a®,at,... a" ).
Q
la famille la famille (a°,at,...,a" 1) engendre donc Qla).

Montrons que la famille (a°,al,...,a" 1) est libre. Soient Ao, A1, ..., \,_1 des rationnels tels que :
Xoa’+A1at+- -+ N, _1a" "t = 0. Soit I'élément de Q[X], C = Ao X+ A\ X1 +-- -+ )\, _1 X" 1. Supposons
C non nul. Alors par division euclidienne : 1, = QC + R avec Q € Q[X], R € Q[X] et d°R <n — 1. En
substituant dans cette égalité a a I'indéterminée, il vient 0 = R(a). Donc R(a) est élément de I, il est
donc divisible par p,, mais son degré étant inférieur strictement & celui de pu,, c’est qu’il est nul. Donc
C divise po. Mais 1, étant irréductible C' est constant non nul, ce qui contredit C(a) = 0. Donc C est

nul, ¢’est-a-dire : \g = A\g = --- = \,,_; = 0. D’ott la liberté de (a®,a’,...,a"1).

0o ,1

Finalement (a°,al,...,a"" 1)

est une base de QJa], qui est donc de dimension n.

. Supposons que la famille (a;);en soit liée. Montrons qu’alors a est algébrique. Par hypothése il existe
m € N, Ao, A1, ..., Am_1 des rationnels non tous nuls, tels que : Aga’ + Ajat + -+ Ap_1a™ ! = 0. Soit
lélément de Q[X],

D=XX"+ X'+ A XML

D est non nul et D € I, donc d’aprés 5., a est algébrique. Par contraposée, si a est non algébrique, alors
la famille d’éléments de Q(a), (a;);en est libre et donc Q(a) est de dimension infinie.




Quatriéme partie : CORPS FINIS

1. Supposons p nul, alors ¢ est injectif et réalise donc une bijection de Z sur ¢(Z), ensemble qui est donc
infini. Donc a fortiori F' est infini.

Dans toute la suite on supposera que F est fini, donc que p est non nul.

2. e ANALYSE. Supposons qu’une application ¢ de Z/pZ dans F satisfasse ¢ = @ o m,.

Alors nécéssairement pour k = 0,1,...,p — 1 on a ¢(k) = (k).
e SYNTHESE. Soit ¢ : Z/pZ — F qui est définie par

vk € [0,p — 1] ; &(k) = p(k).
Soit alors un entier . Notons k le représentant de Z élément de [0,p — 1]. Alors
k—x € pZ = ker(p).

Donc
G(mp(x)) = ¢(k) = @(k) = p(z + (k — z) = p(z) + ¢(k — ) = ¢(z) + O = ¢(z).
Donc on a bien ¢ = @ omp.
Finalement il existe une et une seule application ¢ de Z/pZ dans F satisfaisant ¢ = @ o m,,.

3. Montrer que ¢ est un morphisme d’anneaux injectif. (facile)

4. Comme ¢ est un morphisme d’anneau k est un sous-anneau de F et comme ¢ est injectif il induit un
isomorphisme d’anneaux de Z/pZ sur ¢ (Z/pZ), autrement dit :

k est un sous-anneau de F isomorphe a Z/pZ.

L’intégrité du corp F assure celle de 'anneau k, donc par isomorphisme celle de 'anneau Z/pZ. Donc
p est un nombre premier.

5. Comme p est premier, voila que Z/pZ est un corps et donc k qui lui est isomorphe itou.
Mais tout sous-corps de F contient 1g et, par stabilité par addition et passage & 'opposé, ¢(Z). Or

k =¢(2/pZ) = o(mp(2)) = ¢(Z).

Donc le sous-corps k est le plus petit sous corps de F.

6. On muni F de sa structure naturelle de k-espace vectoriel (I'oppération de k sur F est t simplement la
retsriction & k x F de la multiplication du corps F).
Comme F est fini et non réduit & {Or}, 'espace vectoriel F sur k est de dimension n non nulle finie.
Donc F est isomorphe k™, un isomorphisme pouvant étre ’application coordonnée dans une base.

Donc ’ |F| = |k|" =p" ‘




