Exercice – Récurrence d'une marche aléatoire dans \mathbb{Z}^2 :

Soit X une variable aléatoire à valeurs dans \mathbb{Z}^2 et $(X_i)_{i\geqslant 1}$ une suite iid de variables aléatoires de même loi que X. On note X=(x,y) et on suppose que les deux variables aléatoires entières x et y sont dans \mathcal{L}^2 . On suppose de plus que la loi est symétrique, i.e. pour tout $u\in\mathbb{Z}^2$, P(X=u)=P(X=-u).

On pose $S_0 = (0,0)$ et pour tout $n \ge 1$, $S_n = \sum_{k=1}^n X_k$; $(S_n)_n$ est une

marche aléatoire plane. Elle est récurrente si elle repasse par (0,0) une infinité de fois avec probabilité 1.

- 1. Calculer l'espérance de x et y.
- 2. Donner une définition formalisée de l'événement " $(S_n)_n$ est récurrente".
- 3. Montrer que x et y admettent un moment d'ordre 2 si et seulement si $||X||^2$ est d'espérance finie. (Où ||.|| désigne la norme euclidienne usuelle de \mathbb{R}^2 .)
- 4. Soient $n, p \in \mathbb{N}^*$. On pose $S_n^{(p)} = \sum_{k=1}^n X_{p+k}$. Montrer que S_n et $S_n^{(p)}$ sont deux variables aléatoires de même loi.
- 5. Soit A_p l'événement $(S_p \neq 0)$. Montrer que

$$P(\bigcap_{p\geqslant 1} A_{n+p}, S_n = 0) = P(S_n = 0)P(\bigcap_{p\geqslant 1} A_p).$$

- 6. On suppose dans cette question que $\sum P(S_n=0)$ diverge. Déduire de la question précédente que la marche aléatoire $(S_n)_n$ est récurrente.
- 7. On se propose désormais de montrer que $\sum P(S_n)$ diverge. Soit $n \in \mathbb{N}^*$.
 - (a) On pose $M = E[||X||^2]$. Calculer $E[||S_n||^2]$ en fonction de M et n.
 - (b) Montrer que $P(S_{2n} = 0) = \sum_{u \in \mathbb{Z}^2} P(S_n = u)^2$.
 - (c) Soit B_n une partie finie de \mathbb{Z}^2 . Montrer que

$$P(S_{2n} = 0) \geqslant \frac{1}{|B_n|} P(S_n \in B_n)^2.$$

(d) On suppose désormais que $B_n=B_f(0,\sqrt{2nM})\cap\mathbb{Z}^2$. Montrer que $P(S_n\notin B_n)\leqslant \frac{1}{2}.$

- (e) Conclure. (On pourra majorer grossièrement le cardinal de B_n .)
- 8. Soit $(Y_k^1)_k$ et $(Y_k^2)_k$ deux suites de variables aléatoires iid à valeurs dans \mathbb{Z}^2 admettant un moment d'ordre 2 et de même loi commune. On pose, pour i=1 ou 2, $S_n^i=\sum_{k=1}^{n}Y_k^i$. Montrer que presque sûrement, il existe une infinité d'entiers n tels que $S_n^1=S_n^2$. (Théorème de Polya.)
- 1. Déjà, x et y sont d'espérances finies car admettent des moments d'ordre deux. Montrons que x et y sont des variables symétriques à valeurs dans \mathbb{Z} . Soit $\pi_1: \mathbb{R}^2 \to \mathbb{R}$ l'application $(a,b) \mapsto a$. Alors $x = \pi_1(X)$ est aussi symétrique; en effet, $x = \pi_1(X)$ et $-x = \pi_1(-X)$ ont même loi, comme image par π_1 de deux variables aléatoires ayant même loi.

Montrons maintenant qu'une variable aléatoire symétrique est d'espérance nulle. On a

$$E[x] = \sum_{a \in x(\Omega), a > 0} aP(x = a) + \sum_{a \in x(\Omega), a < 0} aP(x = a)$$
$$= \sum_{a \in x(\Omega), a > 0} (aP(X = a) - aP(X = -a)) = 0$$

$$\operatorname{car} P(X = a) = P(X = -a).$$

- 2. Par définition, pour $\omega \in \Omega$, $(S_n(\omega))_n$ est récurrente si pour tout $N \in \mathbb{N}^*$, il existe $p \geq N$ vérifiant $S_p(\omega) = 0$, i.e. $\omega \in \bigcup_{p \geq N} (S_p = 0)$. L'ensemble des $\omega \in \Omega$ pour lesquels $(S_n)_n$ est récurrente est donc $\bigcap_{N \geq 1} \bigcup_{p \geq N} (S_p = 0)$; ce qui prouve en passant que c'est bien un événement.
- 3. Sens direct : si x et y admettent un moment d'ordre 2, alors $||X||^2 = x^2 + y^2$ aussi par somme. Réciproquement, les majorations $x^2 \le ||X||^2$ et $y^2 \le ||X||^2$ garantissent que x^2 et y^2 sont d'espérances finies.
- 4. (Classique) Montrons d'abord que les vecteurs aléatoires (X_1, \ldots, X_n) et $(X_{p+1}, \ldots, X_{p+n})$ ont même loi. Soit donc $(a_1, \ldots, a_n) \in \mathbb{R}^n$. Alors

$$P((X_1, \dots, X_n) = (a_1, \dots, a_n)) = P(X_1 = a_1) \cdots P(X_n = a_n)$$
 (indépendance des X_j)
$$= P(X_{p+1} = a_1) \cdots P(X_{p+n} = a_n)$$

$$(X_j \text{ et } X_{p+j} \text{ ont même loi})$$

$$= P((X_{p+1}, \dots, X_{p+n}) = (a_1, \dots, a_n))$$
(indépendance des X_{p+j})

En notant $f: \mathbb{R}^n \to \mathbb{R}$ la fonction $(a_1, \ldots, a_n) \mapsto a_1 + \cdots + a_n$, on a que $S_n = f(X_1, \ldots, X_n)$ et $S_n^{(p)} = f(X_{p+1}, \ldots, X_{p+n})$, donc ont même loi comme image de deux variables aléatoires de même loi par une même fonction.

5. Pour $N \ge 1$, par le théorème de continuité monotone,

$$P(\bigcap_{p\geqslant 1} A_{n+p}, S_n = 0) = \lim_{N \to +\infty} P(\bigcap_{1\leqslant p\leqslant N} A_{n+p}, S_n = 0),$$

par décroissance de la famille $\left(\bigcap_{N\geqslant p\geqslant 1}A_{n+p}\cap (S_n=0)\right)_{N\geqslant 1}$. Donc

$$P\left(\bigcap_{p\geqslant 1} A_{n+p}, S_n = 0\right) = \lim_{N \to +\infty} P\left(\bigcap_{1 \leqslant p \leqslant N} A_{n+p}, S_n = 0\right)$$
$$= \lim_{N \to +\infty} P\left(S_{n+1} \neq 0, \dots, S_{n+N} \neq 0, S_n = 0\right)$$
$$= \lim_{N \to +\infty} P\left(S_1^{(n)} \neq 0, \dots, S_N^{(n)} \neq 0, S_n = 0\right)$$

Or, $(S_1^{(n)}, \ldots, S_N^{(n)})$ n'est fonction que des variables aléatoires X_{n+1}, \ldots, X_{n+N} . Elle est donc indépendante de S_n d'après le lemme des coalitions et l'indépendance des X_j . On a donc

$$P\left(\bigcap_{p\geqslant 1} A_{n+p}, S_n = 0\right) = \lim_{N \to +\infty} P\left(S_1^{(n)} \neq 0, \dots, S_N^{(n)} \neq 0\right) P(S_n = 0)$$

$$= P\left(S_n = 0\right) \lim_{N \to +\infty} P\left(\left(S_1^{(n)}, \dots, S_N^{(n)}\right) \neq (0, \dots, 0)\right)$$

$$= P\left(S_n = 0\right) \lim_{N \to +\infty} P\left(\left(S_1, \dots, S_N\right) \neq (0, \dots, 0)\right)$$

$$= P\left(S_n = 0\right) P\left(\bigcap_{n > 1} A_p\right)$$

car $(S_1^{(n)}, \ldots, S_N^{(n)})$ et (S_1, \ldots, S_N) ont même loi. (On a utilisé une deuxième fois le théorème de continuité monotone.)

6. On suppose que $\sum P(S_n=0)$ diverge. Notons R l'événement "la marche aléatoire est récurrente", i.e. $R=\left(\bigcap_{N\geqslant 1}\bigcup_{p\geqslant N}(S_p=0)\right)$. Il s'agit de montrer que P(R)=1, i.e. $P(R^c)=0$.

Soit E_n l'événement "la marche aléatoire passe en 0 pour la dernière fois au temps n", *i.e.* $E_n = ((S_n = 0) \cap (\cap_{p \geqslant 1} (S_{n+p} \neq 0))$. On a donc que l'événement complémentaire de R est

$$R^{c} = \left(\bigcup_{N \geqslant 1} \bigcap_{p \geqslant N} (S_{p} \neq 0)\right) = \bigsqcup_{n \geqslant 1} E_{n}.$$

En effet, ω appartient à R^c si et seulement si $S_n(\omega)$ est nul pour un nombre fini d'indice n, *i.e.* s'il existe un dernier rang n tel que la marche passe par 0; et les E_n sont disjoints car si n < m, alors $\omega \in E_n$ implique $S_m(\omega) \neq 0$, donc $\omega \notin E_m$, et $\omega \in E_m$ implique $S_m(\omega) = 0$, donc $\omega \notin E_n$. Mais alors

$$P(R^c) = P(\bigsqcup_{n \ge 1} E_n) = \sum_{n=1}^{+\infty} P(E_n).$$

Or, d'après la question précédente, $P(E_n) = P(S_n = 0) P(\bigcap_{n \ge 1} A_p)$. En notant

a le réel $P(\bigcap_{p\geqslant 1}A_p)$, on a

$$P(R^c) = \sum_{n=1}^{+\infty} aP(S_n = 0).$$

La convergence de cette somme alliée à la divergence de $\sum_n P(S_n)$ donne a=0. Donc $P(E_n)=0$ pour tout n, et $P(R^c)=0$. La marche aléatoire $(S_n)_n$ est récurrente.

- 7. On se propose désormais de montrer que $\sum P(S_n)$ diverge. Soit $n \in \mathbb{N}^*$.
 - (a) On note $X_i = (x_i, y_i)$, de sorte que x_i et y_i sont aussi des variables aléatoires. Ainsi,

$$||S_n||^2 = \sum_{1 \le i,j \le n} \langle X_i \mid X_j \rangle = \sum_{i=1}^n ||X_i||^2 + \sum_{1 \le i \ne j \le n} (x_i x_j + y_i y_j).$$

Soient $i, j \in [1, n]$ avec $i \neq j$. Les variables aléatoires x_i et x_j sont indépendantes, car fonctions de X_i et X_j indépendantes (coalitions). De plus, les deux admettent un moment d'ordre 2 d'après la majoration $x_i^2 \leq ||X_i||^2$. On a donc $E[x_i x_j] = E[x_i] E[x_j] = 0$ d'après la question 1. Donc

$$\sum_{1 \leqslant i \neq j \leqslant n} (x_i x_j + y_i y_j) = 0.$$

D'autre part, par linéarité de l'espérance, $\sum_{i=1}^{n} ||X_i||^2 = Mn$.

Donc $E[||S_n||^2] = Mn$.

(b) Soit $n \in \mathbb{N}^*$. Montrons d'abord que la variable aléatoire S_n est symétrique par récurrence sur n. Initialisation : si $n=1, S_1=X_1$ est symétrique par hypothèse.

Hérédité. On suppose la propriété vraie au rang n-1 où $n \ge 2$. On écrit $S_n = S_{n-1} + X_n$. Soit $u, v \in \mathbb{Z}^2$. La famille $(X_n = u)_{u \in \mathbb{Z}^2}$ est un système complet d'événements. On a donc d'après la formule des probabilités totales :

$$P(S_n = v) = \sum_{u \in \mathbb{Z}^2} P(S_n = v, X_n = u)$$

$$= \sum_{u \in \mathbb{Z}^2} P(S_{n-1} + u = v, X_n = u)$$

$$= \sum_{u \in \mathbb{Z}^2} P(S_{n-1} + u = v) P(X_n = u) \qquad (indépendance \ de \ S_{n-1} \ et \ X_n)$$

$$= \sum_{u \in \mathbb{Z}^2} P(S_{n-1} = v - u) P(X_n = u)$$

$$= \sum_{u \in \mathbb{Z}^2} P(S_{n-1} = u - v) P(X_n = u) \qquad (hypothèse \ de \ récurrence)$$

$$= \sum_{u \in \mathbb{Z}^2} P(S_{n-1} = u - v, X_n = u) = P(S_n = v) \qquad (indépendance)$$

par indépendance de S_{n-1} et X_n et la formule des probabilités totales. La famille $(S_n=u)_{u\in\mathbb{Z}^2}$ est un système complet d'événements. On a donc d'après la formule des probabilités totales :

$$P(S_{2n} = 0) = \sum_{u \in \mathbb{Z}^2} P(S_{2n} = 0, S_n = u) = \sum_{u \in \mathbb{Z}^2} P(S_{2n} - S_n = -u, S_n = u)$$

$$= \sum_{u \in \mathbb{Z}^2} P(S_{2n} - S_n = -u, S_n = u)$$

$$= \sum_{u \in \mathbb{Z}^2} P(S_{2n} - S_n = -u) P(S_n = u)$$

$$(indépendance \ de \ S_{2n} - S_n \ et \ S_n)$$

$$= \sum_{u \in \mathbb{Z}^2} P(S_n = -u) P(S_n = u) \qquad (S_{2n} - S_n \ et \ S_n \ ont \ même \ loi)$$

$$= \sum_{u \in \mathbb{Z}^2} P(S_n = u)^2$$

car S_n est symétrique.

(c) On a

$$P(S_n \in B_n)^2 = \left(\sum_{u \in B_n} P(S_n = u)\right)^2$$
$$= \left(\sum_{u \in B_n} 1 \times P(S_n = u)\right)^2$$
$$\leqslant \left(\sum_{u \in B_n} 1^2\right) \left(\sum_{u \in B_n} P(S_n = u)^2\right)$$

(par l'inégalité de Cauchy-Schwarz pour une somme finie de réels)

$$= |B_n| \left(\sum_{u \in B_n} P(S_n = u)^2 \right)$$

$$\leq |B_n| \left(\sum_{u \in \mathbb{Z}^2} P(S_n = u)^2 \right) = |B_n| P(S_{2n} = 0)$$

d'après la question précédente.

(d) On reconnait une inégalité de concentration. On a l'égalité des événements $(S_n \notin B_n) = (\|S_n\|^2 > 2nM)$. Vu que la variable aléatoire $\|S_n\|^2$ est d'espérance finie, on peut lui appliquer l'inégalité de Markov et

$$P(S_n \notin B_n) = P(\|S_n\|^2 > 2nM) \leqslant \frac{E[\|S_n\|^2]}{2nm} = \frac{1}{2}$$

d'après la question 7a

(e) Par positivité de $P(S_n = 0)$, il suffit de prouver la divergence de la série de terme général $P(S_{2n} = 0)$.

Vue l'inclusion $B_n \subset [-\sqrt{2nM}, +\sqrt{2nM}]^2$, qui est un carré de côté $2\sqrt{2nM}$, B_n contient au plus $u_n = (2\sqrt{2nM} + 1)^2$ points à coordonnées entières. Or, $u_n \sim 8Mn$.

D'autrepart, d'après la question précédente,

$$P(S_{2n}) \geqslant \frac{1}{|B_n|} (1 - P(S_n \notin B_n))^2 \geqslant \frac{1}{4u_n}.$$

Par comparaison avec la série (divergente) de terme général $\frac{1}{32n}$, la série $\sum P(S_{2n})$ diverge.

8. On pose $X_k = Y_k^1 - Y_k^2$ et $S_n = S_n^1 - S_n^2$. Par le lemme des coalitions, les variables aléatoires X_1, \ldots, X_n sont indépendantes, et donc la famille infinie $(X_n)_{n\geqslant 1}$ aussi. (Car toute sous-famille finie l'est.) De plus, $S_n = \sum_{k=1}^n X_k$ avec

 X_k admettant un moment d'ordre 2 par somme. Enfin, X_k est symétrique car par la formule des probabilités totales,

$$P(X_k = v) = \sum_{u \in \mathbb{Z}^2} P(Y_k^1 - Y_k^2 = v, Y_k^2 = u) = \sum_{u \in \mathbb{Z}^2} P(Y_k^1 = v + u, Y_k^2 = u)$$

$$= \sum_{u \in \mathbb{Z}^2} P(Y_k^1 = v + u) P(Y_k^2 = u)$$

$$= \sum_{u \in \mathbb{Z}^2} P(Y_k^2 = v + u) P(Y_k^1 = u)$$

$$= \sum_{u \in \mathbb{Z}^2} P(Y_k^2 = v + u, Y_k^1 = u)$$

$$= \sum_{u \in \mathbb{Z}^2} P(Y_k^2 - Y_k^1 = v, Y_k^1 = u) = P(X_k = -v)$$

par indépendance de Y_k^1 et Y_k^2 et qu'elles ont même loi.

On peut donc appliquer les résultats précédents à $S_n = S_n^1 - S_n^2$, qui s'annule donc une infinité de fois presque sûrement.