A. Produit scalaire de matrices

(1) Soit $(e_1, e_2, ..., e_n)$ une base orthonormée. La *i*-ième composante d'un vecteur x de \mathbb{R}^n dans est donnée par $\langle x, e_i \rangle$.

En particulier, $\langle Ae_i, e_i \rangle$ représente la *i*-ième composante du vecteur Ae_i , où u_A désigne l'endomorphisme de \mathbb{R}^n canoniquement associé à A.

Par suite, $\sum_{i=1}^{n} \langle Ae_i, e_i \rangle$ est la somme des éléments diagonaux de la

matrice de u_A dans la base (e_1, e_2, \ldots, e_n) ; il s'agit de la trace de u_A , et donc de la trace Tr(A).

(2) Soient A et B deux matrices symétriques réelles positives. Par le théorème spectral, on peut considérer $(e_1,...,e_n)$ une base orthonormée de vecteurs propres de B: pour tout $1 \le i \le n$, $Be_i = \lambda_i e_i$ (avec les $\lambda_i \ge 0$).

D'après la question A1

$$(A|B) = \operatorname{Tr}({}^{t}AB) = \sum_{i=1}^{n} \langle {}^{t}ABe_i, e_i \rangle = \sum_{i=1}^{n} \lambda_i \langle {}^{t}Ae_i, e_i \rangle$$
$$= \sum_{i=1}^{n} \lambda_i {}^{t}e_i Ae_i.$$

Comme pour tout $1 \le i \le n$, $\lambda_i \ge 0$ et ${}^te_iAe_i \ge 0$, on peut conclure que $(A|B) \ge 0$.

B. Décomposition polaire

(1) On constate immédiatement que ${}^{t}({}^{t}AA) = {}^{t}AA$. Puis, pour tout X, ${}^{t}X{}^{t}AAX = ||AX||^{2} \ge 0$, donc ${}^{t}AA$ est symétrique positive.

Soient $\lambda_1 \leq \ldots \leq \lambda_n$ les valeurs propres de tAA ; on introduit $(e_j)_{1 \leq j \leq n}$ une base orthonormée associée.

Tout vecteur $X \in \mathbb{R}^n$ se décompose sur cette base : $X = \sum_{i=1}^n x_i e_i$; on a

alors on a $||AX||^2 = {}^tX^tAAX = \sum_{i=1}^n \lambda_i x_i^2 \le \lambda_n ||X||^2$. On en déduit donc

$$||A||_2 \leq \sqrt{\lambda_n}$$
.

Or, il existe un cas d'égalité : $||Ae_n||^2 = {}^te_n{}^tAAe_n = \lambda_n$, et $||e_n|| = 1$. Finalement, $||A||_2^2$ est la plus grande valeur propre de tAA .

(2) Par le théorème spectral, on écrit ${}^tAA = PDP^{-1} = PD^tP$, où $P \in O_n(\mathbb{R})$, D diagonale, ses éléments étant positifs. On peut alors choisir une

matrice diagonale à éléments positifs, Δ , telle que $\Delta^2 = D$. On obtient alors ${}^tAA = B^2$, où $B = P\Delta P^{-1} = P\Delta^t P$. On vérifie immédiatement que B est une matrice symétrique, à spectre inclus dans \mathbb{R}_+ , donc positive. Soit h l'endomorphisme dont la matrice dans la base orthonormée e est B. On a bien que h est symétrique positif et $f^* \circ f = h^2$.

(3) Comme h est symétrique (vu en compléments du cours), $\ker(h) = (\operatorname{Im}(h))^{\perp}$. En effet, soit $(x,y) \in \ker(h) \times \operatorname{Im}(h)$; on écrit y = h(z) et

$$\langle y, x \rangle = \langle h(z), x \rangle = \langle z, h(x) \rangle = 0.$$

On a donc une inclusion $\ker(h) \subset (\operatorname{Im}(h))^{\perp}$, et par égalité des dimensions, on a bien $\ker(h) = (\operatorname{Im}(h))^{\perp}$.

Ainsi $\operatorname{Im}(h)$ est un supplémentaire du noyau $\ker(h)$ et on sait donc que la restriction de h à $\operatorname{Im}(h)$ induit un isomorphisme de $\operatorname{Im}(h)$ sur lui-même, et donc un automorphisme de $\operatorname{Im}(h)$. On notera cet automorphisme \widetilde{h} .

(4) Pour tout $x \in E$,

$$||f(x)||^2 = \langle f^* \circ f(x), x \rangle = \langle h^2(x), x \rangle = \langle h^* \circ h(x), x \rangle = ||h(x)||^2.$$

On en déduit en particulier que $\ker h = \ker f$, d'où dim $\ker h = \dim \ker f = \dim (\operatorname{Im} f)^{\perp}$. Ainsi, on peut choisir une application linéaire v envoyant une base orthonormée de $\ker h$ sur une base orthonormée de $(\operatorname{Im} f)^{\perp}$; elle conserve alors la norme et réalise un isomorphisme de $\ker h$ sur $(\operatorname{Im} f)^{\perp}$.

(5) On a vu que $E = \ker(h) \stackrel{\perp}{\oplus} \operatorname{Im}(h)$ et $E = (\operatorname{Im}(f))^{\perp} \stackrel{\perp}{\oplus} \operatorname{Im}(f)$. Or, on a construit un isomorphisme v de $\ker h$ sur $(\operatorname{Im} f)^{\perp}$, qui préserve

la norme. Par ailleurs, \widetilde{h}^{-1} est un isomorphisme de $\operatorname{Im}(h)$ vers lui-même. Et comme $(\ker(f))^{\perp} = (\ker(h))^{\perp} = \operatorname{Im}(h)$, la restriction de f à $\operatorname{Im}(h)$ (supplémentaire du noyaux $\ker(f)$) réalise un isomorphisme de $\operatorname{Im}(h)$ vers $\operatorname{Im}(f)$. Ainsi $f \circ \widetilde{h}^{-1}$ est un isomorphisme de $\operatorname{Im}(h)$ vers $\operatorname{Im}(f)$. En posant u l'unique application linéaire qui coı̈ncide avec $f \circ \widetilde{h}^{-1}$ sur $\operatorname{Im}(h)$ et avec v sur $\ker(h)$, on obtient bien un isomorphisme de E.

On remarque que $f \circ \tilde{h}^{-1}$ conserve la norme : en effet, d'après la question B4, pour tout $x \in \text{Im}h$, $||f \circ \tilde{h}^{-1}(x)|| = ||h \circ \tilde{h}^{-1}(x)|| = ||x||$.

Or tout vecteur $x \in E$ se décompose en x = y + z avec $(y,z) \in \ker(h) \times \operatorname{Im}(h)$ et on a alors $u(x) = v(y) + f \circ \tilde{h}^{-1}(z)$. En utilisant le théorème de Pythagore et la conservation de la norme par v et $f \circ \tilde{h}^{-1}$, on obtient finalement que u préserve la norme ; il s'agit donc d'un automorphisme orthogonal.

Par ailleurs, pour tout $x \in \ker(h) = \ker(f)$, on a bien $f(x) = 0_E = u \circ h(x)$. Et pour tout $x \in \operatorname{Im}(h)$, $h(x) = \widetilde{h}(x)$ et donc $u \circ h(x) = f \circ \widetilde{h}^{-1} \circ \widetilde{h}(x) = f(x)$.

Ainsi les endomorphismes f et $u \circ h$ coïncident sur les sous-espaces supplémentaires ker h et $\mathrm{Im} h$, donc sont égaux.

(6) Il s'agit de l'interprétation matricielle du résultat de la question précédente : si f est l'endomorphisme canoniquement associé à A, la relation $f = u \circ h$ se traduit matriciellement par A = US, avec $U \in O_n(\mathbb{R})$ et S symétrique positive (puisque la base canonique est orthonormée pour le produit scalaire usuel).

On admet que si A est inversible, cette écriture est unique.

C. Projeté sur un convexe compact

(1) L'application $d_x: h \longmapsto ||x-h||$, est 1-lipschitzienne donc continue de E dans \mathbb{R} . Comme H est compact, d_x est bornée et atteint sa borne inférieure sur H d'après le théorème des bornes, d'où l'existence de $h_0 \in H$ tel que $d(x, H) = ||x - h_0||$.

On suppose l'existence de $h_1 \in H$, un autre élément de H tel que $d(x,H) = \|x-h_1\|$. La fonction $q:t\mapsto \|x-(1-t)h_0-th_1\|^2$ est polynomiale en $t:q(t)=at^2+2bt+c$ avec $a=\|h_1-h_0\|^2$, $b=< x-h_0, h_0-h_1>$, $c=\|x-h_0\|^2$. Si $h_1\neq h_0$, q est de degré 2 en t, de coefficient dominant strictement positif, et $q(0)=q(1)(=d^2(x,H))$. Mais alors, pour tout $t\in]0,1[$, on a q(t)< q(0)=q(1), ce qui est absurde, car $q(t)=\|x-k_t\|^2$ où $k_t=(1-t)h_0+th_1$ est un élément de H par convexité. Ainsi, h_0 est bien l'unique point où le minimum est atteint.

On pouvait également utiliser comme en TD-Cours le cas d'égalité dans l'inégalité triangulaire ou encore l'identité du parallélogramme :

$$\left\| x - \frac{1}{2}(h_0 + h_1) \right\|^2 = \frac{1}{2} \|x - h_0\|^2 + \frac{1}{2} \|x - h_1\|^2 - \frac{1}{4} \|h_0 - h_1\|^2$$

$$< \frac{1}{2} \|x - h_0\|^2 + \frac{1}{2} \|x - h_1\|^2 = (d(x, H))^2.$$

Comme H est convexe, $\frac{1}{2}(h_0 + h_1) \in H$, ce qui conduit à une contradiction avec la définition de la borne inférieure.

(2) On suppose que $h_0 \in H$ vérifie $d(x, H) = ||x - h_0||$. Pour tout $h_1 \in H$, on introduit la fonction q définie ci-dessus. On a vu que pour tout $t \in [0, 1]$, comme $k_t = (1 - t)h_0 + th_1 \in H$, on a $q(t) \ge d(x, H) = q(0)$. Or, pour tout $t \in [0, 1]$,

$$q(t) = \|x - h_0 + t(h_0 - h_1)\|^2$$

= $\|x - h_0\|^2 + 2t\langle x - h_0, h_0 - h_1 \rangle + t^2 \|h_0 - h_1\|^2$.

Ainsi pour tout $t \in [0,1]$, $2t\langle x-h_0,h_0-h_1\rangle+t^2\|h_0-h_1\|^2\geq 0$, soit (comme t>0) $2\langle x-h_0,h_0-h_1\rangle+t\|h_0-h_1\|^2\geq 0$. En faisant tendre t vers 0, on obtient $\langle x-h_0,h_0-h_1\rangle\geq 0$, ce qui fournit la condition demandée.

Réciproquement, on suppose que pour tout $h_1 \in H$, $\langle x - h_0, h_0 - h_1 \rangle \ge 0$,. Ainsi en considérant la fonction q associée à h_0 et h_1 , on obtient d'après l'expression ci-dessus que pour tout $t \in [0,1]$, $q(t) \ge \|x - h_0\|^2$. En particulier, $q(1) \ge \|x - h_0\|^2$, ce qui signifie que pour tout $h_1 \in H$, $\|x - h_1\| \ge \|x - h_0\|$ et h_0 est bien (l'unique) point de H tel que $d(x, H) = \|x - h_0\|$.

D. Théorème de Carathéodory et compacité

(1) Voir cours.

On souhaite montrer que l'enveloppe convexe conv(H) est constituée des combinaisons convexes d'au plus n+1 éléments de H.

Soit $x = \sum_{j=1}^{p} \lambda_j x_j$ une combinaison convexe de $x_1, \dots x_p \in H$, avec $p \ge n+2$.

(2) Comme $p \ge n+2$, la famille de vecteurs $(x_j-x_1)_{2\le j\le p}$ est liée. On peut donc trouver des réels non tous nuls $(\mu_i)_{2\le i\le p}$, tels que $\sum_{j=1}^p \mu_j(x_j-x_1)=$

0. En posant $\mu_1 = -\sum_{j=2}^p \mu_j$, on a bien p réels non tous nuls $(\mu_i)_{1 \le i \le p}$ tels que

$$\sum_{j=1}^{p} \mu_j x_j = 0 \text{ et } \sum_{j=1}^{p} \mu_j = 0.$$

(3) Comme $x = \sum_{j=1}^{p} \lambda_j x_j$ et que $\sum_{j=1}^{p} \mu_j x_j = 0$, pour tout $\theta \in \mathbb{R}$, $x = \sum_{j=1}^{p} (\lambda_j - \theta \mu_j) x_j$, avec $\sum_{j=1}^{p} (\lambda_j - \theta \mu_j) = 0$. Toutefois, on n'a pas nécessairement que

les $\lambda_i - \theta \mu_i \geq 0$. On cherche donc $\theta \in \mathbb{R}$ qui annule l'un des $\lambda_k - \theta \mu_k$ (pour n'avoir plus que p-1 points) et tel que les autres $\lambda_i - \theta \mu_i \geq 0$. Pour cela on considère $k \llbracket 1, p \rrbracket$ tel que

$$\frac{\lambda_k}{\mu_k} = \min \left\{ \frac{\lambda_i}{\mu_i}, \ i \in [1, p], \ \mu_i > 0 \right\}.$$

Cet ensemble est fini et non vide car comme $\sum_{j=1}^p \mu_j = 0$ et que les μ_j

sont non tous nuls, il existe au moins un $\mu_i > 0$.

Ainsi $\theta \in \mathbb{R}_+$. Par définition $\lambda_k - \theta \mu_k = 0$. Et pour tout $i \in [1, p]$, si $\mu_i \leq 0$, $\lambda_i - \theta \mu_i \geq \lambda_i \geq 0$, et si $\mu_i > 0$, $\lambda_i - \theta \mu_i \geq \lambda_i - \frac{\lambda_i}{\mu_i} \mu_i = 0$.

On a donc écrit x comme combinaison convexe d'au plus p-1 éméments de H. Si ce nombre d'éléments est encore supérieur ou égal à n+2, on peut recommencer le raisonnement et, par une itération finie, on se ramène à une combinaison convexe d'au plus n+1 éléments de H.

(4) Soit H est une partie compacte de E. On introduit $\Lambda = \left\{ (t_i)_{1 \leq i \leq n+1} \in \mathbb{R}^{n+1}_+, \sum_{i=1}^{n+1} t_i = 1 \right\}.$

L'application $S:(\lambda_1,\ldots,\lambda_{n+1})\in\mathbb{R}^{n+1}\mapsto\sum_{k=1}^{n+1}\lambda_k$ est continue car linéaire

Or $\Lambda = [0,1]^n \bigcap S^{-1}(\{1\})$. Comme l'image réciproque par une application continue d'un fermé est un fermé, Λ est un fermé dans le compact $[0,1]^n$ donc compact.

Par produit de compacts, $\Lambda \times H^{n+1}$ est un compact.

On pose $\Phi: \begin{cases} \mathbb{R}^{n+1} \times E^{n+1} & \longrightarrow E \\ (\lambda_1, \dots, \lambda_{n+1}, a_1, \dots, a_{n+1}) & \longmapsto \sum_{i=1}^{n+1} \lambda_i a_i \end{cases}$. L'application

 Φ est continue car bilinéaire en dimension finie.

Or, $Conv(H) = \Phi(\mathcal{H} \times H^{n+1})$; donc Conv(H) est compact, comme image d'une partie compacte par une application continue.

E. Enveloppe convexe de $O_n(\mathbb{R})$

(1) On redémontre (cf cours) que $O_n(\mathbb{R})$ est compact et on en déduit (d'après la question précédente) que conv $(O_n(\mathbb{R}))$ est compacte.

- (2) Soit $A \in O_n(\mathbb{R})$. Pour tout X de norme 1, ||AX|| = ||X|| = 1. Donc $||A||_2 \le 1$ et ainsi $O_n(\mathbb{R})$ est contenu dans la boule \mathcal{B} . Or, une boule est convexe. Cette boule \mathcal{B} contient alors par définition le plus petit convexe qui contient $O_n(\mathbb{R})$, soit $\operatorname{Conv}(O_n(\mathbb{R}))$.
- (3) Soit $V \in \text{conv}(O_n(\mathbb{R}))$. D'après la caractérisation du projeté orthogonal N, on a $\langle M-N,V-N\rangle \leq 0$, soit $\langle M-N,V\rangle \leqslant \langle M-N,N\rangle$, ce qui se traduit par : $\text{Tr}(AV) \leq \text{Tr}(AN)$. Par ailleurs, $M \neq N$, donc $\langle M-N,M-N\rangle > 0$, soit $\langle M-N,N\rangle < \langle M-N,M\rangle$, ce qui se traduit par Tr(AN) < Tr(AM). Ainsi, pour tout $V \in \text{Conv}(O_n(\mathbb{R}))$, Tr(USV) < Tr(USM). On peut choisir $V = U^{-1}$ et on obtient alors Tr(S) = Tr(VUS) = Tr(USV) < Tr(USM).
- (4) Comme S est symétrique réelle, on peut introduire une base orthonormée (e_1, e_2, \ldots, e_n) formée de vecteurs propres de S. Ainsi $Se_i = \lambda_i e_i$, avec $\lambda_i \geq 0$. L'inégalité de Cauchy-Schwarz donne alors :

$$\langle MUSe_i, e_i \rangle = \lambda_i \langle MUe_i, e_i \rangle \leq \lambda_i ||MUe_i|| \times ||e_i|| \leq \lambda_i ||Ue_i|| \times ||e_i|| = \lambda_i ||e_i||^2 = \lambda_i.$$

En appliquant la question A1, on obtient

$$\operatorname{Tr}(MUS) = \sum_{i=1}^{n} \langle MUSe_i, e_i \rangle \leq \sum_{i=1}^{n} \lambda_i = \operatorname{Tr}(S).$$

(5) Or $\operatorname{Tr}(MUS) = \operatorname{Tr}(USM)$: on obtient alors à $\operatorname{Tr}(S) < \operatorname{Tr}(S)$. L'hypothèse $M \not\in \operatorname{conv}(O_n(\mathbb{R}))$ amenant à une contradiction, on en déduit que $\mathcal{B} \subset \operatorname{conv}(O_n(\mathbb{R}))$, d'où finalement $\operatorname{conv}(O_n(\mathbb{R})) = \mathcal{B}$.

F. Points extrémaux

(1) On suppose que $U \in O_n(\mathbb{R})$ s'écrit sous la forme $U = \frac{1}{2}(V + W)$, avec V, W appartenant à \mathcal{B} . Soit $X \in \mathbb{R}^n$. Par inégalité triangulaire,

$$\|X\| = \|UX\| = \frac{1}{2}\|VX + WX\| \le \frac{1}{2}(\|VX\| + \|WX\|) \le \frac{1}{2}(\|X\| + \|X\|) = \|X\|.$$

Toutes les inégalités sont donc des égalités. La norme $\|.\|$ étant euclidienne, les vecteurs VX et WX sont donc colinéaires (et de même sens). Et de plus, pour tout X, $\|VX\| = \|X\|$ et $\|WX\| = \|X\|$. On en déduit d'une part que V et $W \in O_n(\mathbb{R})$. Et comme VX et WX sont positivement liés et de même norme, nécessairement VX = WX, et ce pour tout X donc V = W, puis V = W = U. Ainsi U est extrémal dans \mathcal{B} .

- (2) En utilisant la décomposition polaire, A s'écrit sous la forme US avec $U \in O_n(\mathbb{R})$ et S symétrique positive. Alors, d'après le théorème spectral, on peut introduire $Q \in O_n(\mathbb{R})$ et D diagonale à coefficients diagonaux positifs tels que $S = Q^{-1}DQ$.
 - On obtient alors $A=(UQ^{-1})DQ$ et il suffit de poser $P=UQ^{-1}\in O_n(\mathbb{R})$ pour conclure.
 - On retrouve la décomposition en valeurs singulières de A, mais comme A est une matrice carrée, la décomposition polaire nous donne une démonstration plus rapide.
- (3) Soit $i \in [1, n]$. On considère $X = Q^{-1}e_i$, où e_i désigne le *i*-ième vecteur de la base canonique de \mathbb{R}^n . On a alors ||QX|| = ||X|| = 1 et comme A appartient à \mathcal{B} , il vient $||AX|| \leq 1$.
 - Or $AX = PDe_i = P(d_ie_i)$ donc, comme d_i est positif, $||AX|| = d_i||Pe_i|| = d_i||e_i|| = d_i$, ce qui conduit à $d_i \le 1$.
 - Si tous les coefficients d_i valaient 1, D serait égale à la matrice identité I_n , d'où $A = PQ \in O_n(\mathbb{R})$: impossible. Il existe donc un indice $j \in [\![1,n]\!]$ tel que $d_j < 1$.
- (4) On pose un tel indice j, et on note $\alpha = 1 d_j > 0$. On introduit D_{α} , $resp.D_{-\alpha}$, la matrice diagonale dont les coefficients diagonaux sont les mêmes que ceux de D, à l'exception du j-ième qui vaut $d_j + \alpha$, resp. $d_j \alpha$. Enfin, on définit $A_{\alpha} = PD_{\alpha}Q$ et $A_{-\alpha} = PD_{-\alpha}Q$.
 - Comme D_{α} et $D_{-\alpha}$, ont toutes leurs valeurs propres comprises entre -1 et 1, $A_{\alpha} = PD_{\alpha}Q$ et $A_{-\alpha} = PD_{-\alpha}Q$ sont dans \mathcal{B} . En effet, avec G une

telle matrice diagonale, pour tout X, $||GX||^2 = \sum_{i=1}^n g_i^2 x_i^2 \leqslant ||X||^2$. Puis

 $||PGQX|| = ||GQX|| \leqslant ||QX|| = ||X||.$

Or on a $A = \frac{1}{2}(A_{\alpha} + A_{-\alpha})$ et $A_{\alpha} \neq A$: la matrice A n'est donc pas extrémale.

Finalement, les points extrémaux de \mathcal{B} sont exactement les matrices orthogonales $A \in O_n(\mathbb{R})$.