SUJET N°1 (Centrale MP 1985)

On note V le \mathbb{R} -espace vectoriel des applications continues f de]0,1] dans \mathbb{R} , intégrables sur]0,1]. On note W le \mathbb{R} -espace vectoriel des applications continues f de]0,1] dans \mathbb{R} , telles que f^2 soit intégrable sur]0,1].

Lorsque $(E, \langle .|. \rangle)$ est un espace préhilbertien réel, un endomorphisme $\varphi \in \mathcal{L}(E)$ est dit auto-adjoint si pour tous $u, v \in E$, $\langle \varphi(u) | v \rangle = \langle u | \varphi(v) \rangle$.

L'endomorphisme $\varphi \in \mathcal{L}(E)$ est dit positif s'il est auto-adjoint et que pour tout $u \in E$ $\langle \varphi(u) | u \rangle \ge 0$; il est défini positif s'il est auto-adjoint et que pour tout $u \in E$ non nul $\langle \varphi(u) | u \rangle > 0$.

1 Un espace préhilbertien

- 1. Montrer que W est un sous-espace vectoriel de V.
- 2. Montrer que si l'on pose, pour f et g appartenant à W, $\langle f|g\rangle = \int_0^1 f(x)g(x)\mathrm{d}x$, on définit un produit scalaire sur W; W sera désormais muni de cette structure.
- 3. Étudier l'appartenance à V et l'appartenance à W des restrictions à]0,1] des fonctions suivantes (où $\alpha > 0$) :

$$f_1: x \mapsto \ln x;$$
 $f_2: x \mapsto x^{-\alpha}$ $f_3: x \mapsto \frac{1}{x(1-\ln x)^{\alpha}}.$

2 ...et un opérateur autoadjoint

Soit f un élément de V.

1. On pose, pour tout $x \in]0,1]$:

$$F(x) = \ln x \int_0^x f(t) dt + \int_x^1 f(t) \ln t dt.$$

- (a) Montrer que F(x) existe pour tout $x \in]0, 1]$.
- (b) Montrer que F est de classe \mathscr{C}^2 sur]0,1].

(c) Établir la relation, valable pour tout $x \in]0,1]$:

$$xF''(x) + F'(x) = f(x).$$

- 2. On garde la fonction *F* définie comme ci-dessus.
 - (a) Quelle est la valeur de F(1)?
 - (b) Quelle est la limite de xF'(x) lorsque x tend vers 0?
 - (c) Donner un exemple d'élément f de V tel que F ne soit pas bornée; on pourra utiliser une fonction du type $f(x) = \frac{1}{x(1-\ln x)^{\alpha}}$ avec α convenablement choisi.
- 3. Dans cette question, f désigne toujours une fonction de V et F la fonction définie au début de cette partie.
 - (a) Établir l'existence d'une constante A > 0 telle que, pour tout $x \in]0,1]$, l'on ait $|F'(x)| \le \frac{A}{x}$.
 - (b) Établir que $F \in W$.
- 4. À tout élément f de V on associe ainsi F qui appartient aussi à V, ce qui définit donc une application T de V dans V, manifestement linéaire. L'application T est-elle injective?
- 5. On suppose ici que f appartient à W; T(f) a-t-elle une limite en 0? T(f) est-elle bornée? (On pourra établir : $\forall x \in]0,1], |F'(x)| \leq \sqrt{\frac{\langle f|f\rangle}{x}}.$)
- 6. (a) Montrer que la restriction de *T* à *W* est un endomorphisme autoadjoint de *W*.
 - (b) Montrer que la restriction de -T à W est un endomorphisme autoadjoint positif de W. Est-il défini positif?

${f 3}$ Éléments propres de T

1. Démontrer que les valeurs propres de T, s'il en existe, sont strictement négatives et que les vecteurs propres de T appartiennent en fait à W.

2. Soit λ un nombre réel strictement positif. Montrer que, si f est vecteur propre de T pour la valeur propre $-\lambda$, alors l'application de $\left]0,\frac{1}{\lambda}\right]$ dans $\mathbb R$ qui à x associe $f(\lambda x)$ est, dans son intervalle de définition, solution de l'équation différentielle

(E)
$$xy'' + y' + y = 0.$$

- 3. Montrer que (E) admet une et une seule solution h développable en série entière, de la forme $h(x) = \sum_{n=0}^{\infty} a_n x^n$, avec $a_0 = 1$, et de rayon de convergence R > 0. On donnera l'expression de a_n et la valeur de R. Quelle est la dérivée de $x \mapsto xh'(x)$?
- 4. (a) Établir qu'il existe r_1 réel tel que $h(r_1) = 0$ et que, pour tout $x < r_1$, h(x) > 0. (On pourra commencer par étudier le signe de h'(x) sur [0,2].)
 - (b) Justifier de façon rigoureuse l'encadrement $1, 4 < r_1 < 1, 5$.
- 5. (a) Soient $b \in]0, r_1[$. Soit y une application de $]0, r_1[$ dans \mathbb{R} , solution de (E); établir à l'aide de la fonction $z = \frac{y}{h}$ l'existence de deux constantes A et B telles que

$$\forall x \in]0, r_1[, \quad y(x) = Ah(x) + Bh(x) \int_b^x \frac{\mathrm{d}t}{t h(t)^2}.$$

(Indication : on pourra, pour simplifier les calculs finaux, dériver $x \mapsto xh(x)^2z'(x)$.)

- (b) Étudier la limite de y(x) quand x tend vers 0.
- 6. Déduire de ce qui précède que, si f est vecteur propre de T pour la valeur propre $-\lambda$, alors il existe μ réel tel que

$$\forall x \in]0,1], \quad f(x) = \mu h(\frac{x}{\lambda}).$$

7. Soit inversement un nombre réel $\lambda > 0$; donner une condition nécessaire et suffisante pour que l'application de]0,1] dans \mathbb{R} qui à x associe $h(\frac{x}{\lambda})$ soit vecteur propre de T. Quel lien existe-t-il entre les zéros de h et les valeurs propres de T?

8. Établir qu'à chaque valeur propre de *T* correspond un sous-espace propre de dimension 1 et que ces sous-espaces propres sont deux à deux orthogonaux.

4 La fonction de Bessel et ses zéros

- 1. Soit *y* une solution de (*E*) dans un intervalle *I* inclus dans]0, + ∞ [. Mettre sous une forme aussi simple que possible les dérivées premières des fonctions qui à *x* associent respectivement $xy'(x)^2 + y(x)^2$ et $x^2y'(x)^2 + xy(x)^2$.
- 2. (a) Montrer que, lorsque x tend vers $+\infty$, $xh'(x)^2 + h(x)^2$ tend vers une limite $L \ge 0$.
 - (b) En déduire que h est bornée dans \mathbb{R}_+ et que h' tend vers 0 lorsque x tend vers $+\infty$.
- 3. (a) Établir l'existence des quatre intégrales suivantes, où a désigne un réel strictement positif quelconque :

$$\int_{a}^{+\infty} h'(x)^{2} dx; \quad \int_{a}^{+\infty} h(x)h''(x) dx; \quad \int_{a}^{+\infty} \frac{h(x)h'(x)}{x} dx, \quad \int_{a}^{+\infty} \frac{h(x)^{2}}{x} dx$$

- (b) En déduire que L = 0 (on pourra raisonner par l'absurde).
- (c) Montrer que les fonctions h'^2 , hh'', $x \mapsto \frac{h(x)h'(x)}{x}$ et $x \mapsto \frac{h(x)^2}{x}$ sont intégrables sur $[a, +\infty[$.
- 4. On suppose, dans cette seule question, qu'il existe r > 0 tel que h(r) = 0 et que, pour tout $x \ge r$, l'on a $h(x) \ge 0$.
 - (a) Que dire du sens de variation de xh'(x) pour $x \ge r$?
 - (b) On suppose que l'on connait une valeur c > r telle que h'(c) < 0; trouver une fonction majorant h sur $[c, +\infty[$ et en tirer une contradiction.
 - (c) En déduire que h est croissante sur $[r, +\infty[$. Est-ce possible?
- 5. Montrer que h admet une infinité de zéros.
- 6. Soit *r* un zéro de *h*.

- (a) Démontrer l'existence d'au moins un zéro de h' sur $]r, +\infty[$.
- (b) Soit q un zéro de h'. Établir que

$$\forall x > r$$
, $|h'(x)| \le |h'(r)|$.

En déduire une majoration de $\left| \int_{r}^{q} h(x) dx \right|$.

(c) À l'aide de l'intégrale précédente, établir l'inégalité

$$q \ge r + \sqrt{2r}$$
.

- 7. (a) Démontrer que, pour tout entier n > 0, l'intervalle [n, n+1[contient au plus un zéro de h.
 - (b) Établir que l'on peut ranger les zéros de h en une suite strictement croissante (r_n) , de limite infinie, et telle que

$$\lim_{n\to\infty}(r_{n+1}-r_n)=+\infty.$$

- (c) Trouver une constante K > 0 telle que pour tout entier $n \ge 1$ on ait $r_n \ge Kn^2$.
- 8. Donner l'allure de la courbe représentative de h. On établira que, dans chaque intervalle $[r_n, r_{n+1}]$, h' s'annule une fois et une seule et que la suite qui à n associe $M_n = \max\{|h(x)| \mid x \in [r_n, r_{n+1}]\}$ est décroissante et tend vers 0.