
MP∗ Lycée Kerichen 2025-2026

DM n
o7

PREMIER EXERCICE

Il s'agit d'un résultat classique

Cryptographie

Le but de se problème est l'étude du principe de criptage RSA, qui permet de communiquer de façon sure des

données. Ce résultat est à connaitre

Dans tout le problème φ désignera l'indicatrice d'Euler.

1. Chiffrement du message

On étudie le cryptage d'un message par un expéditeur. Soient p et q des nombres premiers distincts
et n leur produit : n = pq. On appelle n module de chi�rement

(a) Donner sans démonstration, en fonction de p et q, la valeur de φ(n).

(b) Soit e un entier premier avec φ(n). On appelle e exposant de chi�rement. Montrer qu'il existe un
entier naturel d tel que ed ≡ 1 [φ(n)]

Le couple (n, e) est appelé clef publique (elle peut être transmise à l'expéditeur), le couple (n, d) est
appelé clef privée, elle reste connue du seul destinataire du message.

Dans la suite on considère un entier M (représentant le message) strictement inférieur à n. On note
C l'élément de {0, 1, . . . , n − 1} congru à Me modulo n. Cet entier représente le message codé qui est
transmis.

2. déchiffrement du message

On se propose de montrer que Cd est congru à M modulo n, ce qui permet au destinataire de trouver
M , grâce à sa clef (n, d).

(a) Montrer que Med est congru à M modulo p. On distinguera les deux cas M premier avec p et M non
premiers avec p.

(b) En déduire que Cd ≡ M [n].

Remarque : pour trouver d à partir de e et n il faut savoir inverser e dans Z/φ(n)Z ce qui nécessite
de connaitre φ(n) et donc le couple (p, q). La décomposition de n en facteurs premiers peut être très
di�cile si les nombres premiers p et q ont été choisis très grands.

SECOND EXERCICE
( Pour tous : 1.,2.,3.,4. et 5. le reste est facultatif. )

Entiers de Gauss

Soient Z[i] l'ensemble des nombres complexes de la forme u+ iv, avec (u, v) ∈ Z2 et l'application. φ ; Z[i] →
N ; a 7→ āa.

1. Montrer que Z[i] est un sous-anneau du corps C.

2. Déterminer Z[i]∗, ensemble des éléments inversibles de Z[i].

3. Montrer que pour tout élément a de Z[i] et tout élément b de Z[i]∗, il existe un couple (q, r) d'éléments
de Z[i] tel que a = bq + r et φ(r) < φ(b). On dit que l'anneau Z[i] est euclidien pour φ.

4. Montrer que tout idéal de Z[i] est de la forme aZ[i], on dit que Z[i] est principal.

5. Soit a un élément de Z[i]. Montrer que si φ(a) est premier, alors a est un élément irréductible de Z[i].
Rappelons qu'un élément a d'un anneau intègre est dit irréductible si par dé�nition il n'est pas inversible
et si il admet la décomposition a = bc, alors a ou b est inversible.

6. Soit p un nombre premier impair et y un élément de (Z/pZ)
∗
, on dit que y est un carré s'il existe un

élément z de (Z/pZ)
∗
tel que z2 = y.



(a) Montrer que
∏

x∈(Z/pZ)∗
x =

{
−y

p−1
2 , si y est un carré,

y
p−1
2 , sinon .

Indication : on pourra regrouper deux à deux dans le produit les termes x et yx−1.

(b) En déduire {
y

p−1
2 = 1̄, si y est un carré,

y
p−1
2 = −1̄, sinon .

7. Soit p un nombre premier, impaire OU NON. Montrer l'équivalence entre les propriétés suivantes :

i. p est irréductible dans Z[i] ;
ii. p ≡ 3 [4] ;
iii. Il n'existe pas d'élément a de Z[i] tel que p = ϕ(a).

8. En déduire les irréductibles de Z[i].

PROBLÈME

Première partie : Un exemple d'extension du corps Q

1. Soit P le polynôme X3 −X − 1.
Montrer que P n'a pas de racines rationnelles. En déduire que P est irréductible dans Q[X].
Montrer que P a une racine réelle que l'on notera ω.

2. Soit K le Q-espace vectoriel engendré par
(
ωi
)
i∈N

.
Montrer que K est de dimension �nie, et donner une base simple de K.

3. Montrer que K est une Q-sous-algèbre de R, muni de sa structure naturelle de Q-algèbre.

4. Montrer que K est un sous-corps de R.

Deuxième partie : Cas général d'extension de Q
Soit a un réel.

1. Montrer que tout sous-corps de R contient Q.

2. Montrer que l'ensemble des sous-corps de R qui contiennent a admet un plus petit élément pour l'inclu-
sion. On le notera dans la suite Q(a).

3. Montrer que ϕ : Q[X] → R ; P 7→ P (a) est un morphisme de la Q-algèbres Q[X] dans la Q algèbre R.
On note Q[a] son image.

4. Soit I := {P ∈ Q [X] , P (a) = 0}. Montrer que I est un idéal de Q[X].

5. Le réel a est dit algébrique (sur Q), si, par dé�nition, a est racine d'un polynôme non nul à coe�cients
entiers.
Montrer que a est algèbrique si et seulement si I est non réduit à {0}.
Dans cette partie on suppose dans la suite que que a est algèbrique, sauf à la dernière

question.

6. Montrer qu'il existe un et un seul élément de Q[X] unitaire, µa, tel que I = µaQ[X].
Montrer que µa est irréductible dans Q[X]. Montrer que si a est irrationnel, alors le degré de µa est

supérieur ou égal à 2. Déterminer µa pour a =
√
2 et pour a =

√
1+

√
5

2 .

7. Montrer que Q[a] est un corps. Montrer que Q(a) = Q[a].
Montrer que Q(a) est un Q-espace vectoriel de dimension n, où n est le degré de µa, dont on donnera
une base simple.

8. Si a est non algébrique, montrer qu'alors Q(a) est un Q-espace vectoriel de dimension in�nie 1.

Troisième partie : Corps finis
Facultatif.

Soit (F,+,×) un corps. On note 1F l'unité de F et pour tout entier k et tout élément a de F, k · a, désigne
l'élément a+ a+ · · ·+ a︸ ︷︷ ︸

k termes

pour k ≥ 1, l'élément (−a) + (−a) + · · ·+ (−a)︸ ︷︷ ︸
−k termes

pour k ≤ −1 et en�n 1F pour k = 0

On admet le résultat élémentaire suivant :
L'application

φ : Z → F ; k 7→ k · 1F
1. On pourrait montrer que Q(a) est isomorphe en tant que corps au corps Q(X).



est un morphisme d'anneaux.
Son noyau est donc un sous groupe de (Z,+), donc de la forme pZ, où p désigne un élément de N. L'entier

naturel p s'appelle caractéristique de F.

1. Montrer que si p est nul alors F est in�ni.

Dans toute la suite on supposera que F est �ni, donc que p est non nul.

2. Montrer qu'il existe une et une seule application φ̃ de Z/pZ dans F tel que φ = φ̃ ◦ πp, où πp désigne la
surjection (dite canonique) de Z sur Z/pZ, qui à un entier x associe sa classe modulo p.

3. Montrer que φ̃ est un morphisme d'anneaux injectif.

4. On note k = φ̃ (Z/pZ). Montrer que k est un sous-anneau de F isomorphe à Z/pZ. En déduire que p est
un nombre premier.

5. Montrer que k est le plus petit sous-corps de F.

Le sous-corps k est appelé sous corps premier de F, on vient de voir qu'il est isomorphe à Z/pZ

6. En munissant F d'une structure d'espace vectoriel sur k, montrer que le cardinal de F est une puissance
de p.

L'étude de la réciproque est traitée dans un DM bis.
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PREMIER EXERCICE

1. Chiffrement du message

(a)

φ(n) = φ(p)φ(q) = (p− 1)(q − 1).

(b) Le lemme de Bezout assure l'existence d'entiers u et v tels que :

(u+ kφ(n))e+ (v − ke)φ(n) = 1

On choisi k, pour queb : u+ kφ(n) soit strictement positif...

2. déchiffrement du message

(a) • Premier cas : M premier avec p.
Donc p ne divise pas M .D'après 2.(b), il existe un entiet h tel que ed = 1 + h(p − 1). Donc
Med = M × (M (p−1))h donc Med ≡ M [p] (Fermat).

• Second cas : M non premier avec p.
Comme p est premier, il divise M et donc Med...

Dans tous les cas Med ≡ M [p]

(b) De la précédente question et comme p et q sont premiers entre eux, pq|Med −M Soit Med ≡ M [n].

Mais C ≡ Me [n]. Donc Cd ≡ Med[n] et �nalement Cd ≡ M [n] .

Entiers de Gauss

1. Sans problème.

2. Si Z est inversible dans Z[i], alors φ est inversible dans l'anneau Z donc vaut 1. On trouve sans mal les
élément de Z[i] de module 1 et l'on montre instantanément qu'ils sont inversibles...

3. Le complexe a
b est élément d'un carré de côté 1 dont les sommets sont des entier de Gauss, prendre pour

q le ou l'un des sommets plus proche de b
a ...

4. cf. sous-groupes de Z ou idéaux de K[X].

5. Résulte directement de φ(bc) = φ(b)φ(c) ...

6. Regrouper deux à deux dans le produit les termes x et yx−1, l'application de Z/pZ)∗ qui à x associe
yx−1 est une involution si y est le carré de z alors deux et seulement deux élément z et −z sont leur
propre image sinon aucun !

7. Facile

8. Soit p un nombre premier, impaire OU NON. Montrer l'équivalence entre les propriétés suivantes :

Par la question précédente (1̄) n'est pas un carré si et seulement si p ≡ 3 [4].

i.=⇒ii.
On raisonne par l'absurde si ii. est faux, −1 sécrit a2 + kp et donc p divide dans Z[i] (a + i)(a − i),
absurde !

ii.=⇒iii.
Par l'absurde, si p = α2 + β2 on a pas ii. en regardant la congruence modulo 4 d'un carré.

iii.=⇒i. On suppose iii. et p de la forme p = ab on a p2 = ϕ(a)ϕ(b), si ni φ(a) = 1 ni φ(b) = 1 alors
φ(a) = φ(b) = p.....

9. On a montrer que les les entier premier congrus à 3 modulo 4 et les entier de Gauss a tels que ϕ(a) soit
premier sont irreductibles.

Montrer que ce sont les seuls, à un inversible près... On prendra un irreductible a et on raisonnera
sur les diviseurs premier p de ϕ(a).

On a que a divise ϕ(a), donc a divise un facteur premier p de ϕ(a) p = ab. Puis p2 = ϕ(a)ϕ(b)

Deux cas b inversible ou non .



Extensions de corps

Première partie

1. Donc on déduit ( cf. exercice du cours) que les seules racines rationnelles possibles sont 1 et −1. Or
P (1) = −1, P (−1) = −1. Donc P n'admet pas de racines rationnelles.

Le polynôme P est de degré impair à coe�cients réels, il admet donc une racine réelle ω.

2. Soit c un élément de K. Par dé�nition de K, il existe un entier naturel n et des rationnels a0, a1, . . . , an

tels que : c =

n∑
i=0

aiω
i. Soit l'élément de Q[X], C =

n∑
i=0

aiX
i. Par division euclidienne de C par P dans

Q[X] on obtient que K est le Q-espace vectoriel engendré par la sous famille de (ωi)i∈N, (ω0, ω1, ω2).

La famille (ω0, ω1, ω2) est libre. Soit λ, µ et ν des rationnels tels que : λω2+µω+ν = 0. Soit l'élément
de Q[X], C = λX2 + µX + ν. Supposons C non nul. Alors par division euclidienne : P = Q̃C + uX + v
avec Q̃ ∈ Q[X], u et v des rationnels. En substituant dans cette égalité ω à l'indéterminée, il vient
0 = uω + v. Comme ω est irrationnel u = 0 et donc v = 0, et donc C divise P , irréductible,...

Finalement (ω0, ω1, ω2) est une base de K.

3. • K est stable par combinaison linéaire.
• K est stable par produit.
• En�n 1 = ω0 ∈ K.

De ces trois points on déduit : K est une Q-sous-algèbre de R.

4. D'après (c), K est un sous-anneau de R, il est donc commutatif et non trivial.

Soit, par ailleurs, x un élément non nul de K. Il existe, d'après (b), des rationnels a, b et c non tous
nuls, tels que x = aω2 + bω + c. Soit D = aX2 + bX + C. P et D sont, dans Q[X], premiers entre eux,
par Bezout x est inversible... Conclusion : K est un sous-corps de R.

Deuxième partie Cas général :

Soit a un réel.

1. Soit K0 un sous-corps de R. Il contient 1, est stable par somme et di�érence et par passage à l'inverse
et multiplication il contient donc Q.

2. Soit K l'ensemble des sous-corps de R qui contiennent a. considérer

Q(a) = ∩
K∈K

K.

3. Facile !D'après la question précédente, ϕ induit notamment un morphisme de l'anneau Q[X] sur l'anneau
R. I en est le noyau, c'est donc un idéal de Q[X].

4. • Hypothèse : I non réduit à 0.
Il existe donc un polynôme P élément de Q[X], non nul tel que P (a) = 0. Multiplier P par le produit
des dénominateurs de ses coe�cients...

• Hypothèse : a est algébrique.
Presque immédiatement : I est non réduit à {0}.

5. I est un idéal de Q[X], donc, d'après le programme, il existe P élément de Q[X] (appelé générateur de
I), tel que I = PQ[X], I étant non nul, P ̸= 0. Soit P̃ un générateur de I. P̃ ∈ I donc P |P̃ . par symétrie
des rôles P̃ |P donc P̃ et P sont associés. Les générateurs de I sont associés, il en existe donc un et un
seul unitaire, µa, qui est dé�ni par µa = a−1P , avec a le coe�cient dominant de P .

µa(a) = 0, donc µa ne saurait être un inversible de Q[X]. Soient A et B des éléments de Q[X], tels
que µa = AB. A(a)B(a) = µa(a) = 0 Montre que l'un des polynômes A ou B est inversible car sinon I
contiendrait un polynôme de degré strictement plus petit que celui de µa Donc µa est irréductible.

Le degré de µa est supérieur ou égal à 2 , sinon il serait égal à 1 et a serait rationnel.

µ√
2 = X2 − 2.

Maintenant a =

√
1+

√
5

2 . L'élément deQ[X],X4−X2−1 admet a comme racine. Donc µa|X4−X2−1.

On peut montrer que X4 −X2 − 1 est irréductible dans Q[X] (regarder ses racines). Donc

µa = X4 −X2 − 1.



6. Q[a] est l'image par le morphisme d'anneaux ϕ de l'anneau Q[X] (cf. 3.), c'est donc un sous-anneau de
R. CommeR est un corps, l'anneauQ[a] est commutatif et non trivial. Soit x un élément non nul deQ[a].
Il existe P ∈ Q[X] tel que x = P (a). La division euclidienne de P par µa conduit à l'existence de Q et R
éléments de Q[X] tels que : P = Qµa +R et doR < doµa. D'où x = P (a) = Q(a)µa(a) +R(a) = R(a). x
étant non nul, R est non nul, Donc µa ne saurait divisé R, polynôme dont le degré est inférieur au sien.
Or µa est irréductible dans Q[X] (cf. 6.), donc R et µa sont premiers entres eux dans Q[X]. Le lemme
de Bezout permet de montrer l'inversibilité de x.

Conclusion : Q[a] est un corps.

Q[a] est un corps qui contient a. Donc Q(a) ⊂ Q[a]
Soit Soit x un élément de Q[a]. Il sécrit

x =

n∑
i=0

cia
i,

avec n un naturel et c0, c1, . . . , cn des rationnels. le corps Q(a) contenant 1 et a et étant stable par
multiplication, il contient ai, pour i = 0, 1 . . . , n. Par ailleurs ci ∈ Q(a) (cf. 1.). Donc le corps Q(a) étant

stable par multiplication est addition, il contient
n∑

i=0

cia
i = x. Donc Q[a] ⊂ Q(a).

Conclusion : Q(a) = Q[a]. Q[a] est l'image par ϕ, morphisme de Q-espaces vectoriels, de l'espace

vectoriel Q[X] (cf. 3.), c'est donc un sous-espace vectoriel du Q-espace vectoriel R. En raisonnant comme
dans le début de la question on montre que

Q[a] = vect
Q

(a0, a1, . . . , an−1).

la famille la famille (a0, a1, . . . , an−1) engendre donc Q[a].

On montre que la famille (a0, a1, . . . , an−1) est libre. Soient λ0, λ1, . . . , λn−1 des rationnels tels que :
λ0a

0 + λ1a
1 + · · ·+ λn−1a

n−1 = 0. Soit l'élément de Q[X], C = λ0X
0 + λ1X

1 + · · ·+ λn−1X
n−1.

Supposons C non nul. Alors par division euclidienne : µa = Q̃C + R avec Q̃ ∈ Q[X], R ∈ Q[X] et
doR ≤ n− 1. Reste à montrer la nulité de R...

Finalement (a0, a1, . . . , an−1) est une base de Q[a], qui est donc de dimension n.

7. facile !

8. Si a est non algébrique, (an)n∈N∗ est libre...

Troisième partie : Corps finis

1. Montrer que si p est nul alors φ est in�ni...

2. Montrer qu'il existe une et une seule application φ̃ de Z/pZ dans F tel que φ = φ̃ ◦ πp, où πp désigne
la surjection (dite canonique) de Z sur Z/pZ, qui à un entier x associe sa classe modulo p. Il faut poser
φ̃(x̄) = φ(x) en ayant soin de montrer que cette quantitée ne dépend pas du représentant x de x̄ ; cf.
structure des groupes cycliques

3. Pas bien dur...

4. On note k = φ̃ (Z/pZ). k est un sous-anneau de F isomorphe à Z/pZ, par injectivité de φ̃. Reste à
remarquer que k est intègre.

5. Tout sous-corps de F contient 1, donc k est le plus petit sous-corps de F.

Le sous-corps k est appelé sous corps premier de F, on vient de voir qu'il est isomorphe à Z/pZ

6. Facile !
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PREMIER EXERCICE

1. Chiffrement du message

(a) On a que p est premier donc un entier k n'est pas premier avec p si et seulement si p divise k, donc
φ(p) = p−1 (1, 2, . . . , p−1 sont premiers avec p). De même φ(q) = q−1. Or p et q, nombres premiers
distincts sont premiers entre eux, donc d'après 1. (a),

φ(n) = φ(p)φ(q) = (p− 1)(q − 1).

(b) Le lemme de Bezout assure l'existence d'entiers u et v tels que : ue+ vφ(n) = 1. Plus généralement
pour tout entier k,

(u+ kφ(n))e+ (v − ke)φ(n) = 1

En prenant pour k > |u|, u+ kφ(n) est strictement positif, en notant d ce nombre,

ed ≡ 1 [φ(n)]

2. Déchiffrement du message

(a) • Premier cas : M premier avec p.
Donc p ne divise pasM . Le petit théorème de Fermat donne alors :Mp−1 ≡ 1 [p]. Par ailleurs,d'après
2.(b), il existe un entiet h tel que ed = 1+ h(p− 1). Donc Med = M × (M (p−1))h et (M (p−1))h ≡
1h ≡ 1 [p], donc Med ≡ M [p]

• Second cas : M non premier avec p.
Comme p est premier, il divise M , donc M et Med sont tous deux congrus à 0 modulo p.

Dans tous les cas Med ≡ M [p]

(b) De la précédente question, il vient : p|Med −M et de même q|Med −M . Comme p et q sont premiers
entre eux, pq|Med − M Soit Med ≡ M [n]. Mais C ≡ Me [n]. Donc Cd ≡ Med[n] et �nalement

Cd ≡ M [n] .

PROBLÈME

Première partie

1. Soit P le polynôme X3 −X − 1.

Supposons que P ait une racinne rationnelle r. Elle s'écrit : r =
p

q
avec p ∈ Z, q ∈ N et p et q premiers

entre eux. On a donc : r3 − r − 1 = 0, Soit

p3 − pq2 − q3 = 0. (1)

On déduit de cette égalité que p divise q3. Or p et q sont premiers entre eux donc le théorème de Gauÿ dit
que p divise q2. Une nouvelle application du thèorème de gauÿ donne que p divise q, en�n une dernière
application de ce théorème donne que p divise 1. Donc :

p = 1. (2)

On déduit aussi de (1) que q divise p3. Un raisonnement analogue au précédent donne q|1. Donc

q = ±1. (3)

Donc on déduit de (2�3), que les seules racines rationnelles possibles sont 1 et −1. Or P (1) = −1,
P (−1) = −1. Donc P n'admet pas de racines rationnelles.

Montrons que P est irréductible dansQ[X]. En premier lieu P n'est pas inversible. Ensuite, supposons
que P s'écrive P = AB, avec A et B éléments de Q[X]. Alors doA+ doB = doP . Or ni A ni B ne sont
de degré 1, car un élément de Q[X] de degré 1 admet une racine rationnelle et P n'en admet pas. Donc
doA = 0 et doB = 3 où doB = 0 et DoA = 3.
En conclusion P est irréductible dans Q[X].

Le polynôme P est de degré impair à coe�cients réels, il admet donc une racine réelle ω.



2. Soit c un élément de K. Par dé�nition de K, il existe un entier naturel n et des rationnels a0, a1, . . . , an

tels que : c =

n∑
i=0

aiω
i. Soit l'élément de Q[X], C =

n∑
i=0

aiX
i. Par division euclidienne de C par P dans

Q[X] on obtient :
C = QP + rX2 + sX + t, (4)

avec Q ∈ Q[X], r, s et t des rationnels. En substituant ω à l'indéterminée dans (4), il vient : c = C(ω) =
Q(ω)P (ω) + rω2 + sω + t = rω2 + sω + t. Donc c étant quelconque, on a : K est le Q-espace vectoriel
engendré par la sous famille de (ωi)i∈N, (ω0, ω1, ω2).

Montrons que la famille (ω0, ω1, ω2) est libre. Soit λ, µ et ν des rationnels tels que : λω2+µω+ν = 0.
Soit l'élément de Q[X], C = λX2 + µX + ν. Supposons C non nul. Alors par division euclidienne : P =
Q̃C+uX + v avec Q̃ ∈ Q[X], u et v des rationnels. En substituant dans cette égalité ω à l'indéterminée,
il vient 0 = uω + v. Comme ω est irrationnel u = 0 et donc v = 0, et donc C divise P . Mais P
étant irréductible C est constant non nul, ce qui contredit C(ω) = 0. Donc C est nul, c'est-à-dire :
λ = µ = ν = 0. D'où la liberté de (ω0, ω1, ω2).

Finalement (ω0, ω1, ω2) est une base de K.

3. • K sous-espace vectoriel sur Q de R est stable par combinaison linéaire.
• soient x et x′ des éléments de K. Il existe des rationnels a, b, c, a′, b′, c′ tels que x = aω2+ bω+c, x′ =

a′ω2 + b′ω + c′. Alors

xx′ = aa′ω4 + (ab′ + a′b)ω3 + (ac′ + a′c+ bb′)ω2 + (bc′ + c′b)ω + cc′.

Donc xx′ ∈ vect
Q

(ωi)i∈N = K. Donc K est stable par produit.

• En�n 1 = ω0 ∈ K.

De ces trois points on déduit : K est une Q-sous-algèbre de R.

4. D'après (c), K est un sous-anneau de R, il est donc commutatif et non trivial.

Soit, par ailleurs, x un élément non nul de K. Il existe, d'après (b), des rationnels a, b et c non tous
nuls, tels que x = aω2+ bω+ c. Soit D = aX2+ bX +C. P et D sont, dans Q[X], premiers entre eux, en
e�et P est irréductible (cf. 1.) et ne divise pas D, puisque doP > doD > −∞. Le lemme de Bezout assure
donc l'existence de U et V éléments de Q[X] tels que : UD+V P = 1. En substituant ω à l'indéterminée
X dans cette égalité, il vient :

U(ω)D(ω) + V (ω)P (ω) = xD(ω) = 1.

Donc D(ω) est l'inverse de x. L'inverse de x est donc élément de K.

Conclusion : K est un sous-corps de R.

Deuxième partie Cas général :

Soit a un réel.

1. Soit K0 un sous-corps de R. Il contient 1, donc, étant stable par somme et di�érence il contient Z. K0

étant stable par passage à l'inverse et multiplication il contient Q.

2. Soit K l'ensemble des sous-corps de R qui contiennent a. Soit Q(a), l'intersection de tous les éléments
de K :

Q(a) = ∩
K∈K

K.

• Q(a) est un sous-corps de R comme intersection non vide (R ∈ K) de sous-corps.
• Pour tout élément K de K, a ∈ K, donc a ∈ Q(a).
• Soit K0 un sous-corps de R qui contient a, par dé�nition de K, K0 ∈ K donc

Q(a) = ∩
K∈K

K ⊂ K0.

Donc l'ensemble K des sous-corps de R qui contiennent a,
admet Q(a) comme plus petit élément pour l'inclusion.

3. Soient P et Q des éléments de Q[X], λ et µ des rationnels.
• ϕ(λP + µQ) = (λP + µQ)(a) = λP (a) + µQ(a) = λϕ(P ) + µϕ(Q).
• ϕ(P ×Q) = (P ×Q)(a) = P (a)×Q(a) = ϕ(P ) + ϕ(Q).
• ϕ(1) = 1.
Donc ϕ est un morphisme de la Q-algèbre Q[X] dans la Q-algèbre R.

4. D'après la question précédente, ϕ induit notamment un morphisme de l'anneau Q[X] sur l'anneau R. I
en est le noyau, c'est donc un idéal de Q[X].



5. • Hypothèse : I non réduit à 0.
Il existe donc un polynôme P élément de Q[X], non nul tel que P (a) = 0. Notons d le degré de P

et pour i = 0, 1, . . . , d, ai sont coe�cient de degré i. Pour tout i ∈ {0, 1, . . . , n}, ai s'écrit
pi
qi
, avec

pi ∈ Z et qi ∈ N∗. Posons δ = q0 × q1 × · · · × qd. δP est un polynôme non nul à coe�cients entiers et
(δP )(a) = 0. Donc a est algébrique.

• Hypothèse : a est algébrique.
Donc a est racine d'un polynôme P non nul à coe�cients entiers. Donc I admet P comme élément
et I est non réduit à 0.

Donc a est algèbrique si et seulement si I est non réduit à {0}.

6. I est un idéal de Q[X], donc, d'après le programme, il existe P élément de Q[X] (appelé générateur de
I), tel que I = PQ[X], I étant non nul, P ̸= 0. Soit P̃ un générateur de I. P̃ ∈ I donc P |P̃ . par symétrie
des rôles P̃ |P donc P̃ et P sont associés. Les générateurs de I sont associés, il en existe donc un et un
seul unitaire, µa, qui est dé�ni par µa = a−1P , avec a le coe�cient dominant de P .

µa(a) = 0, donc µa ne saurait être un inversible de Q[X]. Soient A et B des éléments de Q[X], tels
que µa = AB. A(a)B(a) = µa(a) = 0. L'intégrité de Q assure donc que A(a) ou B(a) est nul. Prenons
par exemple A(a) nul. Alors A ∈ I donc µa|A, or A|µa donc A et µa sont associés et donc B est de degré
0. Donc µa est irréductible.

Supposons que doµa ≤ 1. doµa ̸= −∞ (I non nul) et doµa ̸= 0 car µa(a) = 0, donc doµa = 1. Il existe
donc s et t rationels tels que s ̸= 0 et µa = sX + t. De µa(a) = 0 on déduit a = − t

s , et donc a ∈ Q. Par
contaposition :
si a est irrationnel, alors le degré de µa est supérieur ou égal à 2.

L'élément de Q[X], X2 − 2 admet
√
2 comme racine. Donc X2 − 2|µ√

2. Or
√
2 est notoirement

irrationnel donc, comme on vient de le voir, doµ√
2 ≥ 2. Donc X2 − 2 qui est unitaire est égal à µ√

2.

µ√
2 = X2 − 2.

Maintenant a =

√
1+

√
5

2 . L'élément deQ[X],X4−X2−1 admet a comme racine. Donc µa|X4−X2−1.

Montrons que X4 −X2 − 1 est irréductible dans Q[X]. Supposons qu'il existe A et B éléments de Q[X]
tels que :

X4 −X2 − 1 = AB.

En notant a′ =

√
−1+

√
5

2 . X4 − X2 − 1 admet quatre racines complexes, a,−a, ia′,−ia′.
√
5 étant

irrationnel, on montre qu'aucune de ses racines n'est rationnelle, donc ni A ni B n'est de degré 1.
Supposons que doA = 2 et donc doB = 2. L'un des deux polynômes A et B, disons pour �xer les idées A,
admet ia′ comme racine, étant à coe�cients rationnels donc réels, il admet aussi comme racine ia′ = −ia′.

Donc il existe c ∈ R∗, tel que A = c(X2 − 1−
√
5

2 ). A étant à coe�cients rationnels, c est rationnel, mais

alors c 1−
√
5

2 est rationnel ce qui conduit à la rationnalité de
√
5, ce qui est faux. Donc �nalement un des

polynômes A et B est de degré 0, et donc X4 −X2 − 1 est irréductible.
Donc µa, diviseur de X

4−X2− 1 est associé à X4−X2− 1. Ces deux polynômes étant unitaires ils sont
égaux :

µa = X4 −X2 − 1.

7. Q[a] est l'image par le morphisme d'anneaux ϕ de l'anneau Q[X] (cf. 3.), c'est donc un sous-anneau de
R. CommeR est un corps, l'anneauQ[a] est commutatif et non trivial. Soit x un élément non nul deQ[a].
Il existe P ∈ Q[X] tel que x = P (a). La division euclidienne de P par µa conduit à l'existence de Q et R
éléments de Q[X] tels que : P = Qµa + R et doR < doµa. D'où x = P (a) = Q(a)µa(a) + R(a) = R(a).
x étant non nul, R est non nul, Donc µa ne saurait divisé R, polynôme dont le degré est inférieur au
sien. Or µa est irréductible dans Q[X] (cf. 6.), donc R et µa sont premiers entres eux dans Q[X]. Le
lemme de Bezout a�rme donc l'existence de deux éléments U et V de Q[X] tels que UR+ V µa = 1. En
substituant a à l'indéterminé X, on obtient :

1 = U(a)R(a) + V (a)µa(a) = U(a)x.

Donc U(a) = x−1 et donc x−1 ∈ Q[a]. Autrement dit Q[a] est stable par passage à l'inverse.

Conclusion : Q[a] est un corps.



Q[a] est un corps qui contient a. Donc Q(a) ⊂ Q[a]
Soit Soit x un élément de Q[a]. Il sécrit

x =

n∑
i=0

cia
i,

avec n un naturel et c0, c1, . . . , cn des rationnels. le corps Q(a) contenant 1 et a et étant stable par
multiplication, il contient ai, pour i = 0, 1 . . . , n. Par ailleurs ci ∈ Q(a) (cf. 1.). Donc le corps Q(a) étant

stable par multiplication est addition, il contient
n∑

i=0

cia
i = x. Donc Q[a] ⊂ Q(a).

Conclusion : Q(a) = Q[a]. Q[a] est l'image par ϕ, morphisme de Q-espaces vectoriels, de l'espace

vectoriel Q[X] (cf. 3.), c'est donc un sous-espace vectoriel du Q-espace vectoriel R. En raisonnant comme
dans le début de la question on montre que tout élément x de Q[a] est de la forme x = R(a) où R est un
élément de Q[X], de degré inférieur strictement à n, degré de µa. En notant ci le coe�cient d'ordre i de
R, pour i = 0, 1, 2 . . . , n− 1, x s'écrit :

x =

n−1∑
i=0

cia
i.

Donc Q[a] ⊂ vect
Q

(a0, a1, . . . , an−1). L'inclusion inverse étant évidente,

Q[a] = vect
Q

(a0, a1, . . . , an−1).

la famille la famille (a0, a1, . . . , an−1) engendre donc Q[a].

Montrons que la famille (a0, a1, . . . , an−1) est libre. Soient λ0, λ1, . . . , λn−1 des rationnels tels que :
λ0a

0+λ1a
1+· · ·+λn−1a

n−1 = 0. Soit l'élément de Q[X], C = λ0X
0+λ1X

1+· · ·+λn−1X
n−1. Supposons

C non nul. Alors par division euclidienne : µa = Q̃C +R avec Q̃ ∈ Q[X], R ∈ Q[X] et doR ≤ n− 1. En
substituant dans cette égalité a à l'indéterminée, il vient 0 = R(a). Donc R(a) est élément de I, il est
donc divisible par µa, mais son degré étant inférieur strictement à celui de µa, c'est qu'il est nul. Donc
C divise µa. Mais µa étant irréductible C est constant non nul, ce qui contredit C(a) = 0. Donc C est
nul, c'est-à-dire : λ0 = λ0 = · · · = λn−1 = 0. D'où la liberté de (a0, a1, . . . , an−1).

Finalement (a0, a1, . . . , an−1) est une base de Q[a], qui est donc de dimension n.

8. Supposons que la famille (ai)i∈N soit liée. Montrons qu'alors a est algèbrique. Par hypothèse il existe
m ∈ N, λ0, λ1, . . . , λm−1 des rationnels non tous nuls, tels que : λ0a

0 + λ1a
1 + · · ·+ λm−1a

m−1 = 0. Soit
l'élément de Q[X],

D = λ0X
0 + λ1X

1 + · · ·+ λm−1X
m−1.

D est non nul et D ∈ I, donc d'après 5., a est algébrique. Par contraposée, si a est non algébrique, alors
la famille d'éléments de Q(a), (ai)i∈N est libre et donc Q(a) est de dimension in�nie.



Quatrième partie : Corps finis

1. Supposons p nul, alors φ est injectif et réalise donc une bijection de Z sur φ(Z), ensemble qui est donc
in�ni. Donc a fortiori F est in�ni.

Dans toute la suite on supposera que F est �ni, donc que p est non nul.

2. • Analyse. Supposons qu'une application φ̃ de Z/pZ dans F satisfasse φ = φ̃ ◦ πp.

Alors nécéssairement pour k = 0, 1, ..., p− 1 on a φ̃(k̄) = φ(k).

• Synthèse. Soit φ̃ : Z/pZ → F qui est dé�nie par

∀k ∈ [[0, p− 1]] ; φ̃(k̄) = φ(k).

Soit alors un entier x. Notons k le représentant de x̄ élément de [[0, p− 1]]. Alors

k − x ∈ pZ = ker(φ).

Donc
φ̃(πp(x)) = φ̃(k̄) = φ(k) = φ(x+ (k − x) = φ(x) + φ(k − x) = φ(x) +OF = φ(x).

Donc on a bien φ = φ̃ ◦ πp.

Finalement il existe une et une seule application φ̃ de Z/pZ dans F satisfaisant φ = φ̃ ◦ πp.

3. Montrer que φ̃ est un morphisme d'anneaux injectif. (facile)

4. Comme φ̃ est un morphisme d'anneau k est un sous-anneau de F et comme φ̃ est injectif il induit un
isomorphisme d'anneaux de Z/pZ sur φ̃ (Z/pZ), autrement dit :

k est un sous-anneau de F isomorphe à Z/pZ.

L'intégrité du corp F assure celle de l'anneau k, donc par isomorphisme celle de l'anneau Z/pZ. Donc
p est un nombre premier.

5. Comme p est premier, voilà que Z/pZ est un corps et donc k qui lui est isomorphe itou.

Mais tout sous-corps de F contient 1F et, par stabilité par addition et passage à l'opposé, φ(Z). Or

k = φ̃ (Z/pZ) = φ(πp(Z)) = φ(Z).

Donc le sous-corps k est le plus petit sous corps de F.

6. On muni F de sa structure naturelle de k-espace vectoriel (l'oppération de k sur F est t simplement la
retsriction à k× F de la multiplication du corps F).

Comme F est �ni et non réduit à {0F}, l'espace vectoriel F sur k est de dimension n non nulle �nie.
Donc F est isomorphe kn, un isomorphisme pouvant être l'application coordonnée dans une base.

Donc |F| = |k|n = pn .


