Feuille d'exercices : Algèbre bilinéaire

Produit scalaire, familles orthogonales et orthonormées

Exercice 1 * Soit E un espace vectoriel préhilbertien réel et soit (u_1, \ldots, u_p) une famille de vecteurs unitaires telle que : $\forall x \in E, \parallel x \parallel^2 = \sum_{i=1}^p (u_i \mid x)^2$. Montrer que la famille (u_1, \ldots, u_p) est une base de E.

Exercice 2 * Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de E espace vectoriel euclidien. Établir les équivalences suivantes :

1. \mathcal{B} est orthonormale.

3.
$$\forall x \in E, ||x||^2 = \sum_{i=1}^{n} (e_i|x)^2.$$

2.
$$\forall x \in E, \ x = \sum_{i=1}^{n} (e_i|x)e_i.$$

4.
$$\forall (x,y) \in E \times E, \ (x,y) = \sum_{i=1}^{n} (e_i|x)(e_i|y).$$

Exercice 3 (Mines) Pour tous $P(X) = \sum_{k=0}^{n} a_k X^k$ et $Q(X) = \sum_{k=0}^{n} b_k X^k$, on pose $\langle P|Q\rangle = \sum_{k=0}^{n} a_k b_k$. Montrer qu'il s'agit d'un produit scalaire sur $\mathbb{R}_n[X]$.

Trouver une base orthonormale de $H = \{P \in \mathbb{R}_n[X], P(1) = 0\}$ pour ce produit scalaire.

Exercice 4 (Mines) On note $E = \mathbb{R}_n[X]$ et on donne n+1 réels a_0, \ldots, a_n .

- 1. Montrer que $(P,Q) = \sum_{k=0}^{n} P^{(k)}(a_k)Q^{(k)}(a_k)$ définit un produit scalaire sur E.
- 2. Montrer qu'il existe une unique base $B = (P_0, ..., P_n)$ orthonormale telle que $\forall i \in [[1, n]]$, tous les P_i sont de degré échelonné et les coefficients des X^i sont strictement positifs.
- 3. Déterminer l'expression de $P_i^{(k)}(a_k)$ pour tout $k \in [1, n]$.
- 4. Que se passe-t-il si $a_0 = \ldots = a_n$?

Exercice 5 (Mines) On munit $C^0([0,1],\mathbb{R})$ du produit scalaire défini par $\langle f,g\rangle=\int_0^1 f(x)\,g(x)\,\mathrm{d}x$.

- 1. Montrer qu'il existe un unique polynôme $A_n \in \mathbb{R}_n[X]$ tel que, pour tout polynôme P de $\mathbb{R}_n[X]$, on ait $P(0) = \langle P, A_n \rangle$.
- 2. Montrer que A_n possède n racines simples dans]0,1[.

Exercice 6 (Mines-Centrale)

- 1. Soit E un espace euclidien de dimension n et v un endomorphisme de E.
 - (a) Montrer que $\sum_{i=1}^{n} \langle v(e_i)|e_i \rangle$ ne dépend pas de la base orthonormée (e_1,\ldots,e_n) choisie.
 - (b) Montrer que $\sum_{i=1}^{n} \sum_{j=1}^{n} \langle v(e_i)|f_j \rangle^2$ ne dépend pas des bases orthonormées (e_1,\ldots,e_n) et (f_1,\ldots,f_n) de E choisies.
 - (c) Calculer sa valeur lorsque v est un projecteur orthogonal de rang r.
- 2. Soit $n \in \mathbb{N}^*$. Pour $A = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{R})$, on pose $\sigma(A) = \sum_{1 \le i,j \le n} a_{i,j}^2$.
 - (a) Que vaut $\sigma(A)$ si $A \in \mathcal{O}_n(\mathbb{R})$? Et si A est la matrice dans la base canonique d'un projecteur orthogonal?
 - (b) Soit $A \in \mathcal{M}_n(\mathbb{R})$ et $\Omega \in \mathcal{O}_n(\mathbb{R})$. Montrer que $\sigma(^t \Omega A \Omega) = \sigma(A)$.

Exercice 7 (Centrale) Soit (E, (.|.)) espace euclidien; soit $u \in \mathcal{L}(E)$ trigonalisable. Montrer que u est trigonalisable en base orthonormée.

Exercice 8 Soit (E, (.|.)) un espace vectoriel euclidien de dimension n.

1. Montrer qu'il existe dans E n vecteurs unitaires (u_1, \ldots, u_n) tels que :

$$\forall i \neq j \in \{1, \dots, n\}, \qquad \parallel u_i - u_j \parallel = 1.$$

2. Une telle famille (u_1, \ldots, u_n) est-elle une base de E?

Exercice 9 (X-ENS SR) * Soit $(x_0, ..., x_n)$ une famille obtusangle d'un espace euclidien $(E, \langle | \rangle)$: pour tout $(i, j) \in [0, n]^2$ tel que $i \neq j$, $\langle x_i | x_j \rangle < 0$.

- 1. Montrer que (x_1, \ldots, x_n) est libre.
- 2. Montrer l'existence, dans tout espace euclidien de dimension n, d'un (n + 1)-uplet vérifiant les hypothèses de la question précédente.
- 3. On suppose dans cette question que dim E = n + 1 et que la famille est libre. On considère $(e_j)_{j \in [\![1,n]\!]}$ la base ON obtenue par orthonormalisation de Gram-Schmidt. Montrer que la matrice de passage des (x_j) aux (e_j) est à coefficients positifs.
- 4. On suppose dans cette question que $\operatorname{rg}(x_0,\ldots,x_n)=n$. Démontrer que toute famille $(x_j)_{j\in [0,n]\setminus\{k\}}$ de cardinal n-1 est libre et que l'expression de x_k dans cette famille a des composantes strictement négatives.
- 5. On suppose E de dimension n, les x_i de norme 1 et les produits scalaires deux à deux constants. Montrer que cette constante est égale à -1/n et que la somme des x_i est nulle.

Exercice 10 (Ulm) On munit \mathbb{R}^n du produit scalaire canonique. Soient $(e_1, ..., e_n)$ une base orthonormée et $(f_1, ..., f_n)$ une famille de vecteurs tels que $\|e_k - f_k\|_2 < \frac{1}{\sqrt{n}}$. Montrer que $(f_1, ..., f_n)$ est une base. Le résultat subsiste-t-il si l'on suppose l'inégalité large?

Exercice 11 (X) * Soient $n \in \mathbb{N}^*$, v_1, \ldots, v_n des vecteurs unitaires d'un espace euclidien E. Montrer qu'il existe $(\varepsilon_1, \ldots, \varepsilon_n) \in \{\pm 1\}^n$ tels que

$$\left\| \sum_{i=1}^{n} \varepsilon_i v_i \right\| \leqslant \sqrt{n}.$$

Exercice 12 (X) * Soit N une norme sur un \mathbb{R} -espace vectoriel E. On suppose qu'elle vérifie l'identité du parallélogramme. Montrer que N provient d'un produit scalaire.

Exercice 13 (X) Soit (E, \langle , \rangle) un espace euclidien. Déterminer les applications f de E dans \mathbb{R} , continues telles que pour tout $(x,y) \in E^2$, si x et y sont orthogonaux alors f(x+y) = f(x) + f(y).

Exercice 14 (Ulm) Soit E un espace euclidien et (u_i) une famille de vecteurs telle que our tout $i \neq j$, $(u_i|u_j) \leq 0$. Montrer que la famille est indépendante si et seulement si il existe une forme linéaire ϕ sur E telle que pour tout i, $\phi(u_i) > 0$.

Projecteurs orthogonaux et distance à un sous-espace vectoriel

Exercice 15 (CCINP) Soient E un espace euclidien de dimension $n \in \mathbb{N}^*$, $e = (e_1, \dots, e_n)$ une base orthonormée de E, D la droite engendrée par $u = \sum_{k=1}^{n} ke_k$.

- 1. Donner la matrice du projecteur orthogonal sur D dans la base e.
- 2. Donner le polynôme caractéristique et le spectre de p.
- 3. Calculer la distance de $v = \sum_{k=1}^{n} e_k$ à D.

Exercice 16 (CCINP-Mines-Centrale) * Soit $E = \mathfrak{M}_n(\mathbb{R})$. On définit $\phi : \begin{cases} E^2 & \to \mathbb{R} \\ (A, B) & (A|B) = \operatorname{Tr}(^tAB) \end{cases}$

- 1. Vérifier qu'il s'agit bien d'un produit scalaire.
- 2. Montrer que pour tout $A=(a_{i,j})\in E,\ |tr(A)|\leqslant \sqrt{n}\left(\sum_{(i,j)}a_{i,j}^2\right)^{\frac{1}{2}}.$ A quelle condition a-t-on égalité?
- 3. Montrer que $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$ sont supplémentaires orthogonaux.
- 4. Soit $A = (a_{i,j}) \in E$. On note S_n l'ensemble des matrices symétriques. Déterminer $\inf_{M \in S_n} \sum_{i,j} (a_{i,j} m_{i,j})^2$.
- 5. Calculer la distance de $M = \begin{pmatrix} 0 & 1 & 2 \\ 2 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix}$ à $\mathcal{S}_3(\mathbb{R})$.
- 6. Montrer que l'ensemble des matrices de trace nulle est un sous-espace vectoriel et donner sa dimension.

- 7. Calculer la distance de la matrice ne comportant que des 1 à ce sous-espace vectoriel.
- 8. Soit $M \in \mathcal{M}_n(\mathbb{R})$ et G l'ensemble des matrices scalaires $G = \{\lambda I_n, \lambda \in \mathbb{R}\}$; trouver G^{\perp} et calculer d(M, G).

Exercice 17 (CCINP-Mines-Saint Cyr) On note E l'espace vectoriel des fonctions de classe C^2 de \mathbb{R} dans \mathbb{R} .

- 1. Montrer que $(f|g) = \int_0^1 (f(t)g(t) + f'(t)g'(t)) dt$ est un produit scalaire.
- 2. Montrer que $F = \{f \in E, f(0) = f(1) = 0\}$ et $G = \{f \in E, f'' = f\}$ sont orthogonaux. Sont-ils supplémentaires?
- 3. Déterminer le projeté orthogonal de $h \in E$ sur G.

Exercice 18 (X-Centrale-Mines) Calculer $\inf_{(a,b)\in\mathbb{R}^2}\int_0^\pi (a\sin(t)+b\cos(t)-t)^2 dt$.

Exercice 19 (Centrale) Soit $\phi: (P,Q) \in \mathbb{R}[X] \mapsto P(0) Q(0) + \int_0^1 P(t) Q(t) dt$.

- 1. Montrer que ϕ est un produit scalaire. On se place désormais dans l'espace préhilbertien $(\mathbb{R}[X], \phi)$.
- 2. Soit F un sous-espace vectoriel de $\mathbb{R}[X]$. Montrer que $\overline{F} \subset (F^{\perp})^{\perp}$.
- 3. On pose $F = \{Q \in \mathbb{R}[X], \ Q(0) = 0\}$. Montrer que l'inclusion précédente est stricte.

Exercice 20 (Paris) Soient (E, \langle , \rangle) un espace euclidien, $m \in \mathbb{N}^*$, $u_1, \ldots, u_m, v_1, \ldots, v_m$ des vecteurs de E tels que, pour tout $(i, j) \in [1, m]^2$, $\langle u_i, v_j \rangle = \delta_{i,j}$. On note p le projecteur orthogonal de E sur $\text{Vect}(u_1, \ldots, u_m)$. Montrer que

$$\forall x \in E, \qquad \sum_{i=1}^{m} \langle u_i, x \rangle \ \langle x, p(v_i) \rangle = ||p(x)||^2.$$

Isométries vectorielles

Exercice 21 (CCINP-Mines-Centrale-X) * Soit E un espace euclidien et soit $u \in \mathcal{L}(E)$. Montrer l'équivalence entre :

- (i) f préserve l'orthogonalité : $\forall (x,y) \in E^2$, $(x|y) = 0 \Rightarrow (f(x)|f(y) = 0$.
- (ii) Il existe $\alpha \in \mathbb{R}_+$ tel que pour tout $x \in E$, $||f(x)|| = \alpha ||x||$.
- (iii) Il existe $\alpha \in \mathbb{R}$ et $g \in O(E)$ tels que $f = \alpha g$.

Exercice 22 (SR) Soit V un \mathbb{R} -espace vectoriel de dimension finie.

1. Soient ϕ_1 et ϕ_2 deux produits scalaires sur E; on note N_1 et N_2 les normes euclidiennes associées. On suppose :

$$\forall (x,y) \in V^2, \ \phi_1(x,y) = 0 \Leftrightarrow \phi_2(x,y) = 0.$$

- (a) Montrer: $\forall (x, y) \in V^2$, $N_1(x) = N_1(y) \Rightarrow N_2(x) = N_2(y)$.
- (b) Montrer qu'il existe c > 0 tel que $N_1 = c N_2$ et $\phi_1 = c^2 \phi_2$.
- 2. On munit V d'un produit scalaire. Soit $u \in L(V)$ telle que pour tout $(x, y) \in V^2$, x et y sont orthogonaux si et seulement si u(x) et u(y) sont orthogonaux. Montrer que u est une similitude.

Exercice 23 (CCINP) On munit $\mathcal{M}_n(\mathbb{R})$ du produit scalaire $\langle X, Y \rangle = {}^t XY$ et, pour $V \in \mathbb{R}^n \setminus \{0\}$, unitaire, on pose $H_V = I_n - 2V^t V$.

- 1. Montrer que H_V est orthogonale et décrire géométriquement l'endomorphisme que cette matrice représente.
- 2. Soient deux vecteurs X et Y de \mathbb{R}^n , distincts et de même norme; montrer que X+Y et X-Y sont orthogonaux.
- 3. Montrer qu'il existe $V \in \mathbb{R}^n$ tel que $X = H_V Y$.

Exercice 24 (ENS-IMT)

- 1. Déterminer le nombre de matrices de $\mathcal{O}_n(\mathbb{R})$ à coefficients dans \mathbb{Z} .
- 2. Déterminer le nombre de matrices de $\mathcal{O}_n(\mathbb{R})$ à coefficients dans \mathbb{N} et de déterminant 1.

Exercice 25 (Mines-X) *

- 1. Soient E un espace euclidien, (a_i) et (b_i) deux familles de n éléments de E. Montrer l'équivalence entre :
 - (i) $\forall (i,j) \in [1,n]^2, \langle a_i, a_j \rangle = \langle b_i, b_j \rangle.$
 - (ii) Il existe une isométrie vectorielle φ telle que $\forall i \in [1, n], \varphi(a_i) = b_i$.

- 2. On munit \mathbb{R}^n de sa structure euclidienne canonique. Soient $k \in \mathbb{N}^*$, $u_1, \ldots, u_k, v_1, \ldots, v_k$ des vecteurs de \mathbb{R}^n . On suppose que, pour tous i, j dans $\{1, \ldots, k\}$, $\langle u_i, u_j \rangle = \langle v_i, v_j \rangle$. Montrer qu'il existe $W \in \mathcal{O}_n(\mathbb{R})$ telle que, pour tout $i \in \{1, \ldots, k\}$, $v_i = Wu_i$.
- 3. Soit $(A, B) \in \mathfrak{M}_n(\mathbb{R})^2$. Montrer que ${}^tAA = {}^tBB$ si et seulement si il existe $P \in O_n(\mathbb{R})$ tel que A = PB.

Exercice 26 (CCINP)

1. Dans l'espace euclidien orienté $E = \mathbb{R}^3$, soit r la rotation vectorielle d'angle θ autour de l'axe orienté dirigé par le vecteur unitaire \overrightarrow{u} .

Montrer que :
$$\forall \overrightarrow{x} \in \mathbb{R}^3$$
, $r(\overrightarrow{x}) = \cos(\theta) \cdot \overrightarrow{x} + \sin(\theta) \cdot (\overrightarrow{u} \wedge \overrightarrow{x}) + 2(\overrightarrow{u} \mid \overrightarrow{x}) \sin^2(\frac{\theta}{2}) \cdot \overrightarrow{u}$.

2. Déterminer par plusieurs méthodes la matrice dans la base canonique de la rotation d'angle $\frac{\pi}{3}$ d'axe dirigé par $\vec{a} = {}^t(1, -1, 0)$.

Exercice 27 (Mines) Soit u l'endomorphisme de l'espace \mathbb{R}^3 euclidien dont la matrice dans la base canonique de \mathbb{R}^3 s'écrit :

$$R = \left(\begin{array}{ccc} a & b & c \\ c & a & b \\ b & c & a \end{array}\right).$$

Montrer que pour que u soit une rotation, il faut et il suffit que (a,b,c) soient les racines d'une équation du troisième degré :

$$u^3 - u^2 + p = 0$$
 (avec $p \in [0, \frac{4}{27}]$).

Dans le cas où cette condition est vérifiée, déterminer les éléments caractéristiques de la rotation.

Exercice 28 (CCINP) Déterminer la nature et les éléments caractéristiques de l'endomorphisme u de \mathbb{R}^3 représenté dans la base canonique \mathcal{B} de \mathbb{R}^3 par la matrice :

1.
$$A = \frac{1}{4} \begin{pmatrix} -2 & \sqrt{6} & \sqrt{6} \\ -\sqrt{6} & 1 & -3 \\ -\sqrt{6} & -3 & 1 \end{pmatrix}$$
. 2. $A = \frac{1}{3} \begin{pmatrix} -1 & 2 & -2 \\ 2 & -1 & -2 \\ -2 & -2 & -1 \end{pmatrix}$.

Exercice 29 (Mines) Soit $A = (a_{ij})$ orthogonale réelle de taille n. Montrer que $\left| \sum_{i,j} a_{ij} \right| \le n$.

Exercice 30 (Mines) Soit E un espace euclidien. On considère σ une réflexion d'hyperplan H, et $u \in O(E)$.

- 1. On pose $f = u \circ \sigma \circ u^{-1}$. Étudier la nature de f.
- 2. Déterminer les éléments de $\mathcal{O}(E)$ qui commutent à toutes les symétries orthogonales.

Exercice 31 (Mines) Soit (E, \langle , \rangle) un espace euclidien. Pour $f \in \mathcal{O}(E)$, on pose $I(f) = \operatorname{Im}(f - \operatorname{Id})$ et $K(f) = \ker(f - \operatorname{Id})$. Pour $x \in E \setminus \{0\}$, on note s_x la réflexion par rapport à x^{\perp} .

- 1. Soit $f \in \mathcal{O}(E)$. Montrer que E est somme directe orthogonale de I(f) et de K(f).
- 2. Soit (x_1, \ldots, x_p) une famille libre de vecteurs de E. Montrer que $I(s_{x_1} \circ \cdots \circ s_{x_p}) = \text{Vect}(x_1, \ldots, x_p)$.

Exercice 32 (Ulm) $SO_3(Q)$ est-il dense dans $SO_3(R)$?

Endomorphismes et matrices symétriques

Exercice 33 (CCINP-Mines) Soit (E, \langle , \rangle) un espace euclidien de dimension $n \ge 2$. Soient $a \in E$ un vecteur unitaire et $k \in \mathbb{R}$. On considère $f: x \mapsto x + k \langle x, a \rangle a$.

Montrer que f est un endomorphismes symétrique. Pour quels k, f est-il inversible? Orthogonal? Trouver les valeurs propres de f et ses espaces propres.

Exercice 34 (CCINP) Soit E un espace euclidien et soient a et b deux vecteurs indépendants. On pose $u: x \in E \mapsto (a|x)b + (b|x)a$.

- 1. Montrer que u est un endomorphisme symétrique.
- 2. Trouver le noyau de u.
- 3. Trouver le valeurs propres et les vecteurs propres de u.

Exercice 35 (Mines) Déterminer l'ensemble des couples (a,b) de \mathbb{R}^2 tels qu'existe $M \in S_2(\mathbb{R})$ vérifiant Tr(M) = a et $\det(M) = b$.

Exercice 36 (CCINP) Soient $(u_j)_{1 \leq j \leq p}$ des endomorphismes symétriques tels que

$$\begin{cases} \sum_{j=1}^{p} \operatorname{rg}(u_{j}) = \dim E \\ \forall x \in E, \ \sum_{j=1}^{p} \langle u_{j}(x) | x \rangle = \langle x | x \rangle \end{cases}$$

- 1. Montrer que $\sum_{j=1}^{p} u_j = \operatorname{Id}_E$.
- 2. Montrer que $\bigoplus_{j=1}^{p} \operatorname{Im} u_j = E$.
- 3. Montrer que cette somme est orthogonale.
- 4. Reconaître les u_i .

Exercice 37 (CCINP-Mines) *

- 1. Montrer que si A est une matrice réelle, AA^T et A^TA sont diagonalisables.
- 2. (Mines) Montrer quen AA^T et A^TA ont le même polynôme caractéristique.
- 3. (CCINP) Soient $(M, N) \in \mathcal{M}_n(\mathbb{R})^2$. Montrer que MN et NM ont les mêmes valeurs propres et que les sousespaces propres associés à une même valeur propre non nulle, ont même dimension (on n'utilisera pas le polynôme caractéristique). Montrer que AA^T et A^TA ont les mêmes valeurs propres aux mêmes ordres.
- 4. Montrer que AA^T et A^TA sont orthogonalement semblables (il existe U orthogonale telle que $AA^T = U A^TA U^T$).

Exercice 38 (Mines)

- 1. Soit $U \in \mathcal{M}_n(\mathbb{R})$. Montrer qu'il existe une matrice V orthogonalement semblable à U telle que tVV soit diagonale.
- 2. Soient E un espace euclidien et $u \in \mathcal{L}(E)$. Montrer qu'il existe une base orthonormée (e_1, \ldots, e_n) de E telle que $(u(e_1), \ldots, u(e_n))$ soit orthogonale.

Exercice 39 (Centrale)

- 1. Soit $M \in \mathfrak{M}_n(\mathbb{C})$. Montrer que $\mathrm{Sp}(M) \subset \{0\}$ si et seulement si M est nilpotente. Est-ce toujours vrai pour $M \in \mathfrak{M}_n(\mathbb{R})$?
- 2. Soit V un sous-espace vectoriel regroupant des matrices de $\mathfrak{M}_n(\mathbb{R})$ dont le spectre est inclus dans $\{0\}$. Montrer que $\dim(V) \leqslant \frac{n(n-1)}{2}$.

Cette majoration est-elle optimale?

Exercice 40 (CCINP) * Soit $A \in \mathcal{S}_n(\mathbb{R})$. On note $\lambda_1, \dots \lambda_n$ les valeurs propres de A (avec multiplicités). Montrer que $\sum_{j=1}^n \sum_{i=1}^n a_{i,j}^2 = \sum_{k=1}^n \lambda_k^2$.

Exercice 41 (Mines) Soit $A \in \mathcal{S}_n(\mathbb{R})$ semblable à son inverse. Montrer que $\text{Tr}(A^2) \ge n$ et qu'il y a égalité si et seulement si A est une symétrie orthogonale.

Exercice 42 (X-Mines-ENS) * Soit $A \in S_n^+(\mathbb{R})$, de coefficients a_{ij} .

- 1. Montrer que $det(A) \ge 0$ et que pour tout $i, a_{i,i} \ge 0$.
- 2. Montrer que det $A \ge 0$ et det $A \le \prod_{i=1}^{n} a_{ii}$.
- 3. On suppose que $A \in S_n^{++}(\mathbb{R})$. Étudier le cas d'égalité dans l'inégalité précédente.
- 4. Soit $M \in \mathcal{M}_n(\mathbb{R})$. Montrer que $(\det M)^2 \leqslant \prod_{j=1}^n (\sum_{i=1}^n m_{i,j}^2)$. On suppose M inversible. Étudier le cas d'égalité.

Exercice 43 (Mines) Soient $n \in \mathbb{N}^*$, $A \in \mathcal{M}_n(\mathbb{R})$.

- 1. Montrer que si A s'écrit ST avec $S \in S_n^{++}(\mathbb{R})$ et $T \in S_n(\mathbb{R})$, A est diagonalisable.
- 2. Montrer que A est diagonalisable si et seulement s'il existe $S \in S_n^{++}(\mathbb{R})$ telle que ${}^tA = SAS^{-1}$.

Exercice 44 (ENS-X) * Soit $n \in \mathbb{N}^*$.

1. * Soient A et B dans $S_n(\mathbb{R})$ de valeurs propres respectives $a_1 \ge a_2 \ge \cdots \ge a_n$ et $b_1 \ge b_2 \ge \cdots \ge b_n$. Montrer que $Tr(AB) \le a_1b_1 + \cdots + a_nb_n$.

5

2. (ENS) Soient A et B dans $\mathcal{M}_n(\mathbb{R})$, $\lambda_1 \leqslant \cdots \leqslant \lambda_n$ (resp. $\mu_1 \leqslant \cdots \leqslant \mu_n$) les racines carrées des valeurs propres de tAA (resp tBB) comptées avec multiplicités. Montrer $|\operatorname{Tr}(AB)| \leqslant \sum_{i=1}^n \lambda_i \mu_i$.

Exercice 45 (X-Centrale) * Soit E un espace vectoriel euclidien. On considère p et q deux projecteurs orthogonaux.

- 1. Montrer que $p \circ q \circ p$ est diagonalisable.
- 2. Montrer que $(\operatorname{Im} p + \ker q)^{\perp} = \operatorname{Im} q \cap \ker p$ et que $E = \operatorname{Im}(p) + \operatorname{Ker}(q) + \operatorname{Im}(q) \cap \operatorname{Ker}(p)$.
- 3. En déduire que $p \circ q$ est diagonalisable.

Exercice 46 (X-Centrale) *

- 1. Soient (E, \langle , \rangle) un espace euclidien, p et q des projecteurs orthogonaux, $x \in E$ tel que p(x) = -q(x). Montrer que p(x) = q(x) = 0.
- 2. Soient f et g deux endomorphismes symétriques positifs de E tels que $\det(f+g)=0$. Montrer que $\ker f \cap \ker g \neq \{0\}$.

Exercice 47 (X) Soient (E, \langle , \rangle) un espace euclidien, p et q dans $\mathcal{L}(E)$ des projecteurs orthogonaux.

- 1. Montrer que $p \circ q$ est un projecteur orthogonal si et seulement si p et q commutent.
- 2. Montrer que ces conditions sont satisfaites si et seulement si les valeurs propres de p+q sont contenues dans $\{0\} \cup [1, +\infty[$.

Exercice 48 (Mines) Soient $(\alpha_1, \ldots, \alpha_n) \in \mathbb{R}^n$ et $A = (\min\{i, j\} \alpha_i \alpha_j)_{1 \leq i, j \leq n} \in \mathcal{M}_n(\mathbb{R})$. Soit $\phi : (X, Y) \in (\mathbb{R}^n)^2 \mapsto {}^t XAY$. Donner une condition nécessaire et suffisante pour que ϕ soit un produit scalaire.

Exercice 49 (X) Soit $A \in \mathcal{S}_n(\mathbb{R})$. On dit que A est définie positive lorsque ${}^tXAX > 0$ pour tout $X \in \mathbb{R}^n \setminus \{0\}$.

- 1. * Soit $A \in \mathcal{S}_n(\mathbb{R})$ définie positive. Montrer que la sous-matrice $A_k = (a_{i,j})_{1 \leq i,j \leq k}$ est définie positive et que son déterminant D_k est strictement positif.
- 2. * On suppose que $D_k>0$ pour tout $k\in [\![1,n]\!]$. Montrer que A est définie positive.
- 3. Soit $t \in]0,1[$. Montrer que $A(t) = (t^{|i-j|})_{1 \le i,j \le n}$ est définie positive.
- 4. Montrer que $B = \left(\frac{1}{1+|i-j|}\right)_{1 \le i,j \le n}$ est définie positive.

Exercice 50 (Ulm-Centrale) * Pour A et B dans $S_n(\mathbb{R})$, on note $B \leq A$ si et seulement si $A - B \in S_n^+(\mathbb{R})$.

- 1. Montrer que $A \leq B$ si et seulement si $\forall X \in \mathbb{R}^n$, ${}^tXAX \leq {}^tXBX$, et que \leq , définie sur $S_n(\mathbb{R})$ par est une relation d'ordre sur $S_n(\mathbb{R})$..
- 2. Montrer qu'une partie de $S_n(\mathbb{R})$ est bornée (pour une norme quelconque), si et seulement si elle est majorée et minorée au sens de \leq .
- 3. Pour $A \in S_n(\mathbb{R})$, montrer que $X(A) = \{S \in S_n(\mathbb{R}), A \leq S\}$ et $Y(A) = \{S \in S_n(\mathbb{R}), S \leq A\}$ sont convexes et fermées.
- 4. Que dire de $Z(A, B) = \{S \in S_n(\mathbb{R}), A \leq S \leq B\}$?
- 5. Montrer qu'une suite croissante et majorée au sens de \leq , converge.
- 6. Soit $(A, B) \in \mathcal{S}_n^{++}(\mathbb{R})^2$ tel que $A \leq B$. Montrer que det $A \leq \det B$.

Exercice 51 (X) Soient $a \in \mathbb{R}^{+*}$, E l'ensemble des fonctions f de classe C^2 de \mathbb{R}^+ dans \mathbb{R} telles que $f^2 + a(f')^2$ soit intégrable sur \mathbb{R}^+ .

- 1. Montrer que E est un sous-espace vectoriel de $C^2(\mathbb{R}^+,\mathbb{R})$.
- 2. Montrer que, pour tout $v \in \mathbb{R}$, il existe $f \in E$ tel que f(0) = v.
- 3. Soit $v \in \mathbb{R}$. Déterminer inf $\left\{ \int_0^{+\infty} (f^2 + a(f')^2) ; f \in E, f(0) = v \right\}$.
- 4. Pour $A, B \in \mathcal{S}_n(\mathbb{R})$, on pose : $A \leq B \Leftrightarrow B A \in \mathcal{S}_n^+(\mathbb{R})$. On note d'autre part \sqrt{A} l'unique racine carrée dans $\mathcal{S}_n^+(\mathbb{R})$ d'une matrice $A \in \mathcal{S}_n^+(\mathbb{R})$.

Soient $A, B \in \mathcal{S}_n^+(\mathbb{R})$ telles que $A \leq B$. Montrer à l'aide des questions précédentes que $\sqrt{A} \leq \sqrt{B}$.

Exercice 52 (Mines) Soit
$$M = \left(\frac{1}{i+j+1}\right)_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R}).$$

- 1. Montrer que M est diagonalisable, puis que M appartient à $\mathcal{S}_n^{++}(\mathbb{R})$.
- 2. On note $\lambda_1 \leqslant \cdots \leqslant \lambda_n$ le spectre ordonné de M. Montrer que, pour tout $X \in \mathbb{R}^n$, $\lambda_1^t XX \leqslant t^t XMX \leqslant \lambda_n^t XX$.

Exercice 53 (X) * Soient $n \in \mathbb{N}^*$ et $M \in S_n(\mathbb{R})$. On note $\lambda_1(M) \ge \cdots \ge \lambda_n(M)$ la suite ordonnée des valeurs propres de M. Soient A et B dans $S_n(\mathbb{R})$.

- 1. Montrer que $\lambda_1(A+B) \leq \lambda_1(A) + \lambda_1(B)$.
- 2. Montrer que, pour tout $k \in \{1, \dots, n\}$, $\sum_{i=1}^k \lambda_i(A+B) \leqslant \sum_{i=1}^k \lambda_i(A) + \sum_{i=1}^k \lambda_i(B)$.

Exercice 54 (PLSR) * Soit $A \in \mathcal{S}_n(\mathbb{R})$. On note $\lambda_1 \leqslant \cdots \leqslant \lambda_n$ les valeurs propres de A non nécessairement distinctes. Montrer que

$$\forall k \in [[1, n]], \qquad \sum_{i=1}^{k} \lambda_i \leqslant \sum_{i=1}^{k} a_{i,i} \leqslant \sum_{i=1}^{k} \lambda_{n+1-i}.$$

Exercice 55 (Lyon) * Soit $M \in \mathcal{S}_n(\mathbb{R})$. On note $\lambda_1 \leqslant \cdots \leqslant \lambda_n$ les valeurs propres de M (avec multiplicités) et $\lambda'_1 \leqslant \cdots \leqslant \lambda'_n$ celles de M', la matrice obtenue à partir de M en enlevant la première ligne et la première colonne. Montrer que $\lambda_1 \leqslant \lambda'_1 \leqslant \lambda_2 \leqslant \lambda'_2 \leqslant \cdots \leqslant \lambda_{n-1} \leqslant \lambda'_{n-1} \leqslant \lambda_n$.

W

Exercice 56 (X) On appelle état de $\mathcal{S}_n(\mathbb{R})$ toute matrice de $\mathcal{S}_n(\mathbb{R})$ de trace 1, à valeurs propres dans \mathbb{R}^+ .

- 1. Caractériser les états S tels que $S^2 = S$. On les appelle les états purs.
- 2. Montrer que l'ensemble des états est une partie convexe de $\mathcal{S}_n(\mathbb{R})$.
- 3. Montrer que les points extrémaux de l'ensemble des états sont les états purs (un état est dit extrémal lorsqu'il ne peut s'exprimer comme barycentre à coefficients strictement positifs de deux états distincts).

Exercice 57 (Mines-Lyon) *

- 1. Soient A et B dans $\mathcal{S}_n^{++}(\mathbb{R})$. Montrer que AB est diagonalisable à spectre inclus dans \mathbb{R}^{+*} .
- 2. Montrer que $\operatorname{Sp}(AB) \subset [a_1b_1, a_nb_n]$ où $a_1 = \min \operatorname{Sp}(A)$ et $a_n = \max \operatorname{Sp}(A)$ (et de même pour B).
- 3. Soient A, B, C dans $\mathcal{S}_n^{++}(\mathbb{R})$. On suppose que ABC est symétrique. Montrer que le spectre de ABC est inclus dans \mathbb{R}^{+*} .

Exercice 58 (X) Soient $A \in \mathcal{M}_n(\mathbb{R})$ et $\lambda \in \mathbb{R}$. Montrer que $\lambda I_n - {}^t A A \in \mathcal{S}_n^+(\mathbb{R})$ si et seulement si $\lambda I_n - A^t A \in \mathcal{S}_n^+(\mathbb{R})$.

Exercice 59 (X) Soit $V \in \mathcal{M}_{m,n}(\mathbb{R})$ avec m > n telle que ${}^tVV = I_n$. Montrer que $I_m - V^tV$ est symétrique positive.

Exercice 60 (CCINP-Mines) *

- 1. Soit $A \in \mathcal{S}_n^+(\mathbb{R})$. Montrer que $(\det A)^{\frac{1}{n}} \leq \frac{1}{n} \operatorname{Tr}(A)$. item Soit $B \in S_n^{++}(\mathbb{R})$, de déterminant égal à 1; montrer que $\operatorname{Tr}(AB) \geq n(\det A)^{1/n}$.
- 2. (Mines) Soit $(A, B) \in \mathcal{S}_n^+(\mathbb{R})^2$. Montrer que $(\det AB)^{\frac{1}{n}} \leqslant \frac{1}{n} \mathrm{Tr}(AB)$.

Exercice 61 (X-Ulm) *Soient A et B dans $\mathcal{S}_n^+(\mathbb{R})$, α et β dans \mathbb{R}^+ tels que $\alpha + \beta = 1$.

- 1. Montrer que si A est définie positive alors il existe $P \in GL_n(\mathbb{R})$, $D \in \mathcal{M}_n(\mathbb{R})$ diagonale telles que $A = {}^t PPP$ et $B = {}^t PDP$.
- 2. Montrer que $\det(\alpha A + \beta B) \ge (\det A)^{\alpha} (\det B)^{\beta}$.
- 3. Montrer que $(\det(I_n + A))^{1/n} \ge 1 + (\det A)^{1/n}$.
- 4. Montrer que $(\det(A+B))^{1/n} \ge (\det A)^{1/n} + (\det B)^{1/n}$.

Exercice 62 (Lyon)

- 1. Soient $A, B \in \mathcal{S}_n^{++}(\mathbb{R})$. Montrer que $\operatorname{Tr}(I_n A^{-1}B) \leq \ln\left(\frac{\det(A)}{\det(B)}\right)$.
- 2. Soient $\lambda > 0$ et $(U_i)_{i \in \mathbb{N}^*}$ une suite de vecteurs de \mathbb{R}^n . On définit une suite de matrices : $B_m = \lambda I_n + \sum_{i=1}^m U_i U_i^{\top}$. Montrer que $B_m \in \mathcal{S}_n^{++}(\mathbb{R})$.
- 3. On note $\lambda_1, \ldots, \lambda_n$ les valeurs propres de B_m . Montrer que $\sum_{i=1}^m U_i^\top B_m^{-1} U_i \leqslant \sum_{j=1}^n \ln\left(1 + \frac{\lambda_i}{\lambda}\right)$.

Exercice 63 (Ulm) Soit $A = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{R})$. On suppose que, pour tout $i, a_{i,i} = 1$ et que, pour tous $i \ne j$, $|a_{i,j}| \le 1/\sqrt{n}$. Montrer que le rang de A est supérieur ou égal à n/4. Ind: On pourra démontrer que pour une matrice symétrique non nulle $\operatorname{rg}(A) \ge \frac{\operatorname{Tr}(S)^2}{\operatorname{Tr}(S^2)}$.

Exercice 64 (X) Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer qu'il existe $(T, O) \in T_n(\mathbb{R}) \times \mathcal{O}_n(\mathbb{R})$ tel que A = TO, où $T_n(\mathbb{R})$ désigne l'ensemble des matrices triangulaires supérieures de $\mathcal{M}_n(\mathbb{R})$.

Exercice 65 (X) Soit $T \in \mathcal{M}_n(\mathbb{R})$.

- 1. Montrer qu'il existe une unique matrice dans $\mathcal{S}_n^+(\mathbb{R})$, notée |T|, telle que $|T|^2={}^tTT$.
- 2. Montrer que $\ker T = \ker |T|$.
- 3. Montrer qu'il existe une unique U dans $\mathcal{M}_n(\mathbb{R})$ telle que U réalise une isométrie vectorielle de $\operatorname{Im}|T|$ dans $\operatorname{Im}T$, U est nulle sur $\ker T$ et T = U|T|.

Exercice 66 (SR) * Soit $A \in \mathcal{M}_{n,p}(\mathbb{R})$.

- 1. Rappeler que AA^T est diagonalisable à valeurs propres positives. On note S(A) la suite décroissante des racines carrées des valeurs propres non nulles de AA^T (avec multiplicité).
- 2. Comparer S(A) et $S(A^T)$.
- 3. Montrer qu'il existe U dans $\mathcal{O}_n(\mathbb{R})$ et V dans $\mathcal{O}_p(\mathbb{R})$ telles que $U^TAV = R = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix}$, avec $D = \operatorname{diag}(\sigma_1, \dots, \sigma_r)$, avec $S(A) = (\sigma_1, \dots, \sigma_r)$.
- 4. On considère $A^* = VR^*U^T$, avec $R^* = \begin{pmatrix} D^{-1} & 0 \\ 0 & 0 \end{pmatrix} \in \mathcal{M}_{p,n}(\mathbb{R})$.
 - (a) Que dire si A est carrée inversible?
 - (b) Sinon que dire de AA^* ?
 - (c) Et que dire de A^*A ?

Exercice 67 (U) Soient $A, B \in \mathcal{M}_n(\mathbb{R})$. On suppose qu'il $U \in \mathcal{M}_n(\mathbb{C})$ telle que $U^*U = I_n$ et $A = U^*BU$. Montrer qu'il existe $O \in O_n(\mathbb{R})$ telle que $A = O^TBO$.

Exercice 68 (L) Pour $M \in \mathcal{S}_n(R)$, on note $\lambda_1(M) \leq \ldots \lambda_n(M)$ le spectre ordonné de M.

- 1. On considère $A, B \in \mathcal{S}_n(R)$ telles que $A + B \in \mathcal{S}_n^{--}(R)$. Montrer que si i + j < n + 2 alors $\lambda_i(A) + \lambda_j(B) < 0$.
- 2. Généraliser à $A_1, \ldots A_d \in \mathcal{S}_n(R)$ telles que $\sum_{i=1}^d A_i \in \mathcal{S}_n^{--}(R)$.

Exercice 69 (ULSR)

- 1. Soit $a \in \mathbb{R}$. On pose $M = \begin{pmatrix} 1 & a \\ a & 1 \end{pmatrix}$. À quelle CNS sur a, a-t-on $M \in S_n^+(\mathbb{R})$?
- 2. Soit $(a, b, c) \in [-1, 1]^3$ tel que $1 + 2abc \ge a^2 + b^2 + c^2$. Montrer que pour tout $n \in \mathbb{N}^*$, $1 + 2(abc)^n \ge a^{2n} + b^{2n} + c^{2n}$.

Autour des matrices de covariance

Exercice 70 (Ulm) Soit $X: \Omega \to \mathbb{R}^d$ un vecteur aléatoire sur un certain espace probabilisé, de composantes notées X_1, \ldots, X_d ayant toutes un moment d'ordre 2. On note $\text{Cov}(X) = \left(\text{Cov}(X_i, X_j)\right)_{1 \le i, j \le d}$

- 1. Montrer que Cov(X) est symétrique à valeurs propres positives.
- 2. Réciproquement, montrer que toute matrice symétrique à valeurs propres positives est la matrice de covariance d'un certain vecteur aléatoire.
- 3. Montrer que si det Cov(X) = 0 alors il existe un hyperplan affine \mathcal{H} de \mathbb{R}^d tel que $(X \in \mathcal{H})$ soit presque sûr.
- 4. On suppose que X possède un moment d'ordre 4. Soit $(X^{(i)})_{i\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes suivante toute la loi de X. Pour $n\in\mathbb{N}^*$, on pose $M_n=\frac{1}{n}\sum_{i=1}^n X^{(i)}$. Montrer que la suite de terme général

$$Y_n = \frac{1}{n} \sum_{i=1}^n (X^{(i)} - M_n)(X^{(i)} - M_n)^T$$
 de matrices aléatoires converge en probabilité vers $Cov(X)$ (c'est-à-dire que, pour une norme arbitraire N sur $\mathcal{M}_d(\mathbb{R})$, pour tout $\epsilon > 0$, la suite de terme général $\mathbb{P}(N(Y_n - Cov(X))) > \epsilon$ converge vers 0).

Exercice 71 (X) Soit $X = (X_1, ..., X_n)$ un vecteur aléatoire réel. On note M la matrice des covariances des X_i c'est-à-dire $(\text{Cov}(X_i, X_j))_{1 \le i,j \le n}$.

1. Montrer que M est diagonalisable et que ses valeurs propres sont positives.

- 2. Soient $\lambda_1 \ge \cdots \ge \lambda_n$ les valeurs propres rangées dans l'ordre décroissant de M et (u_1, \ldots, u_n) une base orthonormée de vecteurs propres associés.
 - Montrer que $\mathbf{V}(\langle u_1, X \rangle) = \lambda_1$ est la borne supérieure sur les vecteurs v unitaires de $\mathbf{V}(\langle v, X \rangle)$.
- 3. Montrer que $\mathbf{V}(\langle u_k, X \rangle) = \lambda_k$ est la borne supérieure sur les v unitaires de $\mathbf{V}(\langle v, X \rangle)$ avec l'hypothèse que $\langle v, X \rangle$ est non corrélé avec $(\langle u_1, X \rangle, \dots, \langle u_{k-1}, X \rangle)$.

Exercice 72 (ENS) Une matrice symétrique $S \in \mathcal{S}_n(\mathbb{R})$ est dite positive lorsque $\forall Y \in \mathbb{R}^n$, ${}^tYSY \ge 0$.

- 1. Soit $S \in \mathcal{S}_n(\mathbb{R})$. Montrer que S est positive si et seulement s'il existe, sur un certain espace probabilisé, une famille (X_1, \ldots, X_n) de variables aléatoires réelles bornées telles que $s_{i,j} = \mathbb{E}(X_i X_j)$ pour tout $(i,j) \in [\![1,n]\!]^2$.
- 2. Soient A et B dans $S_n(\mathbb{R})$ positives. Montrer que $(a_{i,j}b_{i,j})_{1 \leq i,j \leq n}$ est positive.

Exercice 73 (Paris) Pour $n \in \mathbb{N}^*$, soit $(X_{i,j}^n)_{1 \le i \le j \le n}$ une famille i.i.d. de variables aléatoires vérifiant $\forall \lambda \in \mathbb{R}$, $E(e^{\lambda X_{i,j}^n}) \le e^{\lambda^2}$. Soit $M^n = (M_{i,j}^n)_{1 \le i,j \le n}$ la matrice aléatoire symétrique telle que, si $1 \le i \le j \le n$, $M_{i,j}^n = X_{i,j}^n$.

1. On munit \mathbb{R}^n de sa structure euclidienne canonique. Soit v un vecteur unitaire de \mathbb{R}^n . Montrer que, pour $n \in \mathbb{N}^*$ et $\alpha \in \mathbb{R}^{+*}$,

$$\mathbb{P}\left(\langle M^n v, v \rangle \geqslant \alpha \sqrt{n}\right) \leqslant \sqrt{n} \, e^{-n\alpha^2/8}$$

2. En déduire une majoration avec grande probabilité, lorsque n est grand, de la plus grande valeur propre de M^n .

Divers : endomorphismes antisymétriques...

Exercice 74 (Mines) Soient A antisymétrique et $L \in \mathcal{M}_n(\mathbb{R})$ telles que $\lim_{r \to +\infty} A^r = L$. Montrer que L = 0.

Exercice 75 (ENS-Mines) Soit A une matrice antisymétrique réelle. Montrer que toutes les valeurs propres de A sont imaginaires pures et que A est diagonalisable sur \mathbb{C} .

Exercice 76 (X) Soient $A \in \mathcal{S}_n^{++}(\mathbb{R})$ et $B \in \mathcal{A}_n(\mathbb{R})$. Montrer que AB est diagonalisable dans $\mathcal{M}_n(\mathbb{C})$.

Exercice 77 (X) Soit $A \in \mathcal{M}_n(\mathbb{R})$ tel que $\forall (X,Y) \in (\mathbb{R}^n)^2$, ${}^tXAY = 0 \Rightarrow {}^tYAX = 0$. Montrer que A est symétrique ou antisymétrique.

Exercice 78 (CCINP) Soit u un endomorphisme orthogonal de E euclidien.

- 1. On pose v = u Id; montrer que $\ker v = (\operatorname{Im} v)^{\perp}$.
- 2. Montrer que la suite de terme général $u_n(x) = \frac{1}{n} \sum_{k=0}^n u^k(x)$ converge vers la projection orthogonale de x sur ker v.

Exercice 79 (Mines) * Soient E un espace euclidien, $f \in \mathcal{L}(E)$ tel que $\forall x \in E, ||f(x)|| \leq ||x||$.

- 1. Pour tout $z \in E$, montrer que $||z|| = \sup_{y \in S(0,1)} \langle z|y \rangle$.
- 2. Soit $u \in \mathcal{L}(E)$ de norme subordonnée ||u||. Montrer que $||u|| = \sup\{\langle u(x)|y\rangle, (x,y) \in E^2, ||x|| = 1, ||y|| = 1\}$.
- 3. En déduire que $||u|| = ||u^*||$.
- 4. Montrer que, si f(x) = x, alors $f^*(x) = x$
- 5. Montrer que $E = \ker(f \operatorname{Id}) \oplus \operatorname{Im}(f \operatorname{Id})$.
- 6. Étudier la limite quand n tend vers l'infini de $v_n = \frac{1}{n} \sum_{k=0}^{n-1} f^k$.

Exercice 80 (X-Mines-SR) * Soient $n \in \mathbb{N}^*$. On pose $SO_n^*(\mathbb{R}) = \{M \in SO_n(\mathbb{R}), -1 \notin Sp(M)\}$.

- 1. Montrer que pour tout $A \in \mathcal{A}_n(\mathbb{R}), -1 \notin \operatorname{Sp}(A)$.
- 2. On définit $E = \{M \in \mathcal{M}_n(\mathbb{R}), -1 \notin \operatorname{Sp}(M)\}$. On considère $f : A \in E \mapsto (A + I_n)^{-1}(I_n A)$. Montrer que pour tout $A \in \mathcal{A}_n(\mathbb{R}), f(A) \in \operatorname{SO}_n^*(\mathbb{R})$.
- 3. Montrer que pour tout $S \in SO_n^*(\mathbb{R}), f(A) \in \mathcal{A}_n(\mathbb{R}).$
- 4. Montrer que f(f(A)) = A.
- 5. Pour tout $x \in \mathbb{R}$, on définit $M_x = \begin{pmatrix} 0 & -x \\ x & 0 \end{pmatrix}$. Calculer $f\left(M_{\tan\left(\frac{\theta}{2}\right)}\right)$ pour $\theta \in]-\pi,\pi[$.
- 6. En déduire que pour tout $A \in \mathcal{A}_{2n}(\mathbb{R})$, il $P \in O_{2n}(\mathbb{R})$ et $x_1, \ldots x_n$ tels que pour $P^{-1}AP$ est la matrice diagonale par blocs constituée des blocs $M_{x_1}, \ldots M_{x_n}$.

Exercice 81 (X) * Soit $A \in GL_{2n}(\mathbb{R})$ antisymétrique. Montrer que A est orthogonalement semblable à une matrice diagonale par blocs 2×2 , où chaque bloc est antisymétrique inversible.

Exercice 82 (ULSR) On considère $\phi: (\mathbb{R}^4)^2 \to \mathcal{M}_4(\mathbb{R})$ qui à (u, v) associe la matrice dont le cœfficient en (i, j) vaut $\begin{vmatrix} u_i & v_i \\ u_i & v_j \end{vmatrix}$.

- 1. Que peut-on dire si $\phi(u,v) = \phi(u',v') \neq 0$?
- 2. Que dire de la réciproque?
- 3. Montrer que A s'écrit comme $\phi(u,v)$ avec (u,v) libre $ssi\ A\in\mathcal{A}_n(\mathbb{R}),\ det(A)=0$ et $A\neq 0$.
- 4. Décrire l'image et le noyau d'une telle matrice.

Exercice 83 (ULSR) Sur $\mathcal{A}_4(\mathbb{R})$, on appelle Pfaffien l'application $Pf: A = (a_{i,j}) \in \mathcal{A}_4(\mathbb{R}) \mapsto a_{1,2}a_{3,4} - a_{1,3}a_{2,4} + a_{2,3}a_{1,4}$.

- 1. Montrer que : $\forall A \in \mathcal{A}_4(\mathbb{R}), Pf(A)^2 = \det(A)$.
- 2. On admet que $GL_n^+(\mathbb{R})$ est connexe par arcs. Montrer que : $\forall A \in \mathcal{A}_4(\mathbb{R}), \forall B \in \mathcal{M}_n(\mathbb{R}), Pf(B^TAB) = \det(B)Pf(A)$.
- 3. Montrer que si $R \in SO_4(\mathbb{R})$ et $A = R^T R$ alors :

$$A \in GL_4(\mathbb{R}) \Leftrightarrow \operatorname{Sp}(R) \cap R = \emptyset \Leftrightarrow Pf(A) \neq 0.$$

4. On considère $R_1, R_2 \in SO_4(\mathbb{R})$ et on pose $A_i = R_i^T - R_i$. On suppose $\chi_{R_1} = \chi_{R_2}$ et $Pf(A_1) = Pf(A_2)$. Montrer qu'il existe $P \in SO_4(\mathbb{R})$ tel que $R_1 = PR_2P^{\top}$.

Exercice 84 (L) Soit $n \in \mathbb{N}^*$.

- 1. Montrer que $(X,Y) \mapsto \langle X,Y \rangle = \text{Tr}(X^TY)$ définit un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$. On note $\|\cdot\|_{\text{Tr}}$ la norme associée.
- 2. Soit $M \in \mathcal{M}_n(\mathbb{R})$. Montrer que

$$L \colon \begin{cases} \mathcal{M}_n(\mathbb{R}) & \to \mathcal{L}(\mathcal{M}_n(\mathbb{R})) \\ M & \mapsto (X \mapsto MX) \end{cases}$$

est un morphisme d'algèbre injectif.

3. On note $\|\|\cdot\|_{\operatorname{Tr}}$ la norme triple associée à $\|\cdot\|_{\operatorname{Tr}}$. Si $M \in \mathcal{M}_n(\mathbb{R})$, montrer que $\|L(M)\|_{\operatorname{Tr}} \leq \|M\|_2$ (norme subordonnée à la norme 2 sur \mathbb{R}^n).

Exercice 85 (ENS) On note $A = \{u \in \mathcal{L}(E), uu^*u = u\}.$

- 1. Montrer les équivalences entre : $(u \in A)$ et $(u^*u$ est un projecteur orthogonal).
- 2. Montrer que c'est également équivalent à $((\ker u)^{\perp} = \{x \in E, ||x|| = ||u(x)||\}.$
- 3. Montrer que le groupe orthogonal est un ouvert et un fermé de A (on pourra d'abord vérifier qu'il est inclus dans A).